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Abstract. In this paper we use our recent generalization of a theorem of Jamison-
-Kamińska-Lewicki (characterizing one-complemented subspaces in Musielak-Orlicz sequence
spaces defined by Musielak-Orlicz functions satisfying a general smoothness condition) in or-
der to compare contractive and optimal sets in finite-dimensional Musielak-Orlicz `(n)

Φ spaces
in the spirit of Kamińska-Lewicki. We also give an example illustrating the importance of
the smoothness assumptions in our theorem.

Keywords: Musielak-Orlicz sequence spaces, one-complemented subspaces, contractive and
optimal sets.

Mathematics Subject Classification: 46E30, 46B20.

1. INTRODUCTION

In a recent article [6] we obtained a generalization of the Jamison-Kamińska-Lewicki
Theorem characterizing one-complemented subspaces in Musielak-Orlicz sequence
spaces. Recall that a subspace Y of a Banach space X is complemented if there
is a linear bounded projection P : X → Y ; if P can be chosen with norm 1, then Y is
said to be one-complemented.

The notion of a one-complemented subspace is closely related to the geometry
of the norm in X and norm one projections play a similar role in Banach spaces as
orthogonal projections do in Hilbert spaces. One of the first characterization theorems
in sequence spaces was obtained for `p by Baronti and Papini [1]. They showed that a
subspace Y ⊂ `p (where p ∈ [1,+∞)\{2}) of codimension k is one-complemented iff it
is the intersection of k hyperplanes defined by functionals having at most two non-zero
coordinates. In [11, Theorem 2.7] Jamison, Kamińska and Lewicki obtained a similar
characterization of one-complemented subspaces in Musielak-Orlicz `Φ assuming that
the Musielak-Orlicz function Φ satisfies a smoothness condition (S) (Definition 3.1).
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This permitted Kamińska and Lewicki to characterize in [12] the contractive sets in
Musielak-Orlicz spaces with the condition (S) and to compare these sets with optimal
sets. Condition (S), though not really restrictive, excludes such regular functions as tp
for p ∈ [1, 2) (thus the Jamison-Kamińska-Lewicki Theorem does not not work for `p).
In [6] we generalized Theorem 2.7 from [11] to the case of Musielak-Orlicz functions
satisfying a smoothness condition (S′) (Definition 3.4) and obtained an analogous
characterization with a mixed condition (M).

After providing some necessary background, we present here first an example
showing how important the smoothness assumptions in our main theorem from
[6] (Theorem 3.7 in the present paper) are. Then we turn to the counterparts of
the Kamińska-Lewicki results from [12] concerning contractive and optimal sets in
Musielak-Orlicz spaces.

To be more precise, among the problems found in the non-linear theory of Banach
spaces is the study of contractive projections, or contractive sets, i.e. sets admitting a
contractive projection onto them (Definition 5.4). The latter is closely related to the
notion of optimal sets (Definition 5.2) introduced by P. Enflo (cf. [8, 9] and [7]) and
developed by B. Beauzamy in [2]. This is used to study the approximation in norm
in Banach spaces. Actually, in this article we will compare contractive and optimal
sets defined in a more general way using the modular, since our study is devoted to a
wide class of Musielak-Orlicz sequence spaces. This will be done precisely using the
main result of [6] and some arguments of Kamińska and Lewicki from [12]. Our results
complete in some sense the results from [12] providing a characterization of strongly
contractive sets in the sense of the modular ρΦ in a Musielak-Orlicz space `(n)

Φ when
Φ satisfies condition (M).

2. PRELIMINARIES

Let (X, ‖ · ‖) be a real Banach space, X∗ its dual. A functional f ∈ X∗ is called
a supporting functional for x0 ∈ X \ {0} if f(x0) = ‖x0‖ and ‖f‖ = 1. A point
x0 ∈ X \ {0} is called a smooth point if there is exactly one supporting functional
for x0. If every point of the unit sphere SX is smooth, then X is called smooth. We
denote Y ⊥ := {f ∈ X∗ : f |Y = 0}.

Let Y ⊂ X be a closed subspace. We denote by P(X,Y ) the space of bounded
linear projections from X to Y . Observe that for Y 6= {0} we get ‖P‖ ≥ 1 for all
P ∈ P(X,Y ).

Definition 2.1. A closed subspace Y ⊂ X is called one-complemented if there exists
P ∈ P(X,Y ) with ‖P‖ = 1.

For all this part we refer the reader to [11].

Definition 2.2. A convex function φ : R+ → R+ is called an Orlicz function when
φ(0) = 0 and φ is strictly increasing.

We denote by φ∗(t) := sups>0{st−φ(s)}, t ≥ 0, the Young conjugate of an Orlicz
function ϕ.
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Definition 2.3. A sequence Φ = (φn) of Orlicz functions is called a Musielak-Orlicz
function, if φn(1) = 1 for all n ∈ N. Then Φ∗ := (φ∗n) is called the conjugate
Musielak-Orlicz function.

If ` denotes the space of real sequences, then for a given Musielak-Orlicz function
Φ we put

ρΦ : ` 3 x = (xn) 7→
∞∑

n=1

φn(|xn|) ∈ [0,+∞].

Then we define the linear space

`Φ :=
{
x ∈ ` : lim

λ→0+
ρΦ(λx) = 0

}
.

Definition 2.4. The space `Φ is called Musielak-Orlicz (sequence) space. If φn = φ
for all n, then the space is called the Orlicz (sequence) space and we denote it by `φ.

The condition in the definition of `Φ is equivalent to

∃λ > 0: ρΦ(λx) < +∞.

When we endow `Φ with the Luxemburg norm

‖x‖Φ = inf{ε > 0: ρΦ(x/ε) ≤ 1},

we obtain a Banach space, cf. [17]. Of course ‖x‖Φ = inf{ε > 0: x ∈ εB}, where
B = {z ∈ `Φ : ρΦ(z) ≤ 1}.

We will denote by `
(n)
Φ the space defined analoguously to the previous one but

taking only x ∈ Rn. Of course, `(n)
Φ is a subspace of `Φ. Finally, if (fi) is a sequence

in `Φ, we write fi = (fij).

Definition 2.5. The subspace

hΦ := {x ∈ `Φ : ρΦ(λx) < +∞ for all λ > 0}

is called the subspace of finite elements.

Obviously, `(n)
Φ ⊂ hΦ for all n ∈ N. It is known that hΦ is closed and separable

with canonical base ej := (0, . . . , 0, 1(j), 0, . . . ). Moreover, for x ∈ hΦ, ‖x‖Φ = 1 if and
only if ρΦ(x) = 1. Besides, hΦ = `Φ exactly when either dim `Φ < +∞, or Φ satisfies
a growth condition called δ2 ([13,14,16]).

Definition 2.6. A Musielak-Orlicz function Φ satisfies condition δ2, when there are
constants K, δ > 0 and a sequence (cn) ∈ `1 such that for all n ∈ N and t ≥ 0 such
that φn(t) ≤ δ,

φn(2t) ≤ Kφn(t) + cn.

This is always satisfied in `(n)
Φ . By [16, p. 148] and [10, Theorem 3.1], we have the

following theorem.
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Theorem 2.7. 1) `Φ is reflexive if and only if both Φ and Φ∗ satisfy δ2.
2) `Φ is smooth if and only if Φ satisfies δ2 and all φj are differentiable on [0, 1).

For y ∈ `Φ∗ we define a bounded linear functional

fy : `Φ 3 x 7→
∞∑

n=1

xnyn ∈ R.

Such functionals are called regular and their space is denoted RΦ. By [10, 18],
`Φ∗ ∼= RΦ.

Functionals f ∈ (`Φ)∗ vanishing on hΦ are called singular and their space is
denoted SΦ. By Lemma 1.1 and Theorem 2.9 from [10], for all f ∈ (`Φ)∗ there exist a
uniquely determined r(f) ∈ RΦ and s(f) ∈ SΦ such that f = r(f) + s(f) and ‖f‖ =
‖r(f)‖+ ‖s(f)‖. The operators r and s are bounded linear projections on RΦ = `Φ∗

and SΦ, respectively.

Remark 2.8. Note that for `(m)
Φ , SΦ = {0}, whence (`

(m)
Φ )∗ ∼= RΦ

∼= `
(m)
Φ∗ .

We will need a kind of ‘normalization’ of functionals f1, . . . , fn coming from a
closed subspace Y of codimension n (i.e. a particular base of Y ⊥).

Definition 2.9. Let Y ⊂ `Φ (or ⊂ `(m)
Φ ) be a closed subspace of codimension n. Put

k = dim r(Y ⊥) ≤ n. A base F = {f1, . . . , fn} ⊂ Y ⊥ is called a proper representation
of Y , if:

(1) r(fi)j = δij , for i, j = 1, . . . , k,
(2) r(fi) = 0, for i ≥ k + 1, when k < n.

Remark 2.10. Recall that Y =
⋂
f∈F Kerf . Condition (1) means that

r(fi) = (0, . . . , 0, 1(i), 0, . . . , 0(k), r(fi)(k+1), . . . ).

Condition (2) implies that, whenever k < n, there is fi ∈ SΦ (i.e. hΦ ⊂ Kerfi) for
i > k. In other words the first k vectors of the base of Y ⊥ when projected on RΦ

‘looks like’ the canonical base.
When `Φ coincides with hΦ, then SΦ = {0} and r = Id(`Φ)∗ . In that case a proper

representation of Y is a base of Y ⊥ such that the first k = n coordinates of its vectors
form the canonical base of Rn.

Lemma 1.8 from [11] guarantees the existence of a proper representation up to an
isometry.

3. SMOOTHNESS CONDITIONS

The following definition goes back to [11].

Definition 3.1. An Orlicz function φ satisfies condition (s), if φ is differentiable
on [0,+∞), φ(1) = 1 and both φ and φ′ vanish only at zero. If, moreover, φ′ is
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differentiable on [0,+∞), φ′′ is continuous and vanishes only at zero, then we say
that φ satisfies condition (S).

We say that a Musielak-Orlicz function Φ satisfies (s) or (S), whenever all its
coordinates satisfy the said condition.

Note that (S) implies that the coordinates of the Musielak-Orlicz function Φ are
strictly convex, which in turn means that `Φ is strictly convex ([12, Theorem 1.2]).
However, `(m)

Φ is strictly convex already under weaker assumptions:

Proposition 3.2. Assume that the Orlicz functions φj are strictly convex on (0, 1)

and φj(1) = 1, j = 1, . . . ,m. Then `(m)
Φ is strictly convex.

Proof. See [6, Proposition 4.2].

Remark 3.3. Theorem 1.5 from [12] implies that in case `Φ = hΦ and Φ satisfies
(s), the space `Φ is smooth (cf. Theorem 2.7). In particular this holds for `(m)

Φ under
no other assumptions than (s).

Definition 3.4. We say that an Orlicz function φ satisfies condition (S′), if it satisfies
(s), is of class C 2 on (0,+∞) and

lim
t→0+

φ′′(t) = +∞.

A Musielak-Orlicz function Φ = (φ1, φ2, . . . ) is said to satisfy (S′), if this condition is
satisfied by all the coordinates φj .

Definition 3.5. We say that an Orlicz function φ satisfies condition (w), if it is two
times differentiable and φ′′(t) > 0 for t ∈ (0, φ−1(1)]. A Musielak-Orlicz function
Φ = (φ1, φ2, . . . ) satisfies (w), if all the coordinates φj satisfy it.

Therefore, an Orlicz function φ satisfying both conditions (S′) and (w) is strictly
convex on (0, 1) ((s) implies (0, φ−1(1)] = (0, 1]).

By (S′), there is an ε > 0 such that φ′′ > 0 on (0, ε], hence (w) is intended to
guarantee the possibility of taking ε = 1.

For a given Musielak-Orlicz function Φ = (φn)n we may introduce the mixed
condition (M):

for any n ∈ N, φn satisfies either (S), or (S′) with (w).

Remark 3.6. In view of Remark 4.9 from [6] may be weakened to be condition (S)
with (w) i.e. we assume the class C 2 on [0,+∞) (with right-hand side derivatives at
zero) together with the conditions (s) and (w) as well as the vanishing of the second
derivative at zero (but we do not ask it to be non-zero apart from (0, 1)).

The following theorems are the main result of [6]. They generalize one of the main
results from [11] and will be the most important ingredient of the proofs from sections
6 and 7.
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Theorem 3.7 ([6]). Assume that the Musielak-Orlicz function Φ satisfies condition
(M) and let Y ⊂ `

(m)
Φ be a codimension k ≤ m − 2 (m ≥ 3) one-complemented

subspace. Let f1, . . . , fk ∈ Y ⊥ be a proper representation of Y . Then each fj has at
most two non-zero coordinates.

Of course, for k > m− 2 the theorem is trivial.

Theorem 3.8 ([6]). Assume that the Musielak-Orlicz function Φ satisfies the con-
dition (M). If Y ⊂ `Φ is a codimension k one-complemented subspace with a proper
representation F ⊂ Y ⊥, then for each f ∈ F there is f = r(f) and this functional
has at most two coordinates 6= 0.

4. EXAMPLE

In this part we present an example showing that under the assumption that one of
the Orlicz functions φj vanishes somewhere apart from zero (in particular the given
Musielak-Orlicz function Φ = (φ1, . . . , φn) satisfies neither (S), nor (S′)), then the
Musielak-Orlicz space can contain one-complemented subspaces defined by functionals
whose coordinates are different from zero.

Let φ2, . . . , φn (n ≥ 2) be Orlicz functions satisfying φj(1) = 1. Assume that
φ1 : R+ → R+ is convex, increasing and satisfying φ1(1) = 1 and φ1 ≡ 0 on [0, ε] for
some ε ∈ (0, 1). Put Φ := (φ1, . . . , φn) and consider the Musielak-Orlicz space `(n)

Φ .
Although ρΦ(x) = 0 not only at zero, but also for x = (x1, 0, . . . , 0) with x1 ∈ [−ε, ε],
the Luxemburg norm defined by ρΦ is an actual norm. Indeed, it is sufficient to check
that ‖ · ‖Φ vanishes only at zero. Suppose that ‖x‖Φ = 0 and x1 6= 0. Then there
exists a λ0 > 0 such that for all λ > λ0, there is λ|x1| > 1. For large λ,

1 ≥ ρΦ(λx) =
n∑

j=1

φj(λ|xj |) ≥ φ1(λ|x1|) > 1,

which is a contradiction.

Proposition 4.1. In the setting introduced above, take f = (1, f2, . . . , fn) a functional
for which

∑n
j=2 |fj | < ε. Then Kerf is one-complemented in `(n)

Φ .

Proof. Put P (x) := x − f(x)e1, x ∈ `(n)
Φ . It is easy to see that P : `

(n)
Φ → Kerf is a

linear projection. Observe that

P (x) =

(
−

n∑

j=2

fjxj , x2, . . . , xn

)
, x ∈ `(n)

Φ .

The condition ‖x‖Φ = 1 means that ρΦ(x) ≤ 1. This in turn implies that for all
j = 1, . . . , n, φj(|xj |) ≤ 1, whence (in view of φj(1) = 1, φj increasing) |xj | ≤ 1,
j = 1, . . . , n. Thence

φ1(|P (x)|) ≤ φ1

(
n∑

j=2

|fj | · |xj |
)
≤ φ1

(
n∑

j=2

|fj |
)
≤ φ1(ε) = 0.
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Therefore,

ρΦ(P (x)) =

n∑

j=2

Φj(|xj |) ≤ ρΦ(x) ≤ 1,

i.e. ‖P (x)‖Φ ≤ 1, whence ‖P‖ ≤ 1. But P being a projection, we get ‖P‖ = 1 which
proves the result.

5. CONTRACTIVE AND OPTIMAL SETS

The following definition was introduced by P. Enflo in order to study approximation
in norm in Banach spaces (cf. [5]). Let (X, ‖ · ‖) be a normed space and A ⊂ X a
nonempty set.

Definition 5.1. A point x ∈ X is minimal for A, if there is no other point lying
closer to any point of A, i.e. for all y ∈ X,

(∀a ∈ A : ‖y − a‖ ≤ ‖x− a‖) ⇒ y = x.

The set of minimal points for A is denoted Min(A) and called the minimal set of A.
Obviously,

Min(A) = {x ∈ X | ∀y ∈ X \ {x} ∃a ∈ A : ‖x− a‖ < ‖y − a‖}.

In [5] it is shown that a Banach space X is strictly convex if and only if for any
two distinct points x, y ∈ X, Min({x, y}) coincides with the segment [x, y]. Clearly,
A ⊂Min(A) always holds.

Definition 5.2. A is called an optimal set, if A = Min(A).

Iterating the operation Min usually increases the set (cf. [5]). Minimality can be
characterized in the following manner.

Lemma 5.3. If there is a projection P : X → A (i.e. P |A = IdA) such that

‖P (x)− a‖ ≤ ‖x− a‖ for all x ∈ X, a ∈ A,

then A = Min(A). The converse holds in reflexive, strictly convex Banach spaces
([3]). In particular, a closed subspace of such a space is one-complemented, if and
only if it is an optimal set.

Proof. The second part of the statement can be found in [5]. For the first one takem ∈
Min(A). If m 6∈ A, then P (m) 6= m, whence for some a ∈ A, ‖m− a‖ < ‖P (m)− a‖,
which is a contradiction.

The preceding lemma is most useful when coupled with the following definition.

Definition 5.4. A is called a contractive set, if there exists a contractive projection
P : X → A, i.e. a mapping P satisfying P |A = IdA and ‖P (x)− P (y)‖ ≤ ‖x− y‖ for
all x, y ∈ X.
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By continuity, a contractive set is closed, A = A. Actually, we have a more general
result.

Proposition 5.5. Let X be a strictly convex Banach space. Then each contractive
set A ⊂ X is closed and convex.

Proof. Let a1, a2 ∈ A and x ∈ [a1, a2] and let P be the contractive projection onto A.
Then for j = 1, 2,

‖P (x)− P (aj)‖ = ‖P (x)− aj‖ ≤ ‖x− aj‖.

By [5], [a1, a2] = Min({a1, a2}), whence P (x) = x due to the definition of a minimal
set.

Remark 5.6. Lemma 5.3 implies that each contractive set is optimal (the con-
verse is true in smooth, reflexive, strictly covex Banach spaces, cf. [5]). Of course,
one-complemented subspaces are contractive sets.

Definition 5.7. A is called a set of existence of the best coapproximation (shortly:
an existence set), if for all x ∈ X, the set

RA(x) := {d ∈ A | ∀a ∈ A : ‖d− a‖ ≤ ‖x− a‖}

is nonempty.

Remark 5.8. It is easy to see that RA(x) 6= ∅ for x ∈ A (then x ∈ RA(x)). Besides,

x ∈Min(A) and RA(x) 6= ∅⇒ RA(x) = {x}

and then x ∈ A.

We present the relations between the introduced notions.

Proposition 5.9. Let A be a nonempty subset of X. Then

(1)⇒ (2)⇒ (3)⇒ (4),

where:

(1) A is a one-complemented subspace,
(2) A is a contractive set,
(3) A is an existence set,
(4) A is an optimal set.

Moreover, if A 6= {0} is a closed subspace in a smooth, reflexive, strictly convex X,
then by [5, II.5] there is also (4)⇒ (1).
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Proof. The first implication follows from Remark 5.6. For the second one, observe
that P (x) ∈ RA(x), where P is the contractive projection from (2). For the third one,
x ∈Min(A) implies by (3) the existence of a point d ∈ RA(x). Then the description
of this set and the definition of a minimal set yield x = d ∈ A.

6. AUXILIARY RESULTS AND GENERALIZATIONS

We define the support of a sequence x = (xi) to be

supp x := {i ∈ N : xi 6= 0}.

For the convenience of the reader we recall the following two results from [11] (Theo-
rems 2.5 and 2.6). We stress the fact that both theorems remain true when the original
condition (S) is replaced with condition (s); therefore, both assertions hold true when
we assume that condition (M) is satisfied.

Theorem 6.1. Let Φ be a Musielak-Orlicz function satsifying (s) and Y ⊂ `
(n)
Φ

a codimension k subspace with proper representation {f1, . . . , fk}. Set

J := {i ∈ {1, . . . , k} : suppfi = {i}}

and for j ≥ k + 1,

Cj := {i ∈ {1, . . . , k} : fij 6= 0}, J1 := {j ≥ k + 1: Cj 6= ∅}.

Then Y is one-complemented if and only if either J = {1, . . . , k}, or for any j ∈ J1,
Yj :=

⋂
i∈Cj

Kerfi is one-complemented.

Theorem 6.2. Let Φ be a Musielak-Orlicz function satisfying (s) and Y ⊂ `
(n)
Φ

a codimension k subspace with proper representation {f1, . . . , fk} and such that
suppfi = {i, k+ 1}, for i = 1, . . . , k. Set z := ek+1 −

∑k
i=1 fi,k+1ei and A := 1/‖z‖Φ.

Then Y is one-complemented if and only if there exists numbers b1, . . . , bk ∈ R \ {0}
such that for any t ∈ [0, A] and any i ∈ {1, . . . , k} the following equation is satisfied:


φk+1(t) +

k∑

j=1

φj(t|fj,k+1|)


 bi =

φi(t|fi,k+1|)
fi,k+1

.

In that case, the projection P (x) = x −∑k
i=1 fi(x)yi, where yi :=

∑k+1
j=1 yijej with

yi,k+1 := bi, yij := −fj,k+1bi, when i 6= j, and yii = 1− fi,k+1bi, has norm one.

As already said, in `(n)
Φ the norm is constructed using the function ρΦ which is a

convex modular (cf. [12]), i.e. a real-valued, non-negative, symmetric, convex function
vanishing only at zero (it is thence a kind of pseudo-distance, however, not even
a semi-norm in general). Therefore, such notions as that of an optimal set (Defini-
tion 5.2), contractive set (Definition 5.4), or existence set (Definition 5.7), can be
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generalized by replacing in each definition (in our situation it will be done for the
space `(n)

Φ ) the norm ‖ · ‖Φ with the modular ρΦ. Then we shall use the following
notations for a given subset A ⊂ `(n)

Φ :

MinρΦ(A) := {x ∈ `(n)
Φ | ∀y ∈ `(n)

Φ \ {x} ∃a ∈ A : ρΦ(x− a) < ρΦ(y − a)},
RρΦ

A (x) := {d ∈ A | ∀a ∈ A : ρΦ(d− a) ≤ ρΦ(x− a)}.

Of course, analoguous definitions can be introduced in `Φ spaces. We will now speak
of contractive, optimal sets etc. in the sense of the modular, i.e. of ρΦ-contractive,
ρΦ-optimal etc. sets.

In [12] the characterization of contractive sets in `p spaces (p ∈ (1,+∞)) given
by Davis and Enflo was extended to Musielak-Orlicz spaces with condition (S). This
required, however, a strengthening of the previously introduced notions (cf. [12]),
namely: let ∅ 6= A ⊂ `Φ or ⊂ `(n)

Φ ; we denote by XΦ the considered space.

Definition 6.3. The set A is said to be strongly ρΦ-optimal, if there is A =
SMinρΦ

(A), where SMinρΦ
(A) is defined to be

{x ∈ XΦ | ∀y ∈ XΦ \ {x} ∃a ∈ A ∃t ≥ 0: ρΦ(t(y − a)) > ρΦ(t(x− a))}.

Definition 6.4. The set A is called a strongly ρΦ-existence set, if for any x ∈ XΦ,
the set

SRρΦ

A (x) = {d ∈ A | ∀a ∈ A ∀t ≥ 0: ρΦ(t(d− a)) ≤ ρΦ(t(x− a))}

is nonempty.

Definition 6.5. The set A is said to be strongly ρΦ-contractive, if there exists a
projection P : XΦ → A (i.e. P |A = IdA) such that

ρΦ(t(P (x)− P (y))) ≤ ρΦ(t(x− y)) for all x, y ∈ XΦ, t ≥ 0.

Such a projection P is called strongly ρΦ-contractive.

Remark 6.6. Of course, in the case when A is a linear subspace and P is linear too,
one can get rid of the parameter t in the preceding definition. In other words, strong
ρΦ-contractiveness is then identical with ρΦ-contractiveness.

Observe that by replacing in any of the preceding definitions the modular ρΦ with
the norm ‖ · ‖Φ, we recover the definitions from Section 5. Besides, it follows from the
definition of the norm, that if ρΦ(tx) ≤ ρΦ(ty), for any t ≥ 0, then ‖x‖Φ ≤ ‖y‖Φ.
Therefore, each set which is strongly ρΦ-contractive (or existence) is also a contractive
(or existence) set in the sense of the modular or norm. In particular, if A is a linear
subspace being strongly ρΦ-contractive, then the projection attached to it has norm
one. More results from that theory in the most general setting of modular spaces can
be found in [12].

Using Theorem 3.7 and the notions introduced above we can adjust the proof
of Theorem 3.1 from [11] in order to obtain the following result for Musielak-Orlicz
spaces with condition (M).
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Theorem 6.7. Let Φ be a Musielak-Orlicz function satisfying (M) and Y ⊂ `
(n)
Φ

a codimension k subspace. Let gi ∈ `Φ∗ be such that Y =
⋂k
i=1 Kergi. Then if for

any i = 1, . . . , k, the kernel Kergi is strongly ρΦ-contractive in `(n)
Φ , then there exists

a strongly ρΦ-contractive projection onto Y with norm one.

Before the proof we recall Lemma 1.2 from [11].

Lemma 6.8. If codimY = n, {f1, . . . , fn} is a basis for Y ⊥ and P ∈ P(X,Y ), then
there exists a uniquely determined basis {w1, . . . , wn} of KerP such that

fi(wj) = δij and Px = x−
n∑

j=1

fj(x)wj for x ∈ X.

Proof of Theorem 6.7. First, we check that in the considered situation Yi := Kergi
are one-complemented. If this is the case, we can adjust the argument from [11] using
Theorem 3.7.

Thus, fix i ∈ {1, . . . , n} and denote by Pi the projection from the definition of
the strong ρΦ-contractiveness. It can be chosen linear (cf. the proof of Lemma 4.7
from [12]), because in virtue of Lemma III.2 from [5] (The space in consideration is
smooth, cf. Remark 3.3), for any x ∈ `(n)

Φ , the set RYi
(x) consists of a single element

and RYi
(αx+ βx′) = αRYi

(x) + βRYi
(x′) for α, β ∈ R and points x, y ∈ `(n)

Φ . Due to
that, Pi(x) := z ∈ RYi(x) is a linear projection. Now, since SRρΦ

Yi
(x) ⊂ RYi(x) and

by the assumptions, SRρΦ

Yi
(x) 6= ∅ (because Yi is a strongly ρΦ-existence set), then

the projection is strongly ρΦ-contractive.
For y = 0, t = 1, we obtain ρΦ(Pi(x)) ≤ ρΦ(x) for any x ∈ `(n)

Φ . If ‖x‖Φ = 1, then
from the definition of the Luxemburg norm it follows that ρΦ(x) ≤ 1 (since there
exists a sequence εν → 1+ such that ρΦ(x/εν) ≤ 1 and the function t 7→ ρΦ(tx) is
continuous). Therefore, ρΦ(Pi(x)) ≤ 1, which implies ‖Pi(x)‖Φ ≤ 1. Hence ‖Pi‖ ≤ 1,
but since this is a projection, we finally get ‖Pi‖ = 1.

We have just proved that the assumptions of Theorem 3.1 from [11] are satisfied,
and we know this theorem holds true with the condition (M) (because its proof is
based either on some results of [11] which require only the condition (s), or on results
we know by [6] are true with condition (M)). We can now repeat one part of the proof
of this theorem obtaining the linear independence of the vectors wi which appear in
the formula for the projections: Pi(x) = x − gi(x)wi, i = 1, . . . , n (cf. Lemma 6.8).
This allows us to define a projection onto Y by setting P (x) := x−∑n

i=1 gi(x)wi/n.
Then

ρΦ(P (x)) = ρΦ

(
nx

n
−

n∑

i=1

gi(x)wi
n

)
=

= ρΦ

(
n∑

i=1

(x
n
− gi(x)wi

n

))
=

= ρΦ

(
n∑

i=1

Pi(x)

n

)
≤

n∑

i=1

ρΦ(Pi(x))

n
,
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by the convexity of ρΦ. Since Pi are ρΦ-contractive, then

n∑

i=1

ρΦ(Pi(x))

n
≤

n∑

i=1

ρΦ(x)

n
= ρΦ(x),

which means that P is ρΦ-contractive, too. But as it is also linear, P is actually
strongly ρΦ-contractive.

Remark 6.9. In the proof above we have shown that for a given linear subspace
Y ⊂ `(n)

Φ the following implication holds:

∃P ∈ P(`
(n)
Φ , Y ) ∀x : ρΦ(P (x)) ≤ ρΦ(x)⇒ ∃P ∈ P(`

(n)
Φ , Y ) : ‖P‖ = 1.

Moreover, when Y is generated by functionals whose kernels are strongly
ρΦ-contractive, this implication can be reversed (in general, however, it is impossible,
cf. (1) from the Proposition 7.6 presented later on).

7. COUNTERPARTS OF THE KAMIŃSKA-LEWICKI RESULTS

Theorem 7.1. Let Φ be a Musielak-Orlicz function satisfying (M) and Y ⊂ `
(n)
Φ

(n ≥ 2) a linear subspace of codimension k. Then Y is strongly ρΦ-contractive if and
only if there are f1, . . . , fk ∈ `(n)

Φ∗ such that Y =
⋂k
j=1 Kerfj and all the kernels here

are ρΦ-contractive.

Proof. The sufficiency of the condition above follows from Theorem 6.7 asserting that
Y is strongly ρΦ-contractive.

The proof of the necessity is similar to that given in [12] Theorem 4.9. We recall
shortly the major steps:
Take a proper representation of Y (this is always possible up to an isometry which does
not affect the ρΦ-contractivity). In view of the smoothness of the considered space,
similarly as in the proof of Theorem 6.7, we can find a linear strongly ρΦ-contractive
projection P onto Y , with norm 1. By Theorem 3.7, any fi has at most one non-zero
coordinate apart from the 1 appearing on the i-th position. Of course, if fi = ei, then
Kerfi is strongly ρΦ-contractive.

We suppose thus that fi = ei+fijej for some fij 6= 0, j ≥ k+1. Define now Φs for
s > 0 by putting φj,s(t) := sφj(t). In view of Lemma 2.4 (ii) from [12], for any s > 0,
the projection P has norm ‖ · ‖Φs

one. Therefore, by Theorem 6.1, for any j ∈ J1

there exists a linear projection Pj onto YCj
:=
⋂
i∈Cj

Kerfi of norm 1, treated as an

operator of the space `(n)
Φs

with any s > 0. We may assume that Cj = {1, . . . , k}. It is
easy to check that

lim
s→0+

‖(−f1,k+1, . . . , fk,k+1, 0, . . . )‖Φs
= 0

and so for i ∈ Cj there is bi 6= 0 such that the equations from Theorem 6.2 are satisfied
with any t > 0.
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Now we can restrict our considerations to i = 1 (the problem being symmetrical);
comparing side by side the equations from Theorem 6.2 for l = 1, . . . , k, we obtain

b1f1,k+1φl(t|fl,k+1|) = blfl,k+1φ1(t|f1,k+1|),

which inserted into the first equation yields

(
φ1(t|f1,k+1|) + φk+1(t)

)
b1f1,k+1 = φ1(t|f1,k+1|)

(
1−

k∑

r=2

fr,k+1br

)
.

Hence, applying Theorem 6.2 to the space Kerf1 we obtain a linear projection P1

of norm one, from `
(n)
Φ onto Kerf1. But since the equation obtained above is valid

for any t > 0, then P1 has norm one also as a projection from `
(n)
Φs

. Therefore, by
Lemma 2.4 (ii) from [12], it is a ρΦ-contractive projection. This ends the proof.

Let X be a linear space. We will call a half-space a set H ⊂ X defined by a
hyperplane Y in the following manner: H = {x ∈ X : f(x) ≥ 0}, where f ∈ X∗ \ {0}
is such that Y = Kerf . We recall Theorem 1.2 I from [12].

Theorem 7.2. The space `(n)
Φ (n ≥ 2), or `Φ, is modularly strictly convex (i.e. ρΦ

satisfies ρΦ((x + y)/2) < (ρΦ(x) + ρΦ(y))/2, for x 6= y such that ρΦ(x) = ρΦ(y)) if
and only if all the functions φj, except at most one, are strictly convex.

The following theorem is a generalization of Theorem 4.10 from [12].

Theorem 7.3. Let Φ be a Musielak-Orlicz function satisfying (M) and C ⊂ `
(n)
Φ a

convex set. Then:

(1) If C is a strongly ρΦ-existence set, then C is the intersection of at most countably
many half-spaces defined by strongly ρΦ-contractive hyperplanes.

(2) If all the φj except possibly one are strictly convex, then the following conditions
are equivalent:
a) C is a strongly ρΦ-existence set;
b) C is a strongly ρΦ-contractive;
c) C is the intersection of at most countably many half-spaces defined by strongly

ρΦ-contractive hyperplanes;
d) C is a strongly ρΦ-optimal set.

Proof. The proof of the first assertion follows the same lines as the proof in [12],
Theorem 4.10, of ‘(a) implies (c)’ (we have to use Theorem 7.1). Namely, C is closed
and convex ([12] Corollary 2.7). One can assume that zero lies in the interior of C.
If we denote by V the linear span of C, then V =

⋃
t≥1 Ct, where Ct = {tc : c ∈ C}.

Of course, each set Ct is a strongly ρΦ-existence set. The space `(n)
Φ being reflexive,

V is a strongly ρΦ-existence set, too (Lemma 2.10 in [12]). Similarly as in the proof
of Theorem 6.7 one shows that there is a linear, ρΦ-contractive projection P onto V
and thus by Theorem 7.1, V is the intersection of k strongly ρΦ-contractive kernels
of some functionals fi.
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Suppose that C 6= V (otherwise there is nothing to prove). Since V is
finite-dimensional, then C in V has empty interior. Repeating the argument from
[4] we can show that there is a countable, dense subset of smooth points Z ⊂ ∂V C,
where ∂V C denotes the border of C in V . Moreover, C =

⋂
z∈Z Tz for Tz tangent

half-space to C at z (cf. [5, Lemma 3]). We have that Tz = {v ∈ V : gz(v) ≤ dz} for
some gz ∈ V ∗ and dz ∈ R. Besides, the point z ∈ ∂V C being smooth, there is

Tz = {(1− λ)z + λc : λ ≥ 1, c ∈ C}.

Lemmas 2.10 and 4.6 from [12] imply that Tz are strongly ρΦ-existence sets, and
therefore they are also strongly ρΦ-contractive.

By Lemma 4.5 from [12], there exists linear ρΦ-contractive projections Qz from V
onto Kergz. Therefore, the projections P ◦Qz are ρΦ-contractive, too. By Theorem 7.1
each Kergz is the intersection of k + 1 strongly ρΦ-contractive kernels of functionals
hzj defined on `(n)

Φ . If hzj does not vanish on V , then we can assume that hzj |V = gz.
Putting now

W z
j := {x ∈ `(n)

Φ : hzj (x) ≤ dz, j = 1, . . . , k + 1}

we obtain strongly ρΦ-contractive half-spaces (Lemma 4.5 in [12]). Moreover,

C =
k⋂

j=1

Kerfj ∩
⋂

z∈Z,i∈Jz
W z
i ,

where
Jz := {i ∈ {1, . . . , k + 1} : hzi |V 6≡ 0}.

Observe that Jz 6= ∅ for any z ∈ Z. Recall that Z is at most countable. This ends
the proof of the first assertion.

Similarly, proving that conditions (a)–(d) are equivalent is even easier: it is directly
the argument in [12] (`(n)

Φ is smooth — due to condition (M) and the finiteness of
the dimension, reflexive — because finite-dimensional, and by assumptions modularly
strictly convex). Therefore, (c) implies (b) by Lemma 4.5 from [12] together with
Corollary 2.19 from [12]. That (a) implies (c) has just been proved above. Finally,
note that the implication from (b) to (a) is a direct consequence of the definition,
while the equivalence of (a) and (d) is a consequence of [12] Proposition 2.8.

Before stating the next result we recall that a set C ⊂ `Φ which is bounded
in the modular (i.e. supx∈C ρΦ(x) < +∞) is also bounded in the Luxemburg norm
([12, Lemma 2.4 (i)]).

Theorem 7.4. Let Φ be a Musielak-Orlicz function satisfying the condition (M)
and C ⊂ `Φ a bounded set. Assume that `Φ is reflexive and all the functions φj,
except possibly one of them, are strictly convex. Then the conditions (a)–(d) from the
preceding theorem are equivalent.
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Proof. We can adjust the proof of [12] Theorem 4.11 making use of Theorem 7.3.
Note that by assumptions `Φ is smooth (since reflexivity means in particular that Φ
satisfies the condition δ2 and due to the condition (M) all the φj are differentiable,
cf. Theorem 2.7). The idea of the proof is as follows (we omit the details since they
are alike those in [12]).

It suffices to prove that (a) implies (c) (the implications from (c) to (b) and from
(b) to (a), as well as the equivalence of (a) and (d) are proved in the same way as in
the preceding theorem). By Lemma 3.7 from [12] (the space in consideration being a
Köthe space), C can be written as the closure of an increasing union of compact sets
Ck, each of which is a strongly ρΦ-existence, convex set. Then in view of Lemma 4.8
from [12] the sets Pn(Ck) ⊂ `(n)

Φ are strongly ρΦ-existence for all k, n ∈ N (Pn denotes
here the natural projection `Φ → `

(n)
Φ defined as the truncation of the sequence after

the first n coordinates). It is easy to see that the closure of Pn(C) is identical with the
closure of the union of the sets Pn(Ck), k ∈ N, whence it is a strongly ρΦ-existence
set (by Lemma 2.10 from [12]). Corollary 2.7 in [12] guarantees the convexity and
boundedness of the closure of Pn(C).

The space `Φ being reflexive, the Mazur Theorem implies that C is weakly com-
pact. Therefore, Pn(C) is compact and obviously convex in `(n)

Φ . We can thus apply
the preceding theorem. This means that each of the sets Pn(C) can be represented as
a countable intersection of half-spaces defined by strongly ρΦ-contractive hyperplanes
Wj,n ⊂ `

(n)
Φ . We have that Wj,n = {z ∈ Rn : gj,n(z) ≤ dj,n} for some functional gj,n

and some dj,n ∈ R.
Put

Fn := {x ∈ `Φ : xi = 0, i = 1, . . . , n} and Dn := Pn(C)⊕ Fn.

Then
Dn =

⋂

j∈N
Vj,n, where Vj,n := {x ∈ `Φ : gj,n(x) ≤ dj,n}

(gj,n extends in a natural way to a functional on `Φ, when we assume that gj,ni = 0

for i > n). The strong ρΦ-contractiveness of Wj,n ⊂ `(n)
Φ is inherited by Vj,n ⊂ `Φ.

Now, since the intersection of all the Dn is identical with the intersection of all the
Vj,n, j, n ∈ N, then it remains to show that C =

⋂
n∈NDn. By definition, C ⊂ Dn. On

the other hand, if d ∈ ⋂n∈NDn, then for any n ∈ N there exist points cn ∈ C, dn ∈ Fn
such that d = Pn(cn) + dn. The set C is weakly compact and thus by Eberlein’s
Theorem we can assume that cn → c weakly. Thence Pk(c) = limn→+∞ Pk(cn) =
Pk(d), which means that d = c ∈ C. This ends the proof.

Theorem 7.5. Let Φ be a Musielak-Orlicz function satisfying the condition (M) and
such that all the φj, except possibly one, are strictly convex. Then C ⊂ `

(n)
Φ (n ≥ 2)

is strongly ρΦ-contractive if and only if it is the intersection of half-spaces defined by
ρΦ-contractive hyperplanes.

Proof. The necessity of the condition follows from Theorem 7.3 (implication from (b)
to (c); we do not need assuming that the space in consideration is modularly strictly
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convex, since (b) implies (a) by definition, while (a) implies (c) in virtue of the first
assertion of that theorem).

The sufficiency can be proved along the same lines as in [12] Theorem 4.14, using
Theorem 7.3. We note that arguing as in [4] we can assume that the intersection in
consideration is countable, i.e. C =

⋂
n∈N Zn, where Zn = {x ∈ `(n)

Φ : fn(x) ≤ dn} is a
ρΦ-contractive half-space defined by a functional fn. It is obvious that the sets Zn and
−Zn are ρΦ-optimal, and therefore, by Lemma 2.9 from [12], the intersection of such a
pair is ρΦ-optimal, too. This in turn implies that Kerfn is ρΦ-optimal. The space `(n)

Φ

is modularly strictly convex, whence each of these kernels is a ρΦ-existence set ([12,
Proposition 2.8]). But since Kerfn is finite-dimensional, then by Theorem 3.3 together
with Lemma 4.4 from [12], this kernel is a strongly ρΦ-existence set. Lemma 4.5 in
[12] guarantees in that case that Zn is strongly ρΦ-contractive. Finally, as these sets
are countably many, we obtain the result sought for by applying Theorem 7.3.

We end this article adding that using the results obtained we can repeat the
constructions from Examples 4.12 and 4.13 in [12] to obtain the following proposition:

Proposition 7.6. Let Φ = (φ1, φ2, φ3) be a Musielak-Orlicz funciton satisfying (M)
and such that all the φj (except possibly one) are striclty convex. Then:

(1) There exists a two-dimensional, one-complemented linear subspace Y ⊂ `(3)
Φ which

is not ρΦ-optimal (a fortiori it is not ρΦ-contractive).
(2) There exists a two-dimensional linear subspace Y ⊂ `

(3)
Φ being a contractive set

(in the Luxemburg norm), but which cannot be represented as an intersection of
half-spaces defined by strongly ρΦ-contractive hyperplanes.

(3) There exists a convex and ρΦ-contractive set C ⊂ `(3)
Φ which is not optimal in the

Luxemburg norm.
(4) there exists a convex set C ⊂ `

(3)
Φ being a ρΦ-existence set but not a strongly

ρΦ-existence set. Moreover, for some t > 1, the set tC is not a ρΦ-existence set.
(5) There exists a convex and ρΦ-contractive set C ⊂ `(3)

Φ which cannot be represented
as the intersection of half-spaces defined by ρΦ-contractive hyperplanes.

Proof. Following [12], in (1) and (3) one has to use Theorem 6.2, while in (2) it will
be Theorem 7.3. Assertion (4) is a consequence of [12] and (3). The construction of
(5) according to [12] is based on Theorem 7.5.
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