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Abstract. Let G1 and G2 be two simple graphs. The tensor product of G1 and G2, denoted
by G1 × G2, has vertex set V (G1 × G2) = V (G1) × V (G2) and edge set E(G1 × G2) =
{(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}. In this paper, we determine vulnera-
bility parameters such as toughness, scattering number, integrity and tenacity of the tensor
product of the graphs Kr(s) × Km(n) for r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, where Kr(s)

denotes the complete r-partite graph in which each part has s vertices. Using the results
obtained here the theorems proved in [Aygul Mamut, Elkin Vumar, Vertex Vulnerability
Parameters of Kronecker Products of Complete Graphs, Information Processing Letters 106
(2008), 258–262] are obtained as corollaries.
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1. INTRODUCTION

In this paper, all graphs considered are finite, undirected and simple. First we present
the definitions of some vulnerability parameters of a graph such as toughness, scatter-
ing number, integrity, tenacity. Let ω(G) and τ(G) denote the number of components
and the order of the largest component of G, respectively. Let κ(G) denote the con-
nectivity of G. A separating set or vertex cut of G is a set S ⊂ V (G) such that G−S
has more than one component. The toughness of a graph G is defined by

t(G) = min

{ |S|
ω(G− S)

: S ⊂ V (G) is a vertex cut of G
}
.

The scattering number of G is defined by

s(G) = max{ω(G− S)− |S| : S ⊂ V (G) is a vertex cut of G}.
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The integrity of a graph G is defined by

I(G) = min{|S|+ τ(G− S) : S ⊂ V (G) is a vertex cut of G}.

The tenacity of a graph G is given by

T (G) = min

{ |S|+ τ(G − S)

ω(G− S)
: S ⊂ V (G) is a vertex cut of G

}
.

The definitions and notation which are not defined here may be seen in [6] and [7].
In this paper, we determine vulnerability parameters, namely, connectivity, tough-

ness, scattering number, integrity and tenacity of the tensor product of complete
equipartite graphs Kr(s) × Km(n) for r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, where Kr(s)

denotes the complete r-partite graph in which each part has s vertices.
A communication network is composed of processors and communication links.

Network designers attach importance to reliability and stability of a network. If the
network begins losing processors or communication links, then there is a loss in its
effectiveness. This event is called the vulnerability of the communication network. In
a communication network, vulnerability measures the resistance of the network to
disruption of operation after the failure of certain stations or communication links.
We may use graphs to model networks, as graph theoretical parameters can be used
to describe the stability and reliability of communication networks. To measure the
vulnerability of a graph we have parameters such as connectivity, toughness, scattering
number, binding number, integrity and tenacity. The vulnerability parameters have
been defined and studied in [1–5] and [9]. For a detailed account of these vulnerability
parameters see [2, 4, 5, 8] and the references therein.

In [2] the vulnerability parameters have been studied for Kr ×Km. Here we study
the vulnerability parameters of Kr(s) ×Km(n), which coincides with Kr ×Km when
s = 1 and n = 1.

Let G1 and G2 be two simple graphs. The tensor product of G1 and G2, denoted
by G1 ×G2, has vertex set V (G1 ×G2) = V (G1)× V (G2) and edge set

E(G1 ×G2) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)},

see Figure 1.
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First we introduce some notation. Let G = Kr(s) × Km(n). Let {U1, U2, . . . , Ur}
be the partite sets of Kr(s) and let {V1, V2, . . . , Vm} be the partite sets of Km(n).
Let Zij = Ui × Vj . Let Si = Ui × V (Km(n)); clearly Si is an independent set in G
and Si =

⋃m
j=1(Ui × Vj) =

⋃m
j=1 Zij . Similarly, let S′

j = V (Kr(s)) × Vj ; it is clear
that S′

j is an independent set in G and S′
j =

⋃r
i=1(Ui × Vj) =

⋃r
i=1 Zij . Clearly, the

independence number of G is

α(G) = max
1≤i≤r; 1≤j≤m

{
|Si| ,

∣∣S′
j

∣∣} = max {snr, snm} .

2. MAIN RESULTS

Lemma 2.1. Let r, s,m, n be integers with r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1. If S is
a minimal vertex cut of G = Kr(s) × Km(n), then G − S has sn + 1 components in
which sn components are trivial.

Proof. Let S be a minimal vertex cut of G. Assume that G− S contains an isolated
vertex x. As G is vertex transitive, we may assume that an isolated vertex say, x, of
G− S is in Z11. Then S must contain

⋃
2≤i≤r; 2≤j≤m Zij , since these are the vertices

adjacent to x. If S =
⋃

2≤i≤r; 2≤j≤m Zij , then G−S contains all the vertices of Z11 as
isolated vertices in G−S and one component containing the vertices of (S1∪S′

1)−Z11.
Thus we have sn+1 components in G−S in which sn components are isolated vertices.
If
⋃

2≤i≤r; 2≤j≤m Zij is a proper subset of S, then S will not be a minimal vertex cut
of G. Further, there is no minimal vertex cut S of G for which each component of
G− S has at least two vertices. Hence the result follows.

Lemma 2.2. Let r, s,m, n be integers with r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1. If S is
any vertex cut of G = Kr(s) ×Km(n), then |S| ≥ sn(r− 1)(m− 1) and for T ⊂ V (G),
if G− T consists only of isolated vertices, then |T | ≥ min {snm(r − 1), snr(m− 1)}.
Proof. If S is an arbitrary vertex cut of G, then S must contain V (G)− (Si ∪ S′

j) for
some i, j, where 1 ≤ i ≤ r, 1 ≤ j ≤ m. If S = V (G) − (Si ∪ S′

j), then G − S consists
of sn+ 1 components in which there are sn isolated vertices, namely, the vertices in
Si ∩ S′

j . Thus |S| ≥ sn(r − 1)(m− 1). However, for T ⊂ V (G), if G− T consists only
of isolated vertices, then V (G)−Si ⊆ T for some i, or V (G)−S′

j ⊆ T for some j and
hence |T | ≥ min {snm(r − 1), snr(m− 1)} .

The following lemma is trivial from the above lemmas.

Lemma 2.3. Let r, s,m, n be integers with r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1. Let S be
a vertex cut of G = Kr(s) ×Km(n).

(i) If ω(G− S) = sn+ 1 and G1, G2, . . . , Gsn+1 are the components of G− S, then
mini |V (Gi)| = 1.

(ii) If ω(G − S) ≥ sn+ 2, then every component of G− S is an isolated vertex and
|S| ≥ min {snm(r − 1), snr(m− 1)} .

Theorem 2.4. For r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, the connectivity of Kr(s) ×Km(n)

is equal to sn(r − 1)(m− 1).
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Proof. Let G = Kr(s)×Km(n). Since the degree of each vertex in G is sn(r−1)(m−1),
we have

κ(G) ≤ sn(r − 1)(m− 1). (2.1)

Further, by the nature of the graph, any minimal vertex cut S of G must contain all
the vertices of V (G) − (Si ∪ S′

j) for some i and j. Thus S has cardinality at least
sn(r − 1)(m− 1). Therefore,

κ(G) ≥ sn(r − 1)(m− 1). (2.2)

From (2.1) and (2.2), κ(G) = sn(r − 1)(m− 1).

Theorem 2.5. For r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, the toughness of Kr(s) ×Km(n) is
equal to min {(r − 1), (m− 1)} .
Proof. Let G = Kr(s) × Km(n). Recall that the toughness of a graph G, t(G), is
defined as t(G) = min{ |S|

ω(G−S) : S ⊂ V is a vertex cut of G}. Let min {r,m} = r.

Let S be a vertex cut of G; then |S| ≥ sn(r−1)(m−1), by Theorem 2.4. If ω(G−S) =
sn+ 1, then

|S|
ω(G− S)

≥ sn(r − 1)(m− 1)

sn+ 1
. (2.3)

If ω(G − S) ≥ sn + 2, then every component of G − S is an isolated vertex and
|S| ≥ min {snm(r − 1), snr(m− 1)} , by Lemma 2.3, and hence ω(G−S) ≤ snm, the
independence number of G; consequently,

|S| = snrm− ω(G− S) ≥ snrm− snm = snm(r − 1).

Therefore,

|S|
ω(G− S)

≥ snm(r − 1)

snm
= r − 1. (2.4)

Comparing inequalities (2.3) and (2.4), we see that sn(r−1)(m−1)
sn+1 ≥ r − 1. Therefore,

t(G) ≥ r − 1. (2.5)

On the other hand, if T =
⋃

2≤i≤r; 1≤j≤m Zij , then T is a vertex cut of G with
|T | = snm(r − 1) and ω(G− T ) = snm, hence

|T |
ω(G− T )

=
snm(r − 1)

snm
= r − 1. (2.6)

Therefore,

t(G) ≤ r − 1. (2.7)
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From (2.5) and (2.7),

t(G) = r − 1. (2.8)

If min{r,m} = m, then we would have t(G) = m − 1 and hence t(G) =
min {r − 1,m− 1} .
Theorem 2.6. For r ≥ 3, m ≥ 3, s ≥ 1 and n ≥ 1, the scattering number of
Kr(s) ×Km(n) is

s(Kr(s) ×Km(n)) =

{
(1 + sn)− sn(m− 1)2 if r = m,

max {snm(2− r), snr(2 −m)} if r 6= m.

Proof. Let G = Kr(s) ×Km(n). Recall that the scattering number, s(G), of a graph
G is defined as s(G) = max{ω(G− S)− |S| : S ⊂ V is a vertex cut of G}.
Case 1. r = m.
The set S =

⋃
2≤i≤r; 2≤j≤m Zij is a vertex cut of G with |S| = sn(r − 1)(m− 1) and

ω(G− S) = sn+ 1; as r = m,

ω(G− S)− |S| = sn+ 1− sn(r − 1)(m− 1) = sn+ 1− sn(m− 1)2

and hence
s(G) ≥ sn+ 1− sn(m− 1)2. (2.9)

Let S′ be an arbitrary vertex cut of G. If ω(G − S′) = sn + 1, then
|S′| ≥ sn(r − 1)(m− 1). Therefore,

ω(G− S′)− |S′| ≤ (sn+ 1)− sn(r − 1)(m− 1) = (2.10)

= sn(2m−m2) + 1, as r = m. (2.11)

If ω(G − S′) ≥ sn + 2, then every component of G − S′ is an isolated vertex, by
Lemma 2.3, and hence |S′| = snrm− ω(G− S′). Therefore,

ω(G− S′)− |S′| = snrm− 2 |S′| ≤
≤ snrm− 2(snrm− snm), by Lemma 2.3 with r = m,

= sn(2m−m2), as r = m .

(2.12)

As r = m, from (2.11) and (2.12),

ω(G− S′)− |S′| ≤
{
sn(2m−m2) + 1 if ω(G− S′) = sn+ 1,

sn(2m−m2) if ω(G− S′) ≥ sn+ 2.

But sn(2m − m2) + 1 > sn(2m − m2). Consequently, an upper bound for s(G) is
attained corresponding to S′ in (2.11). Therefore, by (2.10),

s(G) ≤ (sn+ 1)− sn(m− 1)2, as r = m. (2.13)
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From (2.9) and (2.13), if r = m, then

s(G) = sn+ 1− sn(m− 1)2. (2.14)

Case 2. r 6= m.
Let min {r,m} = r. Then r ≤ m− 1.
Let T =

⋃
2≤i≤r; 1≤j≤m Zij ; T is a vertex cut of G with |T | = snm(r − 1) and

ω(G− T ) = snm, the independence number of G. Therefore,

s(G) ≥ ω(G− T )− |T | =
= snm− snm(r − 1) =

= snm(2− r).

(2.15)

Let S be a vertex cut of G; then |S| ≥ sn(r − 1)(m − 1), by the Lemma 2.2. If
ω(G− S) = sn+ 1, then

ω(G− S)− |S| ≤ (sn+ 1)− sn(r − 1)(m− 1) = sn(r +m− rm) + 1. (2.16)

If ω(G − S) ≥ sn + 2, then every component of G − S is an isolated vertex, by
Lemma 2.3, and |S| ≥ snrm− snm, as r = min {r,m} , so that

ω(G− S)− |S| ≤ snm(2− r), since r < m. (2.17)

But

sn(r +m− rm) + 1 ≤ sn(m− 1 +m− rm) + 1, since r ≤ m− 1,

= sn(2m− 1− rm) + 1 =

= sn(2m− rm) − (sn− 1) ≤ sn(2m− rm) = snm(2− r).

Therefore, ω(G− S)− |S| attains its maximum only when every component of G−S
is an isolated vertex. Hence

s(G) ≤ snm(2− r). (2.18)

From (2.15) and (2.18),

s(G) = snm(2− r), if r < m. (2.19)

If m ≤ r − 1, then we would get s(G) = snr(2 −m) and hence we have,

s(G) = max {snm(2− r), snr(2 −m)} , if r 6= m. (2.20)

From (2.14) and (2.20),

s(G) =

{
(1 + sn)− sn(m− 1)2 if r = m,

max {snm(2− r), snr(2 −m)} if r 6= m.
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Theorem 2.7. For r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, the integrity of Kr(s) ×Km(n) is
equal to min{snm(r − 1) + 1, snr(m− 1) + 1}.
Proof. Let G = Kr(s) ×Km(n).Recall that the integrity I(G), of a graph G is defined
as I(G) = min{|S| + τ(G − S) : S ⊂ V is a vertex cut of G}. Let max {r,m} = m.
Let S be a vertex cut of G.

First we suppose that τ(G−S) = 1. Then, each component of G−S is an isolated
vertex and ω(G− S) ≤ snm, the independence number of G; hence

|S| = snrm− ω(G− S) ≥ snrm− snm = snm(r − 1).

Consequently,
|S|+ τ(G− S) ≥ snm(r − 1) + 1. (2.21)

Next we suppose that τ(G− S) > 1. Then ω(G− S) = sn+1. Let G1, G2, . . . , Gsn+1

be the components of G− S. Then mini |V (Gi)| = 1, by Lemma 2.3, and τ(G− S) =
snrm− |S| − sn, since there are sn isolated vertices in G− S. Therefore,

|S|+ τ(G − S) = snrm− sn. (2.22)

But
snrm− sn ≥ snrm− snm+ 1 = snm(r − 1) + 1.

Therefore, from (2.21) and (2.22), |S| + τ(G − S) attains its minimum only when
G− S has only isolated vertices. Hence

I(G) ≥ snm(r − 1) + 1. (2.23)

Now, T =
⋃

2≤i≤r;1≤j≤m Zij is a vertex cut of G with |T |=snm(r−1) and τ(G−T )=1.
Therefore,

I(G) ≤ |T |+ τ(G− T ) = snm(r − 1) + 1. (2.24)

Combining (2.23) and (2.24),

I(G) = snm(r − 1) + 1. (2.25)

If max{r,m} = r, then we would have I(G) = snr(m − 1) + 1 and hence I(G) =
min {snm(r − 1) + 1, snr(m− 1) + 1} .
Theorem 2.8. For r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, the tenacity of Kr(s) ×Km(n) is
equal to min{r − 1 + 1

snm ,m− 1 + 1
snr}.

Proof. Let G = Kr(s)×Km(n). Recall that the tenacity T (G), of a graph G is defined
as T (G) = min{ |S|+τ(G−S)

ω(G−S) : S ⊂ V is a vertex cut of G}. Let max {r,m} = m. Let S
be a vertex cut of G.

First we suppose that τ(G−S) = 1. Then, each component of G−S is an isolated
vertex and hence ω(G− S) ≤ snm, the independence number of G; hence

|S| = snrm− ω(G− S) ≥ snrm− snm = snm(r − 1).
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Therefore,
|S|+ τ(G− S)

ω(G− S)
≥ snm(r − 1) + 1

snm
. (2.26)

Next we suppose that τ(G− S) > 1. Then ω(G− S) = sn+1. Let G1, G2, . . . , Gsn+1

be the components of G− S. Then mini |V (Gi)| = 1, by Lemma 2.3, and τ(G− S) =
snrm− |S| − sn, since there are sn isolated vertices in G− S. Therefore,

|S|+ τ(G − S)

ω(G− S)
=

sn(rm− 1)

sn+ 1
. (2.27)

Comparing (2.26) and (2.27), we have

sn(rm− 1)

sn+ 1
≥ snm(r − 1) + 1

snm
= r − 1 +

1

snm

and hence

T (G) ≥ r − 1 +
1

snm
. (2.28)

Now let T =
⋃

2≤i≤r; 1≤j≤m Zij . Then T is a vertex cut of G with |T | = snm(r − 1)
and τ(G − T ) = 1. Therefore,

T (G) ≤ |T |+ τ(G − T )

ω(G− T )
≤ snm(r − 1) + 1

snm
= r − 1 +

1

snm
. (2.29)

Combining (2.28) and (2.29),

T (G) = r − 1 +
1

snm
. (2.30)

If max{r,m} = r, then we would have T (G) = m− 1 + 1
snr and hence

T (G) = min

{
r − 1 +

1

snm
,m− 1 +

1

snr

}
.

Applying the same proof technique as in above theorems, we have the following
theorem and we omit its proof, as it resembles the proofs of Theorems 2.4 to 2.8
above.

Theorem 2.9. Let m,n, a, b be integers. Let Ka,b denote the complete bipartite graph
in which the partite sets have size a and b. Let m ≥ 3 and a ≥ b. Then:

1. κ(Km(n) ×Ka,b) = (m− 1)nb,
2. t(Km(n) ×Ka,b) =

b
a ,

3. s(Km(n) ×Ka,b) = mn(a− b),
4. I(Km(n) ×Ka,b) = mnb+ 1,
5. T (Km(n) ×Ka,b) =

b
a + 1

mna .
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Corollary 2.10 ([2]). Let m,n be integers with n ≥ m ≥ 2 and n ≥ 3. Then:

1. κ(Km ×Kn) = (m− 1)(n− 1),
2. t(Km ×Kn) = m− 1,

3. s(Km ×Kn) =

{
2− (m− 1)(n− 1) if m = n,

n(2−m) otherwise,

4. I(Km ×Kn) = mn− n+ 1,
5. T (Km ×Kn) = m+ 1

n − 1.
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