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Abstract

The article presents the potential for using artificial neural networks to support decisions related to the rebonding of green mould-
ing sand. The basic properties of the moulding sand tested in foundries are discussed, especially compactibility as it gives the most 
information about the quality of green moulding sand. First, the data that can predict the compactibility value without the need for 
testing are defined. Next, a method for constructing an artificial neural network is presented and the network model which pro-
duced the best results is analysed. Additionally, two applications were designed to allow the investigation results to be searchable 
by determining the range of values of the moulding sand parameters.

Keywords:

artificial neural network, decision support, green moulding sand, compactibility

1. INTRODUCTION

Moulding is a complex technological process characterized by 
numerous process parameters. Currently, the control of the 
moulding sand condition is performed by measuring prop-
erties such as compressive strength or permeability. These 
properties are important in terms of information about the 
suitability of the moulding sand for moulding and, because 
of the relatively short time which is needed to carry out these 
tests, they are the main source of information on the proper 
conduct of the rebonding of the moulding sand process. In 
order to obtain complete information about the moulds, ad-
ditional tests of other properties, such as friability or fluidity, 
should also be performed.

From the perspective of the optimal properties of moulding 
sands, and in reference to their suitability for forming, there 
is parameter known as the moldability index which allows 
their usefulness to be determined [1, 2]. The compactibility 
of the sand is also measured. This parameter is very sensitive 
to changes in the composition of the moulding sand and its 
moisture content, and in terms of its physical properties it 
is similar to the moldability index. Compactibility also gives 
a good assessment in the case of the rebonding of moulding 
sands and can be a guideline for carrying out the rebonding 
process, also as a parameter used in controlling the systems 
of the rebonding of the moulding sand process.

It is possible to directly measure the values of the mold-
ability index and compactibility, but not all foundries have 

facilities for the automatic and rapid measurement of these 
parameters. Most foundries evaluate them on selected prop-
erties of moulding sand, such as:

•	 compressive strength,
•	 permeability,
•	 apparent density.

These properties depend on the moisture of the moulding 
sand, which is regulated in the various stages of the circula-
tion of sand in the foundry. Additionally, in order to obtain 
complete information on the amount of fresh ingredients 
needed to supplement the moulding sand used, the amount 
of active bentonite should be determined [3, 4].

As part of previous works in this field, attempts have 
already been made to implement systems based on artificial 
intelligence mechanisms supporting the determination of the 
parameters of this process [5, 6]. One solution was a system for 
determining sand core parameters based on the 3-point bend-
ing test, but it was not a solution that could be used in real-time 
production processes [7]. This disadvantage is also character-
istic of other artificial intelligence approaches, such as those 
based on artificial neural network mechanisms implemented 
in a  Matlab environment [8] or using genetic algorithm and 
particle swarm optimization [9]. Artificial intelligence meth-
ods such as the adaptive neuro-fuzzy interference system 
(ANFIS) have also been used to estimate the influence of chem-
ical composition on the parameters of moulding sand [10, 11].
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Due to the complexity of this process and its dependencies, 
a predictive model has been developed as a part of presented 
work which, on the basis of the artificial neural network and 
properties mentioned above, will determine sand quality con-
trol parameters, i.e. compactibility. A schematic diagram of the 
proposed model is shown in Figure 1.

Despite the dependence of the moulding sand properties 
on moisture, it is important to introduce moisture as an input 
parameter in the model because it is not a linear dependence. 
Additionally, the values of this property depend on the con-
tent of other moulding sand components, such as the amount 
of bentonite or other additives (carbon forming additives). 
Constructing the model in such a way as to include moulding 
sand moisture will increase the quality of the model.

The selected parameters of compaction assessment are 
those that are easy to determine from the point of view of the 
foundries. The measurement of these parameters is based on 
standard cylindrical fittings. The parameters can be meas-
ured with the use of basic laboratory equipment for deter-
mining the properties of moulding sand, which are already 
basic equipment in foundry laboratories and, in most cases, 
not time-consuming. The ability to measure these properties 
in combination with the predictive model developed pro-
vides the opportunity to develop a control system for mould-
ing sand in real time, which is presented in this paper.

2. SOURCE DATA ANALYSIS 

The results of research concerning the effect selected param-
eters of green moulding sands on compactability, collected 
during many experiments, may constitute the basis for the 
development of the prediction model.

The data were obtained for moulding sands with different 
compositions by testing how changes in selected moulding 
sand properties depend on the moisture content (1.5–4.5%) 
and the amount of bentonite (4–12 parts by weight). The 
research was carried out for Zębiec Specjal bentonite. The wide 
range of applied moisture levels makes it possible to include 
extreme cases of drying or over-moistening of the moulding 
sand. These moulding sand properties can be used without 
any restriction, because the neural network is resistant to 
noise, i.e. values outside the accepted range. A fragment of the 
developed database that was available during this research is 
presented in Table 1. The global table contained 198 records.

The nature of the presented data are knowledge vectors 
consisting of input-output pairs (𝑥i, 𝑧𝑗). The compaction 
parameter (z1) was adopted as the dependent variable. The 
following properties were input variables: 

•	 moisture (x1), 
•	 compressive strength (x2), 
•	 permeability (x3), 
•	 flowability (x4) 
•	 and apparent density (x5). 

The grain composition of the matrix, determined by the 
grain size and homogeneity, which has a strong influence on 
the individual properties of the moulds, especially permea-
bility, was omitted for the analysis.

In the system of dependencies of specific moulding sand 
properties on selected factors analysed, using historical 
data to create a  model that allows the rapid verification of 
the mould condition, together with the swift and more pre-
cise correction of changes in sand composition towards the 
desired properties (in green moulding sands, this mainly 
concerns controlling the moisture content).

Fig. 1. Data schema

• [%]MOISTURE

• [MPa]COMPRESSION 
STRENGTH

• [m2/P·s × 10-8]PERMEABILITY

• [g/cm3]DENSITY

• [%]FRIABILITY

COMPACTIBILITY [%]

Table 1	  
Part of the data table

Moisture 
(x1)

Compression 
strength 

(x2)

Permeability 
(x3)

Friability 
(x4)

Density 
(x5)

Compactibility 
(z1)

1.4 0.07 333 55.54 1.57 29
1.71 0.07 353 37.07 1.54 49
2.22 0.06 360 23.7 1.53 62
2.51 0.06 330 16.46 1.56 64
2.91 0.05 300 13.19 1.58 65
3.15 0.05 288 11.54 1.59 64
3.82 0.04 260 6.09 1.62 64
1.21 0.06 317 62.43 1.58 27
1.68 0.05 350 34.69 1.57 57
1.74 0.05 353 31.65 1.57 60
2.41 0.04 317 22.16 1.58 62

… … … … … …
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3. ARTIFICAL NEURAL NETWORK PROJECT

When looking for appropriate forms for the design of the pre-
dictive model, due to the nature of the data and their quantity, 
the authors decided to use artificial neural networks (ANNs), 
which are perfect for situations where there is a need to mod-
el highly nonlinear phenomena and multidimensional func-
tional dependencies, as is the case with the analysed proc- 
ess [12]. The presented knowledge vectors are a  source of 
learning examples for artificial neural networks. The task of the 
network is to learn, as precisely as possible, a function that 
approximates the association of input (xi) with output (z1).  
It is a classic example of supervised network learning, also 
known as learning with a teacher.

The methods of teaching neural networks, widely 
described in the literature [13–15] rely on the cyclical update 
of network weights based on information about the target 
function gradient and the minimization direction deter-
mined at each step. Properly designed neural networks are 
able to independently formulate the dependencies between 
the parameters of the phenomenon during the learning proc-
ess. The purpose of training a neural network is to select its 
topology and parameters in such a way as to minimize errors 
in determining the output value.

With the essence of the problem specified and the set of 
data to be analysed, the design of the neural network was ini-
tiated. Building a predictive model with the use of artificial 
neural networks based on the collected data was carried out 
in the stages presented in Figure 2.

3.1. Determination of independent 
and dependent variables

The neural network is meant to indicate the influence of indi-
vidual factors on one of the parameters that controls the qual-
ity of the moulding sand, i.e. compactibility. Table 2 presents 
the independent variables (inputs of the neural network) and 
explained variables (output of the neural network) adopted 
in the model. Column (2) presents the adopted names of vari-
ables, column (3) presents units in which the variables are 
provided. Column (4) shows the ranges of the variability of 
the tested parameters. It should be noted that all of the oper-
ating variables in the model are numerical in nature.

3.2. Selection of the type and determination 
of the structure of the neural network 

To determine the optimal network architecture, the 
STATISTICA program and its Automatic Neural Network 
module were used. The set of data describing the modelled 
phenomenon (approx. 200 vectors of knowledge) was split 
into three sets:

•	 training set (70%) – these data include examples of inputs 
(xi) and the corresponding output values (zj), which are 
the basis for determining the connection weights between 
individual neurons of the network; the modification of the 
weight values continues until the approximation criterion 
is achieved in the training set (minimization of the approx-
imation error) or the error in the validation set begins to 
grow;

•	 test (15%) – the validation set is used to control the course 
of the learning process by checking the degree of the train-
ing of neurons; in practice, learning involves two phases: 
selecting weights for the training set and testing weights 
on samples from the validation set;

•	 validation (15%) – data that has not been used in the learn-
ing process, on the basis of which the accuracy of learning 
the network is checked.

The artificial neural network was determined by defining:

•	 an artificial neuron model,
•	 network topology,
•	 and network learning rules.

In this work, several hundred network architectures with 
different numbers of hidden neurons and different activation 
functions in the hidden and output layers (linear, sigmoid, 
tangesoid and exponential) were tested with the use of the 
Automatic Neural Network module.

From among all networks generated by the program, 
the network with the lowest validation error was finally 
selected and given the name MLP 5-8-1. This error for the 
COMPACTIBILITY output variable was calculated at the level 
of 2.93%. The measure of the error was the mean squared 
error (MSE) of the predicted (by the model) and the real 
(observed) values, expressed by the Formula (1).

Fig. 2. Stages of neural network designing

Table 2	  
Characteristics of system variables

(1) 
No.

(2)
Variable name

(3)
unit

(4)
Range

(5)
Type

INPUT (independent variables)

1 Compression 
strength MPa 0.04–0.20 real

2. Permeability [m2/Pa∙s × 10−8] 127–560 real
3. Friability [%] 1.41–93.21 real
4. Density [g/cm3] 1.47–1.65 real
5. Moisture [%] 1.21–4.53 real

OUTPUT (dependent variables)
6. Compactibility [%] 10–73 real
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The structure of the selected network is shown in Figure 3.  
The network is an MLP (Multi-Layer-Perceptron) network 
consisting of one input layer (5 neurons), one hidden layer 
(8 neurons) and an output layer (1 neuron). The logistic (sig-
moid) function was assumed as the activation functions in 
the hidden layer of neurons, while the exponential function 
was adopted for the layer of output neurons..

A summary of the learning process of the selected neural 
networks for each output variables and their specific charac-
teristics is given in Table 3.

In this network, the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) method was used for training. In the case of the 
selected MLP 5-8-1 network, the assumed minimal approx-
imation error was not achieved; the training process was 
terminated in 57 epochs, when the validation error started 
to grow.

3.3. Analysis and evaluation of the network model

An additional measure of the quality of the network model 
was the Pearson’s linear correlation coefficient (R), calcu-
lated in individual types of sets (training, validation and test 
sets) for the network response and set values. This coefficient 
is one of the basic measures of the quality of the model fitting.  

This coefficient is determined from Formula (2). 
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where:

 yi – actual value of the variable y coming from the obser-
vation;

ŷi – theoretical value of the dependent variable deter-
mined on the basis of the model;

y—  – arithmetic mean of empirical values of the dependent 
variable.

The correlation coefficient for the training sample was 0.98,  
for the validation sample 0.99, and for the test sample 0.99. 
Correlation graphs for individual sets are shown in Figure 4.

Fig. 4. Comparison of the distribution of data generated by the MLP 
5-8-1 network with the experimental data for the sets: a) training;  
b) validation; c) testing

Fig. 3. Developed neural network architecture

Table 3	  
MLP 5-8-1 neural network parameters

Name of network MLP 5-8-1
Error (training) 3.503

Error (validation) 1.760
Error (testing) 2.931

Quality (training) 0.985
Quality (validation) 0.992

Quality (testing) 0.993
Training algorithm BFGS 57
Activation (hidden) Logistic
Activation (output) Exponential

a)

b)

c)
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4. RESULTS AND DISCUSSION

4.1. ANN sensitivity analysis

The sensitivity analysis allowed us to distinguish important 
variables from those that are not important to the network 
result, and provided insight into the usefulness of the individ-
ual input variables. This analysis indicates variables that can 
be rejected without losing network quality and key variables 
that must never be rejected. The sensitivity analysis shows 
the loss incurred by rejecting a particular variable.

If a certain amount of data is rejected, an increase in the net-
work error should be expected, therefore the basic measure 
of network sensitivity is the quotient of the error W (Eq. (3))  
obtained at network start up for a data set without one vari-
able and the error obtained with a set of variables.

iErrorW
Error

= (3)

The greater error after rejecting the variable is, in relation 
to the original error, the more sensitive the network is to the 
lack of this variable. If the error quotient is 1 or even lower, 
removing the variable has no effect on the network quality 
and even improves it. After performing a  sensitivity analy-
sis for all variables, the variables can be ranked in order of 
importance (Tab. 4).

The obtained results of the global sensitivity analysis 
for the MLP 5-8-1 network, in the context of connections 
between moulding sand various properties and the sensitiv-
ity to changes in the moulding sand composition, from the 
point of view of an expert in the field of the subject, indicate 
the general correctness and validity of the adopted model 
(solution). Since the friability is close to linear in the range 
of applied moisture, its value can be clearly determined for 
the selected composition of the moulding sand. Moisture 
is important because its value determines the values of the 
moulding sand properties [16–18].

Figure 5 shows a graphic representation of selected anal-
yses, developed on the basis of the results generated by the 
MLP-5-8-1 neural network. The charts show the influence of 
selected parameters of the moulding sand on compactibility. 
They confirm the general correctness of the adopted solution.

The first chart shows that moisture has a significant impact 
on compactibility, with a significant increase in compactibil-
ity occurring with greater moisture levels. Meanwhile, the 
compactibility value decreases with increasing density but at 
a much lower speed. The confirmation of the results of the 
sensitivity analysis can be seen here (Tab. 4), with the densi-
ty parameter in fourth place in terms of significance. In this 
analysis, friability has the greatest impact on compactibility, 
while permeability has the lowest. These tendencies are con-
firmed by the second graph in Figure 5, which shows a very 

clear decrease in compactibility with increasing friability. 
There is also a  noticeable increase in compactibility with 
increasing permeability, albeit with much less intensity.

4.2. Network implementation

An application was created which allows the use of the devel-
oped network model to calculate the parameters of the cast-
ing process. The application is presented in Figure 6.

Table 4	  
Sensitivity analysis 

Friability Moisture Compression 
Strength Density Permeability

26.44 8.20 7.32 1.22 1.04

Fig. 5. Compactibility dependencies as a function of: a) density and 
moisture inputs; b) permeability and friability inputs

a)

b)

Fig. 6. Entering the values of the ranges of moulding sand properties

https://journals.agh.edu.pl/jcme
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The main functionalities of the application are as follows:

•	 Adjustment of the dependent parameter ranges to the value 
of the moisture parameter. Due to the fact that the density, 
friability, permeability, compression strength parameters 
are directly dependent on the moisture parameter, the 
application at first stage of determining the parameters of 
the foundry process affords the opportunity to specify their 
ranges. The user selects the value of the moisture parameter, 
and the application narrows the selection of the values of the 
remaining input parameters of the process to those values 
that appear in relations with the given moisture value.

•	 The calculation of the initial value of the compactibility 
parameter. Based on process input parameters selected 
by the user (moisture, density, friability, permeability, 
compression strength) and the developed neural network 
model, the application calculates the value of the output 
parameter, namely compactibility.

•	 Determining the ranges of the input parameters for the 
selected value of the compactibility output parameter.

•	 An additional functionality of the application, developed 
using the experimental data on the basis of which the 
model of neural networks was created, is the possibility of 
returning the ranges of input parameters (moisture, densi-
ty, friability, permeability, compression strength) for which 
the specific values of compactibility were obtained.

Based on the data used in the preparation of the system, 
an additional application was developed that can be useful 
during the process of the rebonding of moulding sand. This 
application allows the user to view and filter data in relation 
to individual process parameters (Fig. 7).

The application user is able to view data concerning the 
moulding sand preparation process. Additionally, it can sort 
the results according to specific process parameters. A sepa-
rate functionality is the possibility of filtering data in terms 
of the value of the moisture and compactibility parameters, 
so that the application only returns data related to processes 
within the ranges selected by the user. Such an application 
could be used by technicians in mould production processes, 
as the data collected in the system would be helpful in the 
process of determining the moisture of the moulding sand in 
order to obtain the requisite sand compactibility.

5. SUMMARY

The presented application based on the developed artificial 
neural network allow us to view and filter data in relation 

to individual process parameters, and can be also very use-
ful when choosing the correct technology and process pa-
rameters for moulding sand preparation. The presented tool 
facilitates checking how our moulding sands will react after 
changing their moisture in real-time, based on parameters 
that can be tested quickly during the production process. The 
system can also be used to predict how many fresh compo-
nents should be added to moulding sand. This seems to be 
a crucial feature since the determination of the amount of ac-
tive bentonite in moulding sand is very time consuming and 
rarely performed in foundries.
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