Henryk Gurgul*, Krzysztof Kłęk**

Analiza spektralna stóp zwrotu dla spółek z indeksu SMI

1. Wprowadzenie

Analiza własności czasowych szeregów finansowych jest jednym z najważniejszych zagadnień dotyczących procesu inwestowania. Ma ona zastosowanie np. przy konstrukcji portfela, określeniu efektywności inwestycyjnej, a także szacowaniu ryzyka inwestycji, budowaniu strategii inwestycyjnej i innych.

Celem tej analizy jest dekompozycja szeregu czasowego na składowe harmoniczne (okresowe), a przy tym określenie ich struktury i częstotliwości, które bardzo często nie są zauważane ze względu na występujące w szeregu finansowym wahania przypadkowe. Nieuwzględnienie bardzo istotnej informacji dotyczącej szeregu finansowego, którą jest okresowość (często ukryta), prowadzi do budowania nieefektywnych strategii inwestycyjnych.

W naukach ekonomicznych analiza spektralna ma również ważne zastosowanie w badaniu sezonowości, a także w analizie cykli koniunkturalnych. Do prognozowania szeregów czasowych ze składową okresową można także wykorzystać analizę harmoniczną [12].

W analizie szeregów czasowych częste zastosowanie ma też teoria długiej pamięci, polegającej na długookresowej korelacji w szeregach czasowych [5]. Analiza widmowa dopełnia analizy w dziedzinie czasu i pozwala zależności te identyfikować. Analiza spektralna pozwala na zbadanie struktury i częstotliwości wahań okresowych występujących w szeregu czasowym [7]. Jej celem jest rozkład złożonego szeregu czasowego zawierającego składniki cykliczne na kilka podsta-

[^0]wowych funkcji sinusoidalnych (sinus i cosinus) o określonych długościach fali. W wyniku analizy można zidentyfikować w badanym szeregu czasowym cykle okresowe o różnych długościach, chociaż szereg przed dekompozycją może być podobny do białego szumu.

Generalnie analizę tę należy stosować do stacjonarnych szeregów czasowych, a w przypadku ich niestacjonarności zastosować należy przekształcenie polegające na usunięciu niestacjonarności przez tzw. zróżnicowanie szeregu czasowego (obliczenie różnic stopnia d) lub oszacowanie trendu i następnie odjęcie go od danych [4]. Jeżeli szereg byłby niestacjonarny, to periodogram i gęstość widmowa byłyby zdominowane przez bardzo dużą wartość pierwszego współczynnika przy funkcji cosinus (a więc dla częstotliwości 0,0). Średnią arytmetyczną można uważać za cykl o częstotliwości 0 (zero) na jednostkę czasu; to znaczy, że jest ona stałą. Nieusunięty trend oraz średnia mogłyby maskować wahania okresowe, których identyfikacja jest głównym celem badań. Poza tym niekiedy przed analizą wygładza się dane w celu zmniejszenia roli szumu losowego. Ten ostatni może utrudniać identyfikację cykli okresowych na tzw. periodogramie, zwanym też próbkową gęstością widmową.

2. Periodogram, spektrum i funkcja gęstości spektralnej

Analiza spektralna oparta jest na założeniu, że szereg finansowy składa się z fal sinusowych i cosinusowych o różnych częstotliwościach [1],[2], [3], [6].

Załóżmy, że liczba obserwacji szeregu $N=2 q+1$ jest nieparzysta. Przyjmujemy model szeregu Fouriera:

$$
\begin{equation*}
z_{t}=a_{0}+\sum_{i=1}^{q}\left(\alpha_{i} c_{i t}+\beta_{i} s_{i t}\right)+e_{t} \tag{1}
\end{equation*}
$$

gdzie

$$
c_{i t}=\cos 2 \pi f_{i} t, s_{i t}=\sin 2 \pi f_{i} t, f_{i}=\frac{i}{N}
$$

f_{i} jest i-tą składową harmoniczną częstości podstawowej $1 / N$. „Długość fali" funkcji sinus lub cosinus wyraża się standardowo w kategoriach liczby cykli na jednostkę czasu (częstotliwość). Okres T funkcji sinus lub cosinus definiuje się jako długość czasu potrzebnego na jeden pełny cykl. Zatem jest to odwrotność częstotliwości. Jeśli zostanie stwierdzona duża wartość współczynnika przy sinusie lub cosinusie, to należy sądzić, że w danych istnieje silna okresowość o danej częstotliwości.

Estymatory współczynników α_{0} i (α_{i}, β_{i}) uzyskane metodą najmniejszych kwadratów są równe:

$$
\begin{align*}
& a_{0}=\bar{z} \tag{2}\\
& a_{i}=\frac{2}{N} \sum_{t=1}^{N} z_{t} c_{i t}, \mathrm{i}=1,2, \ldots, q \tag{3}\\
& b_{i}=\frac{2}{N} \sum_{t=1}^{N} z_{t} s_{i t} . \tag{4}
\end{align*}
$$

Funkcje sinus i cosinus są ortogonalne, dlatego w celu otrzymania periodogramu należy zsumować kwadraty współczynników dla każdej częstotliwości. Wartości periodogramu można interpretować jako wariancję (sumy kwadratów) odpowiadającą wahaniom o konkretnej częstotliwości lub okresie. Przeważnie wartości periodogramu przedstawia się względem częstotliwości lub okresów.

Periodogram składa się w tym przypadku (gdy N jest nieparzyste) z $q=$ $=(N-1) / 2$ wielkości

$$
\begin{equation*}
I\left(f_{i}\right)=\frac{N}{2}\left(a_{i}^{2}+b_{i}^{2}\right), \quad i=1,2, \ldots, q \tag{5}
\end{equation*}
$$

gdzie $I\left(f_{i}\right)$ jest intensywnością przy częstotliwości f_{i}.
Jeżeli natomiast N jest parzyste, czyli $N=2 q$, to wzory (2), (3), (4) i (5) stosuje się dla $i=1,2, \ldots, q-1$, natomiast dla $i=q$:

$$
\begin{align*}
& a_{q}=\frac{1}{N} \sum_{t=1}^{N}(-1)^{t} z_{t} \tag{6}\\
& b_{q}=0 \tag{7}\\
& I\left(f_{q}\right)=I(0,5)=N a_{q}^{2} . \tag{8}
\end{align*}
$$

Największa częstotliwość równa jest 0,5 cykla na jednostkę czasu, ponieważ okres równy jest 2 jednostkom.

Dla periodogramu (5) zakłada się, że częstotliwości $f_{i}=i / N$ są składowymi harmonicznymi częstotliwości podstawowej $1 / N$. Wprowadzenie spektrum łagodzi to ograniczenie, dopuszczając zmienne wartości częstotliwości w przedziale od 0 do 0,5 cykla. Zmodyfikowana postać periodogramu jest zatem następująca:

$$
\begin{equation*}
I(f)=\frac{2}{N}\left(a_{f}^{2}+b_{f}^{2}\right), \quad 0 \leq \mathrm{f} \leq 0,5 \tag{9}
\end{equation*}
$$

gdzie $I(f)$ nazywa się też spektrum próbkowym.
Z kolei spektrum mocy określone jest wzorem:

$$
\begin{equation*}
p(f)=\lim _{N \rightarrow \infty} E[I(f)]=2\left\{\gamma_{0}+2 \sum_{k=1}^{\infty} \gamma_{k} \cos (2 \pi f k)\right\}, \quad 0 \leq f \leq 0,5 \tag{10}
\end{equation*}
$$

gdzie γ_{k} jest autokowariancją przy odstępie k, zaś $p(f)$ jest cosinusową transformatą Fouriera funkcji autokowariancji.

Całkując spektrum mocy w granicach od 0 do 0,5 , otrzymuje się wariancję procesu z_{t} :

$$
\begin{equation*}
\sigma_{0}=\int_{0}^{0.5} p(f) d f \tag{11}
\end{equation*}
$$

$p(f)$ pokazuje zatem, w jaki sposób wariancja procesu stochastycznego rozłożona jest pomiędzy zmieniającymi się w sposób ciągły częstotliwościami.

W definicji spektrum można używać też współczynników autokorelacji ϑ_{k} zamiast autokowariancji $\gamma_{k^{\prime}}$ Otrzymuje się wówczas funkcję gęstości spektralnej:

$$
\begin{equation*}
p(f)=\vartheta(f) / \sigma_{z}^{2}=2\left\{1+2 \sum_{k=1}^{\infty} \vartheta_{k} \cos (2 \pi f k)\right\} \quad, \quad 0 \leq f \leq 0,5 . \tag{12}
\end{equation*}
$$

Estymator spektrum uzyskuje się ze wzoru:

$$
\begin{equation*}
\widehat{p}(f)=2\left[c_{0}+2 \sum_{k=1}^{N-1} \lambda_{k} c_{k} \cos (2 \pi f k)\right], \tag{13}
\end{equation*}
$$

gdzie λ_{k} są odpowiednio dobranymi wagami.

W celu wyeliminowania zjawiska obciążenia estymatora podczas wyznaczania periodogramu stosuje się tzw. okna spektralne. Spośród „dostępnych" okien, każde w różnym stopniu eliminuje to obciążenie. W poniższych badaniach zastosowano okno Parzena (więcej informacji na temat okien i ich doboru można znaleźć w [8] i [11]).

3. Analiza widma wzajemnego

Analiza widma wzajemnego jest rozwinięciem analizy pojedynczego widma (Fouriera) w jednoczesne analizy dwóch szeregów. Celem analizy widma wzajemnego jest określenie korelacji między dwoma szeregami czasowymi mającymi różne częstotliwości. Przykładowo w teorii rynków kapitałowych wysuwa się hipotezę, że kursy akcji na dużych rynkach mogą wpływać na kursy akcji na małych rynkach, czy też, że istnieją związki pomiędzy stopami zwrotu z akcji, a ich zmiennością i wielkością obrotów. Istnienie korelacji w określonym przedziale czasowym pomiędzy szeregami czasowymi można wykryć za pomocą analizy widma wzajemnego badanych szeregów. Analiza ta pozwala na wykrycie okresowości w danych dotyczących jednego szeregu zsynchronizowanej z okresowością danych innego szeregu. Cykliczność jest cechą wielu zjawisk ekonomicznych. Także na rozwiniętych rynkach kapitałowych zidentyfikowano tzw. efekty kalendarzowe, jak efekt godziny w dniu (w pierwszych 45 minutach handlu giełdowego kursy akcji są zazwyczaj w poniedziałek niższe niż w późniejszych godzinach, zaś w innych dniach tygodnia wyższe), efekt poniedziałku (stopy zwrotu są niższe niż w pozostałych dniach tygodnia), efekt tygodnia w miesiącu (stopy zwrotu są w pierwszych dwóch tygodniach miesiąca zazwyczaj wyższe niż w dalszych dniach tego samego miesiąca), czy efekt stycznia (stopy zwrotu w styczniu są zazwyczaj wyższe niż w pozostałych miesiącach danego roku). Finansowe szeregi czasowe mogą wykazywać pewną zgodność, czyli korelację. Tak jak w przypadku pojedynczych szeregów czasowych, pełny zbiór wyników obejmuje także wartości periodogramu mieszanego. Widmo wzajemne składa się z liczb zespolonych. Każda liczba zespolona ma część rzeczywistą i urojoną. Można je wygładzić w celu otrzymania ocen, odpowiednio, gęstości mieszanej i gęstości kwadraturowej. Wygładzanie polega na znajdowaniu częstotliwości o największych gęstościach widmowych. Chodzi o zakres częstotliwości, które mają największy udział w ogólnej strukturze harmonicznej szeregu. Zwykle cel ten jest realizowany przez wygładzenie wartości periodogramu za pomocą średniej ważonej. Pierwiastek kwadratowy sumy kwadratów wartości gęstości mieszanych i gęstości kwadraturowych nazywa się amplitudą mieszaną. Amplitudę mieszaną można interpretować jako miarę kowariancji między odpowiednimi składnikami okresowymi w dwóch szeregach.

Niekiedy szeregi czasowo mogą wykazywać tzw. wspólną długą pamięć (ang. bivariate long memory). W literaturze przedmiotu mówi się też o kointegracji [8] dwóch ułamkowo zintegrowanych (czyli wykazujących długą pamięć) szeregów czasowych.

Jedną z metod badania istnienia ułamkowej kointegracji pomiędzy szeregami czasowymi $x_{t} \mathrm{i} y_{0}$ opartą na tzw. lokalnej metodzie Whittleya jest metoda testowania warunku koniecznego po to, aby koherencja pomiędzy szeregami wynosiła 1 dla częstotliwości 0 .

Wartości amplitudy mieszanej można standaryzować przez podniesienie szeregów czasowych do kwadratu i podzielenie przez iloczyn estymatorów gęstości widmowej dla obu szeregów. W wyniku tej standaryzacji otrzymuje się tzw. kwadrat koherencji. Ma on analogiczną interpretację jak kwadrat współczynnika korelacji. Wartość koherencji jest równa kwadratowi korelacji pomiędzy składnikami cyklicznymi w dwóch szeregach dla danej częstotliwości. Nie zawsze wartość koherencji daje się rozsądnie zinterpretować. Jeśli na przykład oceny gęstości widmowej w obu rozważanych szeregach czasowych są bardzo małe, to otrzymuje się duże wartości koherencji (bo mianownik w obliczeniach wielkości koherencji jest bardzo mały). Ma to miejsce nawet wtedy, gdy nie występują istotne składniki cykliczne w którymkolwiek z szeregów w zakresie danej częstotliwości.
Współczynnik koherencji wyraża się wzorem [6]

$$
\begin{equation*}
\hat{\boldsymbol{H}}_{x y}^{2}(0)=\frac{\hat{\boldsymbol{R}}_{x y}^{2}}{\hat{\boldsymbol{R}}_{x x} \hat{\boldsymbol{R}}_{y y}} \tag{14}
\end{equation*}
$$

Wartość wzmocnienia oblicza się przez podzielenie wartości amplitudy mieszanej przez oceny gęstości widmowej jednego z dwóch szeregów poddanych analizie. Oczywiście oblicza się dwie wartości wzmocnienia, które można zinterpretować jako standardowe współczynniki regresji (uzyskane metodą najmniejszych kwadratów) dla danych częstotliwości.

Estymator wartości przesunięcia fazowego oblicza się jako cotangens stosunku estymatora gęstości kwadraturowej do oceny gęstości mieszanej. Oceny przesunięcia fazowego są miarami stopnia, w jakim każdy składnik częstotliwości jednego szeregu wyprzedza drugi. Głównym celem analizy widma wzajemnego jest zbadanie korelacji między dwoma szeregami, które mogą mieć miejsce w przypadku różnych częstotliwości.

W teorii ekonomii podkreśla się, że w rozwiniętych gospodarkach rynkowych ma miejsce proces wyrównywania się stóp zwrotu w poszczególnych branżach (od takich samych zainwestowanych w różnych branżach kapitałów powinny być w dłuższym okresie czasu te same stopy zwrotu). W związku z tym ważnym celem
badania jest sprawdzenie tej hipotezy odnośnie do spółek z badanej gospodarki reprezentujących różne branże przez odpowiedź na pytanie, na ile różnią się pary wybranych szeregów czasowych stóp zwrotu [9]. Dwa szeregi czasowe są równoważne, jeśli po pierwsze posiadają identyczny trend, po drugie ilorazy odpowiednich spektralnych estymatorów dla wszystkich częstotliwości obu szeregów wynoszą jeden oraz po trzecie kąt fazowy pomiędzy dwoma szeregami czasowymi dla każdej częstotliwości składowej wynosi zero. Pierwszy warunek może być testowany za pomocą regresji, drugi za pomocą analizy spektralnej, zaś trzeci za pomocą obu wymienionych tu metod.

4. Charakterystyka danych oraz wyniki badań empirycznych

Obliczenia przeprowadzono dla spółek notowanych na giełdzie szwajcarskiej, która jest średniej wielkości giełdą europejską cechującą się dużą stabilnością, nie tylko zresztą w analizowanym okresie.

Badaniu poddano logarytmiczne stopy zwrotu 19 spółek giełdy szwajcarskiej, które obliczono wg wzoru:

$$
\begin{equation*}
R_{t}=\ln \left(y_{t}\right)-\ln \left(y_{t-1}\right) \tag{15}
\end{equation*}
$$

Analizowane dane obejmowały okres od 03.01 .2001 r . do 21.11 .2008 r . i zawierały 1989 obserwacji. Tabela 1 zawiera statystyki opisowe obliczonych stóp zwrotu dla każdej z 19 spółek. Badane stopy zwrotu nie wykazywały trendu czasowego w analizowanym okresie.

Tabela 1
Statystyki opisowe

Nazwa spółki	Min.	Maks.	Średnia	Odch. stand.	Kw. 1	Kw. 2	Kw. 3	Skośn.	Kurtoza
ABBN	$-0,963$	0,377	$-0,00049$	0,042	$-0,014$	0	0,016	$-5,977$	149,894
ADEN	$-0,434$	0,148	$-0,00055$	0,027	$-0,013$	$-0,00061$	0,012	$-1,7220$	36,474
ATLN	$-0,969$	0,120	0,00020	0,035	$-0,012$	0	0,014	$-11,200$	307,290
BAER	$-0,166$	0,150	$-0,00036$	0,025	$-0,013$	0	$-0,013$	$-0,035$	7,197
BALN	$-0,166$	0,189	$-0,00050$	0,024	$-0,010$	0	0,009	0,110	10,850
CFR	$-0,131$	0,133	$-0,00006$	0,022	$-0,011$	0	0,011	0,062	6,935
CSGN	$-0,177$	0,246	$-0,00050$	0,026	$-0,011$	0	0,010	0,076	13,200
HOLN	$-0,201$	0,213	$-0,00025$	0,020	$-0,009$	0	0,009	$-0,174$	19,580

Tabela 1 cd.

Nazwa spółki	Min.	Maks.	Średnia	Odch. stand.	Kw. 1	Kw. 2	Kw. 3	Skośn.	Kurtoza
NOVN	$-0,099$	0,113	$-0,00016$	0,014	$-0,007$	0	0,007	0,183	10,310
ROG	$-0,084$	0,099	,- 00005	0,016	$-0,008$	0	0,008	0,206	7,304
RUKN	$-0,190$	0,196	$-0,00080$	0,025	$-0,010$	$-0,00057$	0,009	$-0,230$	13,896
SCMN	$-0,077$	0,107	$-0,00006$	0,012	,- 006	0	0,006	0,045	9,773
SLHN	$-0,224$	0,188	$-0,00124$	0,028	$-0,107$	0	0,009	$-0,567$	14,588
SYNN	$-0,100$	0,128	0,00038	0,019	$-0,009$	0	0,010	$-0,161$	6,629
SYST	$-0,198$	0,089	0,00007	0,017	$-0,008$	0	0,008	$-0,599$	13,942
USBN	$-0,189$	0,275	$-0,00060$	0,024	$-0,010$	0	0,009	0,410	18,948
UHR	$-0,118$	0,124	$-0,00019$	0,023	$-0,012$	0	0,011	$-0,078$	5,817
ZURN	,- 226	0,192	$-0,00066$	0,028	$-0,012$	0	0,011	$-0,674$	14,221

Źródło: obliczenia własne

Z badań empirycznych wynika, że stopy zwrotu wykazują tzw. własność grupowania zmienności (ang. volatility clustering), co oznacza, że zarówno duże jak i małe zmiany kursów mają tendencję do występowania seriami w czasie, co implikuje niestałość wariancji stóp zwrotu w czasie. Faktem empirycznym jest też występowanie efektu leptokurtozy i grubych ogonów rozkładów stóp zwrotu, co oznacza, że prawdopodobieństwo ekstremalnie dużej co do wartości bezwzględnej zmiany kursu akcji jest większe, niż miałoby to miejsce, gdyby rozkład stóp zwrotu był normalny. Dobrze znany jest też efekt skośności rozkładów stóp zwrotu, najczęściej obserwuje się skośność prawostronną. Często obserwowanym efektem jest efekt autokorelacji stóp zwrotu ich zmienności, a szczególnie wielkości obrotów. W literaturze jest opisywany wspomniany już wyżej efekt dźwigni, czyli efekt ujemnego skorelowania poziomu kursów i poziomu zmienności stóp zwrotu, będący „przełożeniem" asymetrycznego wpływu informacji pozytywnych i negatywnych na poziom przyszłej wariancji. Często badanym efektem jest wzmiankowany wyżej efekt długiej pamięci w danych giełdowych. Wymienione efekty powodowały i powodują konieczność budowy adekwatnych modeli. W naszych badaniach skoncentrowaliśmy się na grupie modeli omówionych w poprzednim rozdziale.

Tabela 2 (dla każdej z analizowanych spółek) zawiera obliczenia pięciu największych wartości mocy widma i odpowiadające im wartości periodogramu oraz harmoniki o danej częstotliwości. Częstotliwość jest odwrotnością okresu, zatem możliwe staje się określenie dla każdej z analizowanych spółek występujących cykli mierzonych liczbą dni (liczbą sesji). Wśród szeregu wyników okresu dla wszystkich spółek najczęściej występują cykle o długości od ok. 2 do ok. 8 sesji, a po zaokragleniu do pełnych wartości dominanta wynosi 4 sesje.

Analiza spektralna stóp zwrotu dla spółek z indeksu SMI

Tabela 2
Częstotliwość, okres i periodogram dla pięciu największych gęstości widmowych

Nazwa spółki	Częstotliwość	Okres	Periodogram	Gęstość
ABBN	0,150905	6,627	0,020552	0,017944
	0,060362	16,567	0,022180	0,017223
	0,151408	6,605	0,019325	0,016664
	0,489940	2,041	0,018107	0,015988
	0,075453	13,253	0,016642	0,015108
ATLN	0,092052	10,863	0,015559	0,011444
	0,177565	5,632	0,015656	0,011120
	0,083501	11,976	0,010949	0,010878
	0,165996	6,024	0,014434	0,010535
	0,084004	11,904	0,012601	0,010354
ADEN	0,255030	3,921	0,011604	0,009449
	0,467304	2,140	0,009111	0,007443
	0,056338	17,750	0,009063	0,007109
	0,461771	2,166	0,009768	0,006938
	0,117706	8,496	0,008968	0,006932
BAER	0,294769	3,392	0,000015	0,000064
	0,042757	23,388	0,000006	0,000080
	0,042254	23,667	0,000149	0,000104
	0,012072	82,833	0,000020	0,000113
	0,221328	4,518	0,000008	0,000114
BALN	0,250503	3,992	0,006971	0,005743
	0,095070	10,519	0,006828	0,005527
	0,275151	3,634	0,006695	0,004967
	0,120221	8,318	0,006595	0,004770
	0,010563	94,667	0,006096	0,004538
CFR	0,400905	2,494	0,007044	0,005094
	0,368209	2,716	0,006299	0,005058
	0,358149	2,792	0,006014	0,004316
	0,275151	3,634	0,005532	0,004311
	0,135312	7,390	0,005698	0,004300

Tabela 2 cd.

Nazwa spółki	Częstotliwość	Okres	Periodogram	Gęstość
CSGN	0,132294	7,559	0,008755	0,007653
	0,131791	7,588	0,008271	0,007012
	0,341549	2,928	0,007416	0,006455
	0,092555	10,804	0,007894	0,006433
	0,490443	2,039	0,008214	0,006424
HOLN	0,245976	4,065	0,006056	0,004599
	0,250000	4,000	0,004672	0,004021
	0,398893	2,507	0,005062	0,003771
	0,465795	2,147	0,004911	0,003477
	0,250503	3,992	0,003752	0,003353
NESN	0,398893	2,507	0,002505	0,001880
	0,244970	4,082	0,002083	0,001630
	0,259054	3,860	0,002079	0,001610
	0,245976	4,065	0,002015	0,001588
	0,489940	2,041	0,002022	0,001541
NOVN	0,220322	4,539	0,001326	0,001234
	0,218310	4,581	0,001377	0,001223
	0,250503	3,992	0,001249	0,001214
	0,466298	2,145	0,001322	0,001195
	0,265594	3,765	0,001210	0,001192
ROG	0,465795	2,147	0,005095	0,003769
	0,230885	4,331	0,004262	0,003309
	0,018612	53,730	0,003697	0,002776
	0,254527	3,929	0,003365	0,002741
	0,100101	9,990	0,002925	0,002477
UHR	0,252012	3,968	0,006663	0,005826
	0,242455	4,124	0,006779	0,005247
	0,248491	4,024	0,005599	0,004400
	0,252515	3,960	0,004397	0,004348
	0,197183	5,071	0,006079	0,004273
SLHN	0,068410	14,618	0,011266	0,009630
	0,120221	8,318	0,011009	0,009156
	0,000503	1988,000	0,012861	0,009031
	0,119215	8,388	0,009390	0,007865
	0,109658	9,119	0,008090	0,007691

Analiza spektralna stóp zwrotu dla spółek z indeksu SMI

Tabela 2 cd.

Nazwa spółki	Częstotliwość	Okres	Periodogram	Gęstość
RUKN	0,216801	4,613	0,009237	0,006673
	0,248491	4,024	0,008071	0,006250
	0,244970	4,082	0,007247	0,005823
	0,068913	14,511	0,006357	0,005299
	0,275151	3,634	0,006398	0,004943
SCMN	0,245976	4,065	0,002862	0,002088
	0,253018	3,952	0,001866	0,001386
	0,192656	5,191	0,001725	0,001330
	0,246479	4,057	0,000803	0,001265
	0,250000	4,000	0,001391	0,001262
SYNN	0,065392	15,292	0,005700	0,004239
	0,255030	3,921	0,004958	0,003968
	0,266600	3,751	0,004562	0,003400
	0,358652	2,788	0,003799	0,003169
	0,358149	2,792	0,003673	0,003168
SYST	$0,101610$	9,842	$0,003347$	$0,002454$
	0,332998	3,003	0,003118	0,002402
	0,419517	2,384	0,003042	0,002395
	0,172535	5,796	0,002620	0,002364
	0,402414	2,485	0,003202	0,002358
UBSN	0,131791	7,588	0,007094	0,006080
	0,235412	4,248	0,007457	0,006079
	0,175050	5,713	0,006125	0,005683
	0,143863	6,951	0,006781	0,005551
	0,132294	7,559	0,006179	0,005550
ZURN	0,131791	7,588	0,007094	0,006080
	0,235412	4,248	0,007457	0,006079
	0,175050	5,713	0,006125	0,005683
	0,143863	6,951	0,006781	0,005551
	0,132294	7,559	0,006179	0,005550

Źródło: obliczenia własne

Ze względu na ograniczoną objętość artykułu poniżej prezentujemy wykresy periodogramu i gęstości spektralnej tylko dla pierwszej z analizowanych spółek - ABBN (rys. 1-3).

Rys. 1. Rozkład gęstości mocy w dziedzinie częstotliwości

Rys. 2. Rozkład gęstości mocy w dziedzinie okresu

Rys. 3. Gęstość spektralna
Tabele 3-12 zawierają wyniki badań dotyczące analizy widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu par wybranych pięciu spółek reprezentujących na giełdzie najważniejsze branże gospodarki szwajcarskiej. Wybrano następujące pary: ZURN (banki i ubezpieczenia) i ROG (branża farmaceutyczna), ZURN i UHR (zegarki), ZURN i NESN (branża spożywcza), ZURN i CSGN (usługi finansowe), ROG i UHR, ROG i NESN, ROG i CSGN, UHR i NESN, UHR i CSGN, NESN i CSGN.

Aby sprawdzić równość trendów dla wybranych pięciu spółek, oszacowano dla każdej z nich funkcję trendu liniowego o postaci:

$$
\begin{equation*}
r_{i}=a_{i} \cdot t+e_{i} \tag{16}
\end{equation*}
$$

przy czym r_{i} jest stopą zwrotu i-tej spółki $(i=1, \ldots, 5)$. Następnie porównano parami współczynniki nachylenia a_{i} za pomocą testu t-Studenta. Wyniki zebrano w tabelach 13 i 14.

Uzyskane wyniki wskazują - jak to już wspomniano wyżej - na brak istotnego statystycznie trendu liniowego w badanych stopach zwrotu. Statystyki testowe wskazują też na brak istotnych różnic pomiędzy parami, jeśli chodzi o współczynnik nachylenia. Celem analizy widma wzajemnego było zbadanie korelacji między dwoma szeregami, które mogą mieć miejsce dla różnych częstotliwości.

Tabela 3

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek ZURN i ROG

Częstot.	Okres	Period. ZURN	Gestość ZURN	Period. ROG	Gęstość ROG	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ZURN na ROG	Wzmoc. ROGG na ZURN	Przes. fazowe
0,465795	2,14687	0,003903	0,004027	0,005095	0,003769	0,004117	$-0,001715$	0,003423	0,003697	0,900581	0,918050	0,980971	$-0,387143$
0,094567	10,57447	0,007604	0,006025	0,002573	0,002172	0,004039	$-0,001802$	0,003113	0,003306	0,835506	0,548772	1,522501	$-0,344179$
0,275151	3,63437	0,005581	0,004544	0,002401	0,001797	0,003642	$-0,000363$	0,002464	0,002506	0,769312	0,551518	1,394900	$-0,184493$
0,100101	9,98995	0,004801	0,004874	0,002925	0,002477	0,003639	0,000894	0,003293	0,003404	0,959828	0,698462	1,374202	0,256306
0,125252	7,98394	0,008127	0,006089	0,002049	0,001430	0,003506	$-0,002089$	0,002480	0,002882	0,954141	0,473305	2,015912	$-0,534596$

Źródło: Obliczenia własne
Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek ZURN i UHR

Częstot.	Okres	Period. ZURN	$\begin{array}{\|l} \text { Gęstośś } \\ \text { ZURN } \end{array}$	Period. UHR	$\begin{gathered} \text { Gęstość } \\ \text { UHR } \end{gathered}$	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	$\begin{array}{\|c} \text { Wzmoc. } \\ \text { ZURN } \\ \text { na UHR } \end{array}$	Wzmoc. UHR na ZURN	Przes. fazowe
0,131791	7,58779	0,011917	0,010156	0,004628	0,003825	0,007202	0,001812	0,005949	0,006092	0,955319	0,599793	1,592747	0,216703
0,254024	3,93663	0,007402	0,005615	0,005190	0,004212	0,005762	0,002283	0,004483	0,004793	0,971563	0,853678	1,138090	0,362021
0,275151	3,63437	0,005581	0,004544	0,004932	0,003755	0,005188	-0,000780	0,003902	0,003982	0,929540	0,876427	1,060603	-0,201622
0,120221	8,31799	0,005051	0,004077	0,004648	0,003939	0,004837	-0,000271	0,003791	0,003792	0,895366	0,930068	0,962689	-0,028094
0,099598	10,0404	0,006881	0,005637	0,003678	0,002943	0,004749	-0,001660	0,003824	0,004016	0,972022	0,712394	1,364444	-0,310293

Źródło: Obliczenia własne

Tabela 5

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek ZURN i NESN

Częstot.	Okres	Period. ZURN	Gęstość ZURN	Period. NESN	Gęstość NESN	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ZURN NESN	Wzmoc. NESN na ZURN	Przes. fazowe
0,398893	2,506936	0,005478	0,003954	0,002505	0,001880	0,003701	0,000160	0,002654	0,002656	0,948709	0,671722	1,412353	0,040520
0,254024	3,936634	0,007402	0,005615	0,001675	0,001242	0,003342	$-0,001107$	0,002435	0,002599	0,969051	0,462949	2,093213	$-0,357678$
0,307847	3,248366	0,005789	0,004834	0,001902	0,001536	0,003131	$-0,001099$	0,002353	0,002464	0,817752	0,509794	1,604083	$-0,302143$
0,109155	9,161290	0,004546	0,004015	0,001887	0,001413	0,002919	0,000243	0,002134	0,002138	0,805704	0,532564	1,512877	$-0,063317$
0,276660	3,614545	0,005167	0,004452	0,001849	0,001423	0,002854	0,001186	0,002174	0,002243	0,793931	0,503708	1,576174	0,247267

Źródło: Obliczenia własne
mi logarytmicznymi stopami zwrotu spółek ZURN i CSGN

Częstot.	Okres	Period. ZURN	Gęstość ZURN	Period. CSGN	Gestośćc CSGN	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ZURN na CSGN	Wzmoc. CSGN na ZURN	Przes. fazowe
0,131791	7,58779	0,011917	0,010156	0,008271	0,007012	0,009924	0,000288	0,008210	0,008220	0,948619	0,809299	1,172149	0,049570
0,132294	7,55894	0,008761	0,007963	0,008755	0,007653	0,008731	0,000682	0,007713	0,007727	0,979635	0,970262	1,009660	0,058282
0,125252	7,98394	0,008127	0,006089	0,008094	0,005662	0,008059	0,000916	0,005719	0,005743	0,956600	0,943155	1,014255	0,090939
0,081992	12,19632	0,006579	0,004964	0,007849	0,006102	0,007094	0,001144	0,005335	0,005419	0,969665	1,091739	0,888184	0,176179
0,277163	3,60799	0,005404	0,004779	0,008023	0,006289	0,006526	$-0,000871$	0,005113	0,005115	0,870658	1,070441	0,813364	$-0,029652$

Źródło: Obliczenia własne

Tabela 7

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek ROG i UHR

Częstot.	Okres	Period. ROG	Gęstość ROG	Period. UHR	Gęstość UHR	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ROG na UHR	Wzmoc. UHR na ROG	Przes. fazowe
0,465795	2,14687	0,005095	0,003769	0,004138	0,003294	0,004072	$-0,002122$	0,002925	0,003322	0,888678	0,881368	1,008293	$-0,493939$
0,230885	4,33115	0,004262	0,003309	0,004566	0,003559	0,004047	0,001755	0,003168	0,003385	0,972947	1,022888	0,951176	0,359792
0,018612	53,72973	0,003697	0,002776	0,003877	0,003038	0,003717	0,000721	0,002776	0,002802	0,931194	1,009506	0,922425	0,137475
0,275151	3,63437	0,002401	0,001797	0,004932	0,003755	0,003437	$-0,000172$	0,002432	0,002435	0,878635	1,355119	0,648382	0,048492
0,094567	10,57447	0,002573	0,002172	0,003303	0,003132	0,002671	$-0,001169$	0,002030	0,002364	0,821991	1,088742	0,754992	$-0,538618$

Źródło: Obliczenia własne

Tabela 8

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek ROG i NESN

Częstot.	Okres	Period. ROG	Gesstość ROG	Period. NESN	Gęstość NESN	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ROG na NESN	Wzmoc. NESN na ROG	Przes. fazowe
0,465795	2,146868	0,005095	0,003769	0,001176	0,001163	0,002404	0,000461	0,001961	0,001980	0,894333	0,525416	1,702141	0,139470
0,398893	2,506936	0,003126	0,002411	0,002505	0,001880	0,002266	$-0,001642$	0,001670	0,002007	0,888287	0,832287	1,067284	$-0,587687$
0,230885	4,331155	0,004262	0,003309	0,001549	0,001130	0,001844	0,001789	0,001392	0,001861	0,926234	0,562334	1,647122	0,726128
0,220825	4,528474	0,002178	0,001721	0,001774	0,001514	0,001617	0,001117	0,001304	0,001586	0,966064	0,921912	1,047892	0,605559
0,235412	4,247863	0,001836	0,001517	0,001435	0,001275	0,001594	0,000306	0,001344	0,001375	0,977024	0,906180	1,078179	0,213763

Źródło: Obliczenia własne

Tabela 9

Częstot.	Okres	Period. ROG	$\begin{aligned} & \text { Gęstość } \\ & \text { ROG } \end{aligned}$	Period. CSGN	Gęstość CSGN	Miesz. period. rzecz.	Miesz. period. uroj.	Gęstość miesz.	Amplit. miesz.	Kwadrat koher.	Wzmoc. ROG na CSGN	Wzmoc. CSGN na ROG	Przes. fazowe
0,465795	2,146868	0,005095	0,003769	0,005481	0,004582	0,005133	$\bigcirc 0,001258$	0,003949	0,004031	0,941084	1,069702	0,879763	-0,202782
0,275151	3,634369	0,002401	0,001797	0,005388	0,004169	0,003586	-0,000283	0,002633	0,002633	0,925787	1,465638	0,631661	0,002078
0,250503	3,991968	0,002158	0,001747	0,005900	0,004555	0,003568	0,000043	0,002649	0,002670	0,895909	1,528149	0,586271	0,126183
0,125252	7,983936	0,002049	0,001430	0,008094	0,005662	0,003241	0,002466	0,002287	0,002832	0,990771	1,980933	0,500154	0,630734
0,398893	2,506936	0,003126	0,002411	0,007608	0,005279	0,003202	-0,003679	0,002394	0,003425	0,921408	1,420285	0,648749	-0,796965

Źródło: Obliczenia własne
Tabela 10
Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek UHR i NESN

| Częstot. | Okres | Period.
 UHR | Gęstośćc
 UHR | Period.
 NESN | Gestość
 NESN | Mieszany
 period.
 rzecz. | Mieszany
 period.
 uroj. | Gęstość
 mieszana | Amplit.
 mieszana | Kwadrat
 koher. | Wzmoc.
 UHR na
 NESN | Wzmoc.
 NESN na
 UHR | Przes.
 fazowe |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,197183 | 5,071429 | 0,006079 | 0,004273 | 0,001307 | 0,000989 | 0,002800 | $-0,000324$ | 0,001938 | 0,001970 | 0,918889 | 0,461162 | 1,992550 | $-0,182317$ |
| 0,230885 | 4,331155 | 0,004566 | 0,003559 | 0,001549 | 0,001130 | 0,002488 | 0,000939 | 0,001833 | 0,001962 | 0,957208 | 0,551257 | 1,736410 | 0,364785 |
| 0,254024 | 3,936634 | 0,005190 | 0,004212 | 0,001675 | 0,001242 | 0,002260 | $-0,001893$ | 0,001696 | 0,002263 | 0,979299 | 0,537352 | 1,822453 | $-0,723657$ |
| 0,398893 | 2,506936 | 0,001908 | 0,001514 | 0,002505 | 0,001880 | 0,002186 | $-0,000010$ | 0,001507 | 0,001510 | 0,801617 | 0,997990 | 0,803232 | 0,068898 |
| 0,276660 | 3,614545 | 0,002446 | 0,002285 | 0,001849 | 0,001423 | 0,002059 | $-0,000530$ | 0,001625 | 0,001719 | 0,908257 | 0,752006 | 1,207778 | $-0,331730$ |

Tabela 11

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek UHR i CSGN
$\left.\begin{array}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \text { Częstot. } & \text { Okres } & \begin{array}{c}\text { Period. } \\ \text { UHR }\end{array} & \begin{array}{c}\text { Gęstość } \\ \text { UHR }\end{array} & \begin{array}{c}\text { Period. } \\ \text { CSGN }\end{array} & \begin{array}{c}\text { Gęstość } \\ \text { CSGN }\end{array} & \begin{array}{c}\text { Miesz. } \\ \text { period. } \\ \text { rzecz. }\end{array} & \begin{array}{c}\text { Miesz. } \\ \text { period. } \\ \text { uroj. }\end{array} & \begin{array}{c}\text { Gęstóść } \\ \text { miesz. }\end{array} & \begin{array}{c}\text { Amplit. } \\ \text { miesz. }\end{array} & \begin{array}{c}\text { Kwadrat } \\ \text { koher. }\end{array} & \begin{array}{c}\text { Wzmoc. } \\ \text { UHR na } \\ \text { CSGN }\end{array} & \begin{array}{c}\text { Wzmoc. } \\ \text { CSGN na } \\ \text { UHR }\end{array} \\ \hline 0,242455 & 4,124481 & 0,006779 & 0,005247 & 0,006747 & 0,005447 & 0,006272 & 0,002531 & 0,004668 & 0,005182 & 0,939712 & 0,987705 & 0,951410 \\ \hline \text { Przes. } \\ \text { fazowe }\end{array}\right]$
Źródło: Obliczenia własne

Tabela 12

Analiza widma wzajemnego pomiędzy dziennymi logarytmicznymi stopami zwrotu spółek NESN i CSGN

| Częstot. | Okres | Period.
 NESN | Gestość
 NESN | Period.
 CSGN | Gęstośćc
 CSGN | Mieszany
 period.
 rzecz. | Mieszany
 period.
 uroj. | Gestość
 mieszana | Amplit.
 mieszana | Kwadrat
 koher. | Wzmoc.
 NESN na
 CSGN | Wzmoc.
 CSGN na
 NESN | Przes.
 fazowe |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,398893 | 2,506936 | 0,002505 | 0,001880 | 0,007608 | 0,005279 | 0,004253 | $-0,000984$ | 0,002947 | 0,003014 | 0,915302 | 1,603006 | 0,570991 | $-0,211967$ |
| 0,244970 | 4,082136 | 0,002083 | 0,001630 | 0,006786 | 0,005993 | 0,003635 | $-0,000963$ | 0,002964 | 0,003048 | 0,951249 | 1,870267 | 0,508617 | $-0,236015$ |
| 0,307847 | 3,248366 | 0,001902 | 0,001536 | 0,006651 | 0,005257 | 0,003292 | 0,001346 | 0,002591 | 0,002775 | 0,953750 | 1,806488 | 0,527958 | 0,366569 |
| 0,489940 | 2,041068 | 0,002022 | 0,001541 | 0,004615 | 0,004738 | 0,002923 | $-0,000887$ | 0,002363 | 0,002524 | 0,872567 | 1,637686 | 0,532805 | $-0,359488$ |
| 0,245976 | 4,065440 | 0,002015 | 0,001588 | 0,004431 | 0,004172 | 0,002811 | 0,001013 | 0,002220 | 0,002366 | 0,845266 | 1,490344 | 0,567162 | 0,353628 |

Źródło: Obliczenia własne

Tabela 13
Wartości współczynników regresji

Nazwa spółki	Ocena parametru nachylenia	Błąd standardowy
ZURN	$-0,00000016$	0,00000055
CSGN	$-0,00000058$	0,00000052
ROG	0,00000001	0,00000031
UHR	$-0,00000028$	0,00000044
NESN	0,00000010	0,00000027

Źródło: Obliczenia własne

Tabela 14
Test na równość współczynników (wartość statystyki t-Studenta)

ZURN ROG	ZURN UHR	ZURN NESN	ZURN CSGN	ROG UHR	ROG NESN	ROG CSGN	UHR NESN	UHR CSGN	NESN CSGN
$-0,281$	0,157	$-0,427$	0,551	0,532	$-0,205$	0,981	$-0,716$	0,446	1,157

Źródło: Obliczenia własne

Prezentowane w tabelach wyniki obliczeń (pięć pierwszych największych wartości) uszeregowane zostały malejąco dla wartości rzeczywistych periodogramu. W powyższej analizie przyjęto poziom istotności równy 0,05 .

Jak to zostało wyżej nadmienione, miarą liniowego związku między składnikami częstotliwości dwóch procesów jest koherencja. Współczynnik koherencji wskazuje na to, które składniki częstotliwości dwóch szeregów czasowych są ze sobą skorelowane oraz jaka jest siła tej korelacji.

Obliczenia zamieszczone w tabelach 3-12 na pierwszy rzut oka wskazują na wzajemną istotną okresowość analizowanych szeregów. Do wyników tych należy jednak podchodzić z dużą ostrożnością. Co prawda wartości kwadratów koherencji są wysokie, ale oceny gęstości widmowej dla obu szeregów są bardzo niskie. Można domniemywać, że te ostatnie są przyczyną wysokich wartości kwadratów koherencji. W związku z powyższym można uznać, że w analizowanych szeregach czasowych nie występuje jednak zjawisko istotnej okresowości, a zatem i nie udaje się potwierdzić za pomocą analizy spektralnej wspomnianych na początku efektów kalendarzowych obserwowanych na niektórych giełdowych rynkach akcji. W przypadku braku statystycznie istotnych zsynchronizowanych zachowań analizowanych szeregów dalsza analiza dotycząca wzmocnienia i przesunięcia fazowego traci zasadność.

Można jednak zauważyć, że w przypadku wszystkich rozważanych par stóp zwrotu ilorazy estymatorów widmowych dla tych samych częstotliwości nie są równe 1, jak również przesunięcie fazowe nie wynosi 0 , co wskazuje na to, że rozważane szeregi czasowe stóp zwrotu wybranych spółek istotnie się różnią w rozważanym okresie.

5. Podsumowanie

Analiza spektralna pozwala ujawnić strukturę harmoniczną szeregu czasowego. Jej wynikiem jest dekompozycja złożonego szeregu czasowego zawierającego składniki cykliczne na kilka podstawowych funkcji sinusoidalnych (sinus i cosinus) o określonych długościach fali. Identyfikacja ważnych podstawowych składników cyklicznych pozwala na poznanie struktury badanych zjawisk i procesów ekonomicznych.

Analiza widmowa spółek z SMI nie pozwoliła na wykrycie istotnych składników cyklicznych w stopach zwrotu wybranych spółek w badanym okresie. Niskie oceny gęstości widmowej nie pozwalają - pomimo wysokich współczynników koherencji - stwierdzić istnienia istotnej korelacji pomiędzy poszczególnymi częstotliwościami badanych stóp zwrotu. Wyniki badań stóp zwrotu spółek w wybranym okresie nie odzwierciedlają tak zwanych efektów kalendarzowych, o których wspomina się w literaturze ekonomicznej.

Wyniki analizy spektralnej pozwalaja jednak na konstatację, że szeregi stóp zwrotu reprezentujące pięć branż gospodarki szwajcarskiej są istotnie różniącymi się szeregami czasowymi, czyli że stopy zwrotu zależą istotnie od branży, do której należy spółka.

Literatura

[1] Bloomfield P., Fourier Analysis of Time Series. An Introduction, Wiley, New York 1976.
[2] Box G.E.P., Jenkins G.M., Analiza szeregów czasowych. Prognozowanie i sterowanie, PWN, Warszawa 1983.
[3] Gędek S., Analiza barmoniczna szeregów czasowych kursów walutowych, w: Trzaskalik T. (red.), Modelowanie preferencji a ryzyko '05, Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice 2006.
[4] Gurgul H., Kłęk K., Metody badania stacjonarności kursów walutowych, Zeszyt Naukowy Nr 4, WSEI, Kraków 2008, s. 69-87.
[5] Gurgul H., Kłęk K., Syrek R., Długookresowe własności kursów walutowych - podwójna dluga pamięć, „Ekonomia Menedżerska" 2009, nr 5, s. 63-79.
[6] Jenkins G.M., Watts G.D., Spectral Analysis and its Applications, Holden Day, San Francisco 1968.
[7] Kompa K., Matuszewska A., Witkowska D., Wprowadzenie do ekonometrii dynamicznej i finansowej, Wydawnictwo SGGW, Warszawa 2008.
[8] Lyons R.G., Wprowadzenie do cyfrowego przetwarzania sygnatów, WKiL, Warszawa 1999.
[9] Parsons L.J., Henry W.A., Testing Equivalence of Observed and Generated Time Series Data by Spectral Methods, „Journal of Marketing Research" 1972, vol. IX, s. 391-395.
[10] Robinson P.M., Yajima Y., Determination of cointegrating rank in fractional systems, „Journal of Econometrics" 2002, vol. 106 (2), s. 217-241.
[11] Stranneby D., Cyfrowe przetwarzanie sygnatów. Metody, algorytmy, zastosowania, Wydawnictwo BTC, Warszawa 2004.
[12] Zeliaś A., Pawełek B., Wanat S., Prognozowanie ekonomiczne. Teoria, przykłady i zadania, PWN, Warszawa 2004.

[^0]: * Akademia Górniczo-Hutnicza w Krakowie, Wydział Zarządzania, Pracownia Zastosowań Matematyki w Ekonomii, e-mail: henryk.gurgul@gmail.com
 ** Wyższa Szkoła Ekonomii i Informatyki, Zakład Metod Ilościowych w Ekonomii, e-mail: krzysztof.klek@gmail.com

