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Abstract:	 This paper demonstrates the results of research studies aimed at creating a mo-
del that allows to determine the resistance of existing bridge structures to the 
impact of mining tremors. A  database (created by the author of this article) 
of the dynamic resistance of reinforced concrete bridge structures subjected 
to seismic excitations commonly occurring in the Legnica-Głogów Copper 
District (LGOM) formed the basis for the analysis. The dynamic resistance of 
each structure contained in the database was expressed as the limit values of 
the acceleration of ground vibrations that may be carried by a given structure 
without compromising its safety. The study was carried out using the Support 
Vector Machine (SVM) method in a Support Vector Regression (SVR) approach 
as well as an Artificial Neural Network (ANN). The models were compared 
in terms of the quality of the predictions and generalization of the acquired 
knowledge. This allows to select the most-effective method in evaluating the 
dynamic resistance of existing bridge structures.
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1.	 Introduction

Preventive measures in the scope of surface protection against the damaging 
effects of underground mining exploitation calls for an assessment of the resistance 
of structures comprising the infrastructure in a specific mining area. This problem not 
only applies to buildings but also to bridge structures. In addition to continuous sur-
face deformations, there are mining tremors occurring in the Legnica-Głogów Copper 
District (LGOM) [4,17]. Numerous studies have proven that the dominant factor that 
poses a threat to the infrastructure in this area are paraseismic phenomena [e.g., 2,18]. 
The problem is particularly related to existing buildings constructed during the period 
when these phenomena were not taken into account during the design process.

This paper [12] presents a proposal for assessing the dynamic resistance of exist-
ing bridge structures to the impact of mining tremors. This procedure involves deter-
mining the margin of the load-bearing capacity of a given structure resulting from the 
assumptions adopted at the design stage, where additional effort on its load-bearing 
elements may be allowed in the event of a mining tremor. It allows us to determine 
the permissible values of the acceleration of ground vibrations at the location of the 
structure (ag,dop,V [m/s2] and ag,dop,H [m/s2]) that can be carried by a structure without 
compromising its safety. In general, this approach can also be applied to structures 
such as steel or reinforced concrete industrial portal frame buildings.

If, however, it is necessary to define the dynamic resistance for a large number 
of objects, this procedure becomes ineffective. This is due to the fact that, in each 
case, it requires the construction of an FEM model, a determination of all load com-
binations taken into account at the design stage, and the static and dynamic analyses 
performed, all while taking into consideration the model response spectra for a spe-
cific area as well as the recording and analysis of the results obtained in the context 
of the criteria adopted for the assessment of resistance.

An additional problem that concerns the existing reinforced concrete bridge struc-
tures is a lack of precise information on the strength parameters, strength of reinforce-
ment of the load-bearing components, or parameters reflecting the current friction in 
the sliding bearings. The criteria specified in [12] allow for the assessment of resistance 
in the absence of information on the compressive strength of the concrete, which is 
the building material of various elements of the load-bearing structure and the actual 
reinforcement of the elements. However, parameters such as the modulus of elasticity 
of the concrete and the coefficient of friction in the bearings must be determined to 
perform a numerical analysis. However, it is frequently the case that there is no design 
documentation; therefore, the information on these parameters is uncertain and results 
from in-situ surveys or studies. Thus, it is necessary to perform numerical simulations 
in many variants resulting from the random dispersion of these parameters [3].

In view of such a problem, the author found it reasonable to seek a more-ef-
fective method to assess the resistance of a  large group of structures without the 
need for their individual analysis in accordance with the adopted resistance-assess-
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ment procedure. For this purpose, a database on the resistance of reinforced con-
crete bridge structures with a slab span system (in various geometrical and material 
variants) has been created based on multiple numerical Finite Element Analyses. 
Then, a Multiple Linear Regression (MLR) model was attempted to be built to esti-
mate the determined permissible acceleration of ground vibrations (ag,dop,V [m/s2] and 
ag,dop,H [m/s2]). The performed analyses demonstrated that the relationships between 
the geometrical and material properties as well as the resistance are nonlinear, and 
the created MLR models were not sufficient for their correct description [11]. There-
fore, the author sought methods that allowed for the nonlinear approximation of 
resistance expressed as the permissible acceleration of ground vibrations (ag,dop,V [m/s2] 
and ag,dop,H [m/s2]) in the domain of the geometrical and material parameters.

As a result, Machine Learning methods (ML) were introduced in the studies. An 
ANN (Artificial Neural Network) and SVM (Support Vector Machine) in a regression 
approach – SVR (Support Vector Regression) were tested. The paper presents the 
results of building models approximating the permissible values of the acceleration of 
ground vibrations (ag,dop,V [m/s2] and ag,dop,H [m/s2]) using these methods. The obtained 
models were assessed in terms of fit quality to the real data as well as generalizability.

The final model should replace the current procedure of determining the 
dynamic resistance for the range of types of structures for which it was created.

2.	 Research Methodology

Both Artificial Neural Networks (ANN) and Support Vector Machine (SVM) 
models belong to the group of Machine Learning methods (ML) [15]. The structures 
of these systems are very similar. In each, the information contained in the vector of 
input data XT is processed in parallel by all computational units (such as artificial 
neurons in the case of neural networks [13] and, in the case of SVM systems – prop-
erly defined kernel functions [1], [16]). Practically, the SVM model has a structure 
analogous to Radial Basis Function Neural Networks (RBF). The difference between 
them lies only in the acceptance of various criterion functions for learning [9].

In the case of neural networks, the determination of the synaptic weights 
between neurons is carried out in the process of minimizing an appropriately con-
structed criterion, which is a function of error between the real data and prediction 
of the model. Calculations are performed on a specified training set. In parallel, after 
each iteration, the network response for the data from the training set is compared 
with the results obtained on the additional validation set. This allows us to avoid 
overfitting the network, which leads to the loss of generalizability [9]. The created 
network is assessed on a test set. A comparison of the results for training and test 
sets allows us to assess the network for is generalizability. However, the selection 
of the number of neurons in the hidden layer is arbitrary, so it is necessary to test 
multiple networks in order to separate an optimal structure for a specific problem.
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In the case of SVM, the role of the weights in neural networks is performed by 
Lagrange multipliers. This is dictated by the adoption of a linear objective function 
that is different than in neural networks. This criterion is a compromise between the 
good fit of the SVM network to the learning data and generalization of the model. 
Finally, the problem is reduced to solving a quadratic optimization problem [9].

If the SVM method is used for regression tasks, it is required to arbitrarily 
accept three parameters: C, ε, and σ. These parameters occurring in the formulation 
of the criterion function represent the following, respectively: C – the regularization 
parameter, determining the range of permissible values of the Lagrange multipliers; 
ε – the range of the tolerance band; and σ – the width of the kernel function of the 
system. These parameters determine the resultant structure of the model; therefore, 
it is important to determine their optimum values. In this paper, genetic algorithm 
(GA) was used to determine the optimum values of these parameters [7, 10, 14].

3.	 Research Results

All of the analyses were carried out using the information collected in the database 
of the dynamic resistance of reinforced concrete flyovers with a slab span system to the 
impacts of mining tremors. The database was prepared as a result of multiple numerical 
FEM analyses, in line with the procedure of resistance assessment according to [12]. 

In general, this procedure requires applying the response spectrum method 
for a multi-degree of freedom (MDOF) system in the FEM approach and adopting 
a standardized acceleration response spectra curve describing the seismic intensity 
for a given area:
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where:
	 Sa – standardized acceleration response spectra adopted for the LGOM min-

ing area according to [17] [m/s2],
		 ag  – design acceleration of ground vibrations [m/s2],
	 T  – eigenmode period [s],
	 TB = 0.30 s, TC = 0.80 s, TD = 1.3 s, S = 1.5, according to [17],
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,ξ = 0.05 – damping coefficient. 
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According to [12], six conditions determining the resistance of the bridge object 
are considered in each of the analyzed cases:

1)	 the strength condition of the load-bearing capacity of the spans,
2)	 the condition of the load-bearing capacity of the fixed bearings and the bear-

ings sliding in one direction (leading),
3)	 the condition of the contact between the support and the span,
4)	 the condition limiting the friction force for the sliding bearings,
5)	 the condition limiting the sliding of the sliding bearings,
6)	 the condition of the load-bearing capacity of the supports.

A  determination of the limit values of the acceleration of ground vibrations  
(ag,dop,V [m/s2] and ag,dop,H [m/s2]) is made for each condition and consists of comparing 
the effects from the combinations adopted at the design stage of the structure with 
the effects from the seismic combination:

Ed
SE  ≤ Ed

PN� (2)

where:
	 Ed

SE 	–	 design value of the effect of seismic impacts,
	 Ed

PN	–	 design value of the impact effect for a  given combination of loads, 
adopted at the design stage.

Eventually, it included the permissible values of the components of the acceler-
ation of ground vibrations (ag,dop,V [m/s2] and ag,dop,H [m/s2]) calculated for 3000 struc-
tures. The preceding stage during the analysis of each case recorded in the database 
was a random selection of geometrical and material properties in accordance with 
the guidelines contained in [5]. In this way, the diversity of information collected in 
the database was ensured.

3.1.	Building Artificial Neural Networks  
Approximating Permissible Values  
of Acceleration of Ground Vibrations (ag,dop,V  and ag,dop,H)

When commencing with the construction of neural networks that are intend-
ed to approximate the permissible values of the acceleration of ground vibrations  
(ag,dop,V [m/s2] and ag,dop,H [m/s2]), the data set was divided into three sets: a  train-
ing set (60% = 1800 models); a  validation set (20% = 600 models); and a  test set  
(20% = 600 models). Then, a set of variables describing the geometrical and material 
properties as well as the mechanical parameters of the bearings was selected. The set 
of variables adopted for the analysis is demonstrated in Table 1.

The neural networks were constructed in the Matlab environment [6–8]. 
A three-layer feedforward neural network MLP (Multilayer Perceptron) with non-
linear activation functions in the neurons of the hidden layer was adopted as the 



114 J. Rusek

target structure of the network. The analyses were conducted for all available learn-
ing methods [6]. In order to specify the target number of neurons in the hidden lay-
er, an optimization using a genetic algorithm was performed for each adopted meth-
od. The optimization criterion was the error obtained for the predetermined test set.

Table 1. Geometrical and material variables adopted  
as input variables for ANN and SVM models

Variable no. Description of the variable

Var.01 Static scheme of the system

Var.02 Cantilevers (overhangs) [m]

Var.03 Number of spans

Var.04 Length of spans [m]

Var.05 Width of spans [m]

Var.06 Diversified height of spans

Var.07 Height of span H – support zone [m]

Var.08 Height of span h – middle zone [m]

Var.09 Length of cantilever/overhang [m]

Var.10 Number of support frames/wall pillars

Var.11 Number of pillars

Var.12 Width (y – perpendicular to the axis of the structure) of a single support/wall pillar [m]

Var.13 Width (x – parallel to the axis of the structure) of a single support/wall pillar [m]

Var.14 Number of bearings

Var.15 Height of the support frame lintel [m]

Var.16 Width of the support frame lintel [m]

Var.17 Height of supports/wall pillars [m]

Var.18 Modulus of elasticity of concrete of span slabs [GPa]

Var.19 Modulus of elasticity of concrete of support frame lintels [GPa]

Var.20 Modulus of elasticity of concrete of supports/wall pillars [GPa]

Var.21 Coefficient of friction of sliding bearings [–]

These analyses resulted in two neural networks, allowing for an approximation 
of the permissible values of the components of the acceleration of ground vibrations  
(ag,dop,V [m/s2] and ag,dop,H [m/s2]). Two measures were used to assess the models: Mean 
Squared Error (MSE) and the linear correlation coefficient between the results of the pre-
diction and model values for predetermined training sets, validation sets, and test sets.

These models had the best properties in terms of fit and generalizability. The 
BFGS (Broyden–Fletcher–Goldfarb–Shanno [6]) algorithm turned out to be the best 
of all. Table 2 demonstrates the basic data on the structure of the created neuron 
networks. Table 3 presents the parameters that allowed for the assessment of the 
networks for the fit quality of the prediction to model data and its generalizability.
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 Table 2. Basic characteristics determining structure  
of created neural networks

Number of neurons 
in hidden layer

Activation functions 
of neurons in hidden layer

Applied learning 
algorithm

Neural network for approximation ag,dop,V

96 Logistic function BFGS

Neural network for approximation ag,dop,H

93 Tanh function BFGS

Table 3. Assessment of fit quality and generalizability  
of the created neural networks

MSE Error
The value of linear correlation coefficient R 
between pattern data and prediction of each 

model

training set validation set test set training set validation set test set

Neural network for approximation ag,dop,V

0.0010 0.0022 0.0027 0.99 0.98 0.99

Neural network for approximation ag,dop,H

0.0048 0.0067 0.0054 0.85 0.73 0.81

Table 3 demonstrates the values of the errors and of the linear correlation coef-
ficient between the prediction of the created neural networks and the model data. 
Therefore, it is possible to note that:

–– the neural network created to approximate a permissible vertical component 
of the acceleration of ground vibrations ag,dop,V [m/s2] has a very high degree 
of prediction fit to the model data for all sets included in the learning and 
testing stages. In addition, this model does not exhibit any overfitting, as evi-
denced by the comparable values of the Mean Squared Errors and correlation 
coefficient calculated for all of the analyzed sets;

–– the neural network approximating a horizontal component of the permissi-
ble acceleration of ground vibrations ag,dop,H [m/s2] has satisfactory properties 
in the sense of a prediction fit to the model data; it does not exhibit any signs 
of overfitting either, proving that it has achieved good generalizability in the 
learning process;

–– both models were created based on a comparable number of neurons in 
the hidden layer (c.f. Tab. 3). The numbers of neurons referenced to the 
total number of models from the training set (1800) provide an additional 
basis for assessing the level of generalization of the created models as 
very good.
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3.2.	Building SVM models  
approximating permissible values of acceleration  
of ground vibrations (ag,dop,V and ag,dop,H)

Building SVR models was based on the separation of two sets: a training set and 
a test set (the latter of which was not used during the learning stage). It was prede-
termined that the training set would represent 70% of the total number of models 
contained in the database, and the rest were assigned to the test set.

The next stage involved the optimal selection of parameters C, ε, and σ. 
This was the most-important stage in the study, as when having the optimum 
set of these parameters, the process of building the structure of the SVR model 
is reduced to solving a quadratic optimization problem in Lagrange multipliers, 
which is significantly less entangled than neural network learning. In order to 
determine the optimal values of parameters C, ε, and σ, a genetic algorithm was 
used for which the criterion was the value of the error function from a five-fold 
cross-validation [10].

In order to identify the optimal structures of the SVR models approximating the 
limit values of the acceleration of ground vibrations (ag,dop,V [m/s2] and ag,dop,H [m/s2]), 
this procedure was performed twice. The obtained results describing the basic 
data concerning the structures of the individual models are presented in Table 4. 
Table 5 demonstrates the assessment results in the context of fit quality and gen-
eralizability.

Table 4. Parameters defining structures of created SVR models

Created SVR models Number of 
support vectors

Value of 
regularization 

constant C

Tolerance band 
width ε

Width of kernel 
function σ

SVM model for 
approximation ag,dop,V

1594 14.86 0.0055 4.68

SVM model for 
approximation ag,dop,H

1009 9.17 0. 0739 8.97

Table 5. Assessment of fit quality and generalizability of created SVR models

Created SVR models
MSE Error

Value of linear correlation coefficient 
R 

between pattern data 
and prediction of each model

training set test set training set test set

SVM model for 
approximation ag,dop,V

0.0054 0.0298 0.98 0.93

SVM model for 
approximation ag,dop,H

0.0109 0.0162 0.83 0.73
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The values of the errors and of the coefficient of linear correlation between the 
prediction of the created SVR models and the model data (demonstrated in Table 5) 
prove that:

–– the SVR model created to approximate the permissible vertical component of the 
acceleration of ground vibrations ag,dop,V [m/s2] is characterized by a high degree 
of prediction fit to the model data for all sets taken into account in the learning 
and testing stages; this model, however, exhibits a small degree of overfitting, as 
evidenced by an MSE value for the test set that is greater than for the training set;

–– the SVR model approximating the horizontal component of the permissible 
acceleration of ground vibrations ag,dop,H [m/s2] obtained satisfactory proper-
ties, both in the sense of the prediction fit to the model data as well as gener-
alization;

–– analyzing the number of supporting vectors (c.f. Tab. 4) that directly translate 
into the complexity of the SVR model structures, it can be noticed that, in the case 
of the SVR model created for the approximation of component ag,dop,H [m/s2], the 
number of support vectors is significantly smaller than for the model approx-
imating component ag,dop,H [m/s2]; this is additional information to confirm the 
better generalizability of the model approximating component ag,dop,H [m/s2] 
compared to the SVR model created to approximate horizontal component 
ag,dop,V [m/s2], for which a higher degree of fit yet a worse generalizability of the 
acquired knowledge was obtained.

4.	 Summary and Conclusions

The results of the performed analyses presented in this paper demonstrate that 
the use of Machine Learning methods can be an alternative to numerical Finite Ele-
ment Analysis. This particularly applies to the case when it is necessary to determine 
the dynamic resistance of a large number of structures.

According to the author, application of these methods will increase the effec-
tiveness of assessing the resistance of bridge structures to the impact of mining trem-
ors by reducing the number of calculation procedures required for such analyses 
(cf. Fig. 1). It will make analyzing the cases easier where the information on the 
material parameters is uncertain, and it can contribute considerably to Geographic 
Information Systems (GIS) by supplying data on the resistance of bridge structures 
in a specific area.

The obtained results prove that both the Artificial Neural Networks and the 
method of supporting vectors can be used as numerical tools to approximate the 
permissible components of the acceleration of ground vibrations (ag,dop,V [m/s2] and 
ag,dop,H [m/s2]), defining the dynamic resistance of bridge structures to the impact of 
mining tremors. The presented results demonstrate that Artificial Neural Networks 
are a better solution to this problem.
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The approach applied here can be transferred to other types of existing struc-
tures; however, this requires us to create a sufficient number of databases to allow 
for the learning and testing of the systems that belong to the group of machine learn-
ing methods.

  
Fig. 1. Comparison of procedures of determining dynamic resistance using FEM numerical 

approach and machine learning methods
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Metody uczenia maszynowego w ocenie odporności dynamicznej 
istniejących obiektów mostowych  
poddanych wstrząsom górniczym

Streszczenie: 	W pracy przedstawiono wyniki badań, których celem było utworzenie mode-
lu pozwalającego na określenie odporności istniejących obiektów mostowych 
na wpływy wstrząsów górniczych. Podstawą do analiz była utworzona przez 
autora baza danych o odporności dynamicznej żelbetowych obiektów mosto-
wych poddanych wymuszeniu sejsmicznemu charakterystycznemu dla terenu 
Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). Odporność dyna-
miczna każdego obiektu w bazie danych została wyrażona w postaci granicz-
nych wartości przyspieszeń drgań gruntu, jakie dana konstrukcja może przejąć 
bez zagrożenia bezpieczeństwa. Badania przeprowadzono, wykorzystując me-
todę Support Vector Machine (SVM) w ujęciu regresyjnym (SVR – Support Vector 
Regression) oraz sztuczne sieci neuronowe (ANN – Artificial Neural Network). 
Utworzone w ten sposób modele porównano w aspekcie jakości predykcji oraz 
uogólniania nabytej wiedzy. Pozwoliło to na wytypowanie metody najbardziej 
efektywnej pod względem oceny odporności dynamicznej istniejących obiek-
tów mostów. 

Słowa 
kluczowe: 	 dynamika budowli, uczenie maszynowe, sztuczne sieci neuronowe, SVM, 

wstrząsy górnicze, odporność dynamiczna, mosty


