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Abstract. A subgraph of an edge-colored graph is called rainbow if all of its edges have
different colors. For a graph G and a positive integer n, the anti-Ramsey number ar(n, G)
is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H.
Anti-Ramsey numbers were introduced by Erdős, Simonovits and Sós and studied in numerous
papers. Let G be a graph with anti-Ramsey number ar(n, G). In this paper we show the lower
bound for ar(n, pG), where pG denotes p vertex-disjoint copies of G. Moreover, we prove
that in some special cases this bound is sharp.
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1. INTRODUCTION

A subgraph of an edge-colored graph is called rainbow if all of its edges have different
colors. For a graph G and a positive integer n, the anti-Ramsey number ar(n, G) is
the maximum number of colors in an edge-coloring of Kn with no rainbow copy of G.
Anti-Ramsey numbers were introduced by Erdős et al. [4]. They showed that these
are closely related to Turán numbers. Since then numerous results were established
for a variety of graphs H, including among others cycles [1,11,13], matchings [5,9,17],
trees [10, 12] and cycles with an edge added [8, 15]. The paper of Fujita, Magnant and
Ozeki [6] presents the survey of results of that type.

In this paper we consider the following problem. Given a connected graph G, the
anti-Ramsey number ar(n, G), we ask what can be said about ar(m, pG), where pG
denotes p vertex-disjoint copies of G. We give the lower bound for this number and
discuss the sharpness of it. As far as we know the only considered graphs of this type
were matchings.
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2. PRELIMINARIES

Graphs considered below will always be simple. Throughout the paper we use the
standard graph theory notation. For a graph G the order of G is denoted by |G| and
the size is denoted by ‖G‖. Kn and pG stand for, respectively, the complete graph
on n vertices and the disjoint union of p copies of a graph G. A degree of a vertex
v in a graph G is denoted by dG(v) and by NG(v) and NG[v] its open and closed
neigborhoods, respectively. For a graph G and its subgraph H by G −H we mean
a graph obtained from G by deleting all vertices of H with all incident edges. If
W ⊆ V (G), then G[W ] denotes the subgraph of G induced by W . For a set S, by |S|
we denote the cardinality of S.

Additionally, we introduce the following notation. C(G) is a set of colors used on
the edges of a graph G, C(v) is a set of colors used on the edges incident to a vertex
v and c(e) denotes a color of the edge e. For a given coloring of the edges of Kn we
choose exactly one edge in each color. A subgraph F such that V (F ) = V (Kn) induced
by these edges we call a selective subgraph.

We will need the following theorems.

Theorem 2.1 ([4]). ar(m, K3) = m− 1 for m ≥ 3.

Theorem 2.2 ([16]). If G is a graph with n ≥ 3 vertices such that ‖G‖ >
(

n−1
2
)

+ 1,
then G has a Hamiltonian cycle.

Theorem 2.3 ([13]). If m ≥ k ≥ 3 and r is the reminder of the division m by k − 1,
then

ar(m, Ck) =
⌊ m

k − 1

⌋(k − 1
2

)
+
(

r

2

)
+
⌈ m

k − 1

⌉
.

Theorem 2.4 ([11,14]). ar(m, K1,3) = bm
2 c+ 1, m ≥ 4.

Theorem 2.5 ([11,14]). ar(m, K1,4) = m + 1, m ≥ 5.

3. LOWER BOUND

Theorem 3.1. Let G be an arbitrary connected graph on n ≥ 3 vertices and
m ≥ p|V (G)|. Then

ar(m, pG) ≥ max
{(pn− 2

2

)
+ 1, ar(m− p + 1, G) + (p− 1)m−

(
p

2

)}
.

Proof. We color the edges of Km as follows. To obtain the first number we choose
Kpn−2 and color it rainbowly and we color the remaining edges with one extra color.
In such a way we do not obtain any rainbow pG and use exactly

(
pn−2

2
)

+ 1 colors.
To obtain the second number we choose Kp−1 and color it rainbowly, then we

color the edges of Km −Kp−1 with next ar(m− p + 1, G) colors without producing
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rainbow G and finally we color the remaining edges each with next distinct colors. In
such a way we do not obtain any rainbow pG and use exactly

ar(m− p + 1, G) + (p− 1)(m− p + 1) +
(

p− 1
2

)
= ar(m− p + 1, G) + (p− 1)m−

(
p

2

)

colors, so the theorem is proved.

It is worth to pay attention to the fact that the lower bound from Theorem 3.1 is
not appropriate for a matching. In this case assuming G = K2 it is reasonable to put
ar(m, K2) = 0. But in the construction of the coloring we must not use 0 colors on
the rest of the graph. Similarly the colorings are based on the fact that by adding one
new color we do not produce any copy of G which is not true for G = K2. That is
why matchings need a different treating. It is done in [5,9,17] by using an appropriate
Turán number.

From this point of view G = P3 is the smallest graph to consider.
In our paper we are interested in selecting graphs for which this lower bound can

be sharp. We do not focus on cases when

max
{(pn− 2

2

)
+ 1, ar(m− p + 1, G) + (p− 1)m−

(
p

2

)}
=
(

pn− 2
2

)
+ 1,

since this can happen only for finitely many values of m. It is so, as the first expression
is a constant and the second one is at least linear in m.

We state the following conjecture.

Conjecture 3.2. Let G be a connected graph on n ≥ 3 vertices and m ≥ p|V (G)|.
Then

ar(m, pG) = ar(m− p + 1, G) + (p− 1)m−
(

p

2

)

if and only if G is a tree.

In the next paragraphs we give the reasons which motivated us to state such
a conjecture.

3.1. DISJOINT PATHS

It is easy to see that ar(m, P3) = 1. By Theorem 3.1, it can be obtained that
ar(m, 2P3) ≥ m for m ≥ 7 and ar(6, 2P3) ≥ 7. The next theorem shows that this
lower bound is sharp. The result was also achieved by Bialostocki, Gilboa and Roditty
[2], but with a different method of the proof, so we put the theorem into the paper.

Theorem 3.3.

ar(m, 2P3) =
{

7 for m = 6,

m for m ≥ 7.
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Proof. The lower bound for m ≥ 7 results from Theorem 3.1. For m = 6 we color the
edges of a subgraph K4 with distinct colors and all remaining edges of K6 with one
extra color.

To show the upper bound we color the edges of a complete graph Km = K with
m + 1 colors and assume that there is no rainbow 2P3. By Theorem 2.1, there is
a rainbow triangle T with vertices {u, v, w}. Let CR = C(K) \C(T ) and V (K − T ) =
{x1, x2, . . . , xm−3}. Note that if there is an edge e ∈ E(K − T ) with c(e) ∈ CR, then
we obtain a rainbow 2P3 consisting of the edge e, an edge e′ ∈ E(K − T ) incident to
it and to edges from E(T ) of colors different from c(e′). A contradiction. Hence we
can assume that all edges of colors from CR are placed between T and K − T .

Since |CR| = m−2, at least one vertex from T is joined to at least two vertices from
K−T with edges of distinct colors from CR. Let u be this vertex, c(ux1), c(ux2) ∈ CR,
c(ux1) 6= c(ux2) and C ′R = CR \ {c(ux1), c(ux2)}.

Note that we can assume that for each i ∈ {3, . . . , m−3} we have that c(xiv) 6∈ C ′R
and c(xiw) 6∈ C ′R, since otherwise there would be a rainbow 2P3: x1ux2, xjvw (xjwv,
respectively) for a certain j ∈ {3, . . . , m− 3}. Since |C ′R| = m− 4, there is an edge of
color from C ′R between {x1, x2} and {v, w}. Let x1v be this edge. Similarly as above
we obtain that c(xiu) 6∈ C ′R \ {c(x1v)} for each i ∈ {3, . . . , m− 3}, otherwise x2uxj ,
x1vw is a rainbow 2P3 for certain j ∈ {3, . . . , m−3}. Now there are only two edges left
(x2v and x2w) which are allowed to be colored with colors from C ′R \ {c(x1v)}. But
|C ′R \ {c(x1v)| = m− 3. A contradiction for m ≥ 8. For m = 6, 7, |C ′R \ {c(x1v)}| = 2,
so surely x3x2w, ux1v is a rainbow 2P3, remembering that c(x2x3) ∈ C(T ).

The next theorem deals with three copies of P3. It is a special case of a more general
the result obtained by Gilboa and Roditty [7], namely ar(m, pP3) = (p− 1)(m− p

2 ) + 1
for m > 5p + 1. By a different method of the proof, we managed to decrease the
constraint for m from 16 to 12 for p = 3.

Theorem 3.4. ar(m, 3P3) = 2m− 2 for m > 12.

Proof. The lower bound results from Theorem 3.1. To show the upper bound we color
the edges of a complete graph Km = K with 2m − 1 colors arbitrarily and assume
that there is no rainbow 3P3.

Let F be a selective subgraph of K containing the longest cycle and l denote its
length. Since |V (F )| = m and |E(F )| = 2m − 1, such a selective subgraph can be
chosen. Moreover, there are at most two vertex-disjoint cycles in F , since otherwise
a rainbow 3P3 is in K.

Note that if l ≥ 9, then obviously a rainbow 3P3 is contained in K. Moreover, by
Theorem 2.3, l ≥ 5. Therefore l ∈ {5, 6, 7, 8}. Let Cl be the subgraph of F being the
longest cycle.

Let Fl = F [V (Cl)], B = F − Cl, R = {vw : v ∈ V (Cl), w ∈ V (B)} and
N = {w ∈ V (B) : there exists v ∈ V (Cl) such that vw ∈ E(F )}. Note that

‖F‖ = ‖Fl‖+ ‖B‖+ |R|.
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Case 1. l = 8.
Observe that |N | = 0, since otherwise a rainbow 3P3 is in K.
We show that there is at most one edge in B. Suppose that there are vertices

x1, x2, x3, x4 ∈ V (B) such that x1x2, x3x4 ∈ E(F ). If x2 = x3, then x1x2x4 is rainbow.
If x2 6= x3, then at least one of paths A1 = x1x2x3 or A2 = x4x3x2 is rainbow. Possibly
deleting the edge with color c(x2x3) in C8 we obtain a rainbow subgraph of C8 which
contains 2P3. It contradicts the assumption that there is no 3P3 in F . Therefore,
‖B‖ ≤ 1.

Now, let e = xy be an edge in K such that x ∈ V (C8) and y ∈ V (B).
Obviously, e 6∈ E(F ) and c(e) is one of colors from C(C8). Then ‖F8‖ ≤ 23.
Otherwise, deleting the edge with color c(e) in F8, by Theorem 2.2 we ob-
tain a rainbow hamiltonian graph of order 8 without a color c(e) and join-
ing e to the hamiltonian cycle we obtain a rainbow P9 in K and hence
a rainbow 3P3 is in K. Hence,

‖F‖ = ‖F8‖+ ‖B‖ ≤ 23 + 1 = 24 < 2m− 1,

a contradiction.
Case 2. l = 7.

Observe that |N | ≤ 1. Otherwise it is easy to obtain 3P3 in F .
Analogously as in previous cases, we can show that ‖B‖ ≤ 1.
Suppose than that |N | = 0. So, ‖F7‖ ≤ 21. Hence,

‖F‖ ≤ 21 + 1 = 22 < 2m− 1,

a contradiction.
Assume that |N | = 1 and N = {x}. Similarly as in a previous case, by Theorem 2.2,

we obtain that F [V (C7) ∪ {x}] contains at most 23 edges. Hence,

‖F‖ ≤ 23 + 1 = 24 < 2m− 1,

a contradiction.
Case 3. l = 6.

Analogously as in Case 1, we can show that ‖B‖ ≤ 1.
Denote the consecutive vertices in C6 by {c0, c1, . . . , c5} and by dR(x) the number

of edges in R incident with x. Observe that since ‖B‖ ≤ 1, we have

|R| ≥ 2m− 1− (15 + 1) = 2m− 17 ≥ m− 4

for every m > 12. It implies that |R| > 0 and there are at least two distinct vertices
ci, cj such that dR(ci) ≥ 1 and dR(cj) ≥ 1. Without loss of generality, we can assume
that dR(c0) ≥ 2.

The assumption that dR(ck) ≥ 1 for certain k ∈ {1, 2, 4, 5} leads us to a contradic-
tion with the assumption that there is no 3P3 in F . Therefore c3 is the other vertex
with neighbors in N and moreover dR(c3) ≥ 2.

If |N | ≤ 3, then |R| ≤ 6, a contradiction. So |N | ≥ 4 which means that we can
choose a rainbow 2P3 in F with middle vertices c0 and c3 and endpoints in N .
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The rainbow 3P3 in K we can find as follows.
If c(c1c4) 6∈ C(2P3), then we are done, since at least one of the paths c5c4c1, c2c1c4

is rainbow in K.
So suppose that c(c1c4) ∈ C(2P3). Without loss of generality let xc0y be one of

above mentioned rainbow 2P3 and c(c1c4) = c(xc0). Then the other P3 with middle
vertex c3, c2c1c4 and yc0c5 form a rainbow 3P3 in K.

Hence we obtain a contradiction.
Case 4. l = 5.

Denote the consecutive vertices in C5 by {c0, c1, . . . , c4}.
Suppose that P3 = P is contained in B. Note that either one can find rainbow 2P3

with one vertex in V (B)\V (P ) and five vertices in V (C5) or for each u ∈ (V (B)\V (P ))
we have c(uci) = c(ci+2 mod 5ci+3 mod 5). In the latter case we have a rainbow 2P3:
c0u1c1, c2u2c3, where u1, u2 ∈ (V (B) \ V (P )). The rainbow 2P3 forms a rainbow 3P3
with P . A contradiction.

Therefore we can assume that B = sK2 ∪ (m− 5− 2s)K1.
Note that each vertex u ∈ V (B) is adjacent to at most two vertices on the cycle

(ci, ci+2 mod 5) otherwise F contains a longer cycle.
Moreover, if at least one u ∈ V (B) has two neighbors on the cycle, then ‖F5‖ ≤ 8

(ci+1 mod 5ci+4 mod 5 6∈ E(F ), ci+1 mod 5ci+3 mod 5 6∈ E(F ) ) otherwise F contains
a longer cycle.

Finally, note that if u1u2 ∈ E(F ), then there are at most two edges between
{u1, u2} and V (C5) otherwise F contains a longer cycle.

Hence if at least one u ∈ V (B) has two neighbors on the cycle, then

2m− 1 = ‖F‖ = ‖F5‖+ ‖B‖+ |R| ≤ 8 + s + 2s + 2[(m− 5)− 2s] = 2m− s− 2.

A contradiction.
If all u ∈ V (B) have at most one neighbor on the cycle, then

2m− 1 = ‖F‖ = ‖F5‖+ ‖B‖+ |R| ≤ 10 + s + (m− 5) = m + s + 5.

Since s ≤ bm−5
2 c, we have a contradiction.

Next we consider two copies of a star with three rays.
Theorem 3.5. Let m ≥ 69. Then ar(m, 2K1,3) = bm−1

2 c+ m.
Proof. The lower bound results from Theorems 3.1 and 2.4. To show the upper bound
we color the edges of a complete graph Km = K with bm−1

2 c+ m + 1 colors arbitrarily
and assume that there is no rainbow 2K1,3.

Let F be a selective subgraph of K chosen in such a way that the maximal degree
∆(F ) is as big as possible and let x0 be the vertex of K such that d(x0) = ∆(F ) = d.
Note that, since bm−1

2 c + m + 1 > m + 1 = ar(m, K1,4) (see Theorem 2.5), we
can assume that d ≥ 4. Obviously d ≤ m − 1. Let NF (x0) = {x1, x2, . . . , xd} and
V (F ) \NF [x0] = {xd+1, xd+2, . . . , xm−1}. The latter set is empty if d = m− 1.

Let us consider the case d ≥ 8 firstly. Let F− = F − x0. Note that

‖F−‖ ≥ ‖F‖ − (m− 1) =
⌊m− 1

2

⌋
+ m + 1− (m− 1) =

⌊m− 1
2

⌋
+ 2. (3.1)
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Since |F−| = m − 1, we obtain that K1,2 ⊂ F−. Without loss of generality let
x1x2x3 be this star with the center x1. Note that there is no other edges with the end
x1 in F− otherwise there would be rainbow 2K1,3 in F (one star with center x1 and
one with x0).

Moreover, note that G− does not contain two edge-disjoint stars K1,2. If x1x2x3
and xixjxk be such a stars with centers x1 and xi, respectively, then at least one of
the stars x1x2x3xi or xixjxkx1 would be rainbow in K and form a rainbow 2K1,3
together with a certain star with a center x0, even if c(x1xi) ∈ C(x0). Therefore G− is
a subset of (i) K1,2 ∪ bm−4

2 cK2 or (ii) P4 ∪ bm−5
2 cK2 or (iii) K3 ∪ bm−4

2 cK2. In case
(i) we have ‖F−‖ ≤ 2 + bm−4

2 c = bm
2 c and in case (ii) ‖F−‖ ≤ 3 + bm−5

2 c = bm+1
2 c,

which is a contradiction to (3.1). There is no similar contradicion in case (iii) only
in case F− ' K3 ∪ bm−4

2 cK2. In that case let x1, x2, x3 be the vertices of the
triangle and xixj be an edge of F−, i, j 6∈ {x1, x2, x3}. Now we look at colors of
the edges in K. If c(x1xi) 6∈ {c(x1x2), c(x1x3)} or c(x2xi) 6∈ {c(x2x1), c(x2x3)} or
c(x3xi) 6∈ {c(x3x2), c(x3x1)}, then we have a rainbow star K1,3 with a centrum
xs for a certain s ∈ {1, 2, 3} which forms a rainbow 2K1,3 with the rainbow K1,3
with a centrum x0. Therefore we can assume that c(x1xi) ∈ {c(x1x2), c(x1x3)} and
c(x2xi) ∈ {c(x2x1), c(x2x3)} and c(x3xi) ∈ {c(x3x2), c(x3x1)}. So there is a rainbow
star K1,3 xixsxtxj with a centrum xi for a certain s, t ∈ {1, 2, 3}. So again we have
the rainbow 2K1,3 with the rainbow K1,3 with a centrum x0. A contradiction.

Now consider the case 4 ≤ d ≤ 7. Note that each xi, i = 1, 2, . . . , d can
have at most two neighbors in {xd+1, xd+2, . . . , xm−1} otherwise we can easily find
2K1,3 in F . So there is at most d + 2d +

(
d
2
)
edges with at least one endpoint in

{x0, x1, x2, . . . , xd}. Hence at least bm−1
2 c + m + 1 − 3d −

(
d
2
)
edges have both end-

points in {xd+1, xd+2, . . . , xm−1}. Note that at least one of these vertices has three
neighbors in this set, since

⌊
m− 1

2

⌋
+ m + 1− 3d−

(
d

2

)
> 2(m− d− 1)/2

for m ≥ 69. So again we have 2K1,3 in F . A contradiction.

3.2. DISJOINT TRIANGLES

It is unlikely that the lower bound we discuss is sharp in any case. By the results
of Erdős et al. [3, 4], it follows that if G is a graph which is not bipartite and does
not become bipartite after deleting a single edge, then ar(m, G) and ex(m,G−) are
asymptotically equal, where ex(m,H) denotes well known Turán number for a family
H and G− is the family of all graphs obtained from G by deleting one edge. Moreover,
recently Schiermeyer and Sótak [18] showed that for a graph G with cyclomatic number
at least 2 the anti-Ramsey number ar(m, G) cannot be bounded above by a function
which is linear in m.

As an example we present the following theorem.

Theorem 3.6. Let m ≥ 6. Then ar(m, 2K3) ≥ bm2

4 c+ 1.
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Proof. To construct an appropriate coloring of the edges of Km we proceed as follows.
We choose a triangle-free subgraph H with maximum possible number of edges (Turán
graph) and assign to each edge a different color. Then we put one extra color to all
remaining edges. Certainly, by the Turán theorem, |E(H)| = bm2

4 c. Obviously, there
is no rainbow 2K3 in such a coloring, hence the proof is completed.
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