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Abstract. We present the use of a Fourier transform on time scales to solve a dynamic
heat IVP. This is done by inverting a certain exponential function via contour integral.
We include some specific examples and directions for further study.
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1. INTRODUCTION

The time scales calculus is a well established theory [5] and primarily focuses on the
relationship between continuous and discrete mathematical models. In this work, we
demonstrate how to use a time scales Fourier transform to solve the dynamic heat
equation u∆t = u∆2

xx , which was first investigated in [19] imposed with initial and
boundary conditions. Its continuous counterpart is the classical heat equation which
is well-known to be solvable by Fourier transform methods [12, Section 4.3.1]. In
particular, we augment the dynamic heat equation with an initial function, impose
that t ∈ [0,∞), and x lies in some time scale T:





∂u

∂t
= u∆2

xx , x ∈ T, t ∈ (0,∞),
u(0, x) = g(x).

(1.1)

When T = Z, the IVP (1.1) is a special case of a more general diffusion-type equation
with connections to random walks and stochastic processes [14]. Other related works
include [25, 26] which study and find explicit solutions to a problem similar to, but
different from, (1.1). More broadly, the book [6] is a good resource for the related area
of partial difference equations and [22] investigates the lattice differential equations,
which are a class of semidiscrete systems of differential-difference equations whose
spatial variable lies in a lattice.

Many Fourier transforms have been investigated on time scales, including the
original by Hilger [17], those defined on time scales that also have a group structure [18],
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Davis et al.’s discrete Fourier transform [11], and the recent transform defined in [8]
by the formula

F{f}(z; t0) =
∫

T

f(t)e⊖iz(σ(t), t0)∆t. (1.2)

The transform (1.2) has desirable operational properties similar to the unilateral and
bilateral Laplace transforms [4, 10], making it well-suited for solving partial dynamic
equations. A significant part of our work here demonstrates how to compute the time
scales inverse Fourier transform via contour integral.

The heat IBVP in [19] is solved with the bilateral Laplace transform, but a general
convolution theorem was not known at the time, leading to only a finite number
of specific functions g being considered. Thus, the other major contribution of our
manuscript is to provide the explicit solution to the problem (1.1) for a certain class of
spatial time scales T. To the best of our knowledge, there is no other solution of (1.1)
solved in such generality in the literature, although a modified version of (1.1) whose
spatial variable is T = Z and a shifted right-hand side is solved explicitly in [25].

This work is organized as follows: in Section 2 we introduce some concepts and
preliminary results that are needed. In Section 3 we specifically deal with the time
scales Fourier transform, which will be used in Section 4 in order to solve the heat
equation with a space variable belonging to certain time scales. We finally conclude
this work with some possible research directions.

2. PRELIMINARIES AND DEFINITIONS

We refer readers to the monograph [5] for the elementary definitions of time scales
calculus, and in particular the papers [9,23] for information on the exponential function
on time scales with nonregressive subscripts. We now recall the convolution theorem
for the unilateral Laplace transform on time scales. The shifting problem was originally
introduced in [3, Definition 2.1] in order to define convolution on all time scales for the
unilateral Laplace transform. We now consider a modified shift problem appropriate
for the time scales Fourier transform by{

u∆t(t, σ(s)) = −u∆s(t, s), t, s ∈ T,
u(t, t0) = f(t), t ∈ T,

where f : [t0,∞) ∩ T → C. The solution of the shifting problem is denoted by f̂ ,
i.e. f̂(t, s) = u(t, s). A convolution for all time scales is defined using the shift
by [3, Definition 2.5]

(f ∗ g)(t) =
t∫

t0

f̂(t, σ(s))g(s)∆s. (2.1)

With the convolution (2.1), the convolution theorem for unilateral Laplace transforms
on time scales is given by

L {f ∗ g} (z; t0) = L {f}(z; t0)L {g}(z; t0)
(see [3, Theorem 3.2]).
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We make use of the Hilger complex plane

Ch =
{

C, h = 0,
C \

{
− 1

h

}
, h > 0

and the Hilger real part of a number z ∈ C given by

Reh(z) =
{

Re(z), h = 0,
|1+hz|−1

h , h > 0.

We additionally define the minimal graininess function µ∗ : T → [0,∞) by the formula

µ∗(s) = inf
t∈[s,∞)∩T

µ(t),

and the maximal graininess function µ∗ : T → [0,∞) by the formula

µ∗(s) = sup
t∈(−∞,s]∩T

µ(t),

where µ denotes the graininess (or stepsize) function associated to the time scale T.
The Fourier transform (1.2) is defined on the set Rs,α,γ , defined for real-valued positive
regressive constants α and γ and s ∈ T by

Rs,α,γ =
{
z ∈ C : Reµ∗(s)(iz) < γ, Reµ∗(s)(iz) > α,

1 + µ(s, z)Re
µ(s)(iz) ̸= 0

}
,

(2.2)

where µ is given by
µ(s, z) :=

{
µ∗(s), Reµ(s)(z) ≤ 0,
µ(s), Reµ(s)(z) > 0,

and
µ(s) = inf

τ∈(−∞,s]∩T
µ(τ).

If z ∈ Rs,α,γ , and λ is a positively regressive constant, then [4, Theorem 3.4] shows
for t ∈ [s,∞),

|eλ⊖z(t, s)| ≤ eλ⊖Reµ∗(s)(z)(t, s), (2.3)
and [8, Theorem 2] shows for t ∈ (−∞, s],

|eλ⊖z(t, s)| ≤ eλ⊖Reµ∗(s)(z)(t, s). (2.4)

3. FOURIER TRANSFORM RESULTS

We modify the convolution (2.1) to be appropriate for the Fourier transform as

(f ∗ g)(t) =
∫

T

f̂(t, σ(s))g(s)∆s.
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The function ψ(s) =
∫
T f̂(t, s)e⊖iz(σ(t), s)∆t is useful in the exploration of the convo-

lution theorem for the time scales Fourier transform. The convolution theorem has
been proven in [15], but its proof relied on the ∆-derivative of ψ commuting with the
integral over T without proof. We fill that gap in the next lemma.

Lemma 3.1. If z ∈ Rs,0,0 and the map τ 7→ f̂∆s(σ(t), τ) is continuous, then the
∆-derivative of ψ commutes with its defining integral, i.e.,

ψ∆(s) =
∫

T

(
f̂(t, s)e⊖iz(σ(t), s)

)∆s

∆t.

Proof. If σ(s) > s, then the linearity of the ∆-integral shows

ψ∆(s) = ψ(σ(s)) − ψ(s)
µ(s)

=
∫

T

f̂(t, σ(s))e⊖iz(σ(t), σ(s)) − f̂(t, s)e⊖iz(σ(t), s)
µ(s) ∆τ,

completing this case. If σ(s) = s, then let sn → s be a sequence with each
sn ∈ T ∩ [s− 1, s+ 1] for all n. We compute

ψ∆(s) = ψ′(s) = lim
n→∞

ψ(sn) − ψ(s)
sn − s

= lim
n→∞

1
sn − s

∫

T

f̂(σ(t), sn)e⊖iz(σ(t), sn) − f̂(t, s)e⊖iz(σ(t), s)∆t

= lim
n→∞

∫

T

g(sn) − g(s)
sn − s

e⊖iz(σ(t), s)∆t,

where g(τ) := f̂(σ(t), τ)e⊖iz(s, τ). Define the sets

Un = [min{sn, s},max{sn, s}] and U = [s− 1, s+ 1].

By a corollary to the mean value theorem on time scales [16, Corollary 3.3], we know
that

|g(sn) − g(s)| ≤
{

sup
t∈Un∩T

|g∆(t)|
}

|sn − s|. (3.1)

So we get for
fn(s) := g(sn) − g(s)

sn − s
e⊖iz(σ(t), s)

that fn converges pointwise to
(
f̂(t, s)e⊖iz(σ(t), s)

)∆s

and by (3.1), we conclude that

|fn| =
∣∣∣∣
g(sn) − g(s)
sn − s

e⊖iz(σ(t), s)
∣∣∣∣ ≤

{
sup

τ∈Un∩T
f̂∆s(σ(t), τ)

}
|e⊖iz(σ(t), s)|.
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Let

α := sup
τ∈U∩T

f̂∆s(σ(t), τ).

Note that the constant α is independent of n and

α ≥ sup
τ∈Un∩T

f̂∆s(σ(t), τ)

for all n. Using (2.4) and (2.3), we obtain

|ψ∆(s)| ≤ lim
n→∞

∫

T

∣∣∣∣
g(sn) − g(s)
sn − s

e⊖iz(σ(t), s)
∣∣∣∣∆t

≤ α

∫

T

|e⊖iz(σ(t), s)|∆t

= α




s∫

−∞

|e⊖iz(σ(t), s)| ∆t+
∞∫

s

|e⊖iz(σ(t), s)| ∆t




≤ α




s∫

−∞

e⊖Reµ∗(s)(iz)(σ(t), s)∆t+
∞∫

s

e⊖Reµ∗(s)(iz)(σ(t), s)∆t


 .

Since eσ
p = (1 + µp)ep, we simplify

e⊖Reµ∗(s)(iz)(σ(t), s) =
(

1 + µ(t)
(
⊖Reµ∗(s)(iz)

) )
e⊖Reµ∗(s)(iz)(t, s)

= 1
1 + µ(t)Reµ∗(s)(iz)

e⊖Reµ∗(s)(iz)(t, s)

=
(

− 1
Reµ∗(s)(iz)

)(
⊖Reµ∗(s)(iz)

)
e⊖Reµ∗(s)(iz)(t, s)

=
(

− 1
Reµ∗(s)(iz)

)
e∆

⊖Reµ∗(s)(iz)(t, s),

and similarly,

e⊖Reµ∗(s)(iz)(σ(t), s) =
(

− 1
Reµ∗(s)(iz)

)
e∆

⊖Reµ∗(s)(iz)(t, s).
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We know that the quantities Reµ∗(s)(iz) and Reµ∗(s)(iz) are nonzero because this is
explicitly disallowed by the definition of Rs,0,0, see (2.2). Thus applying the decay
properties of the exponentials from [8, Theorem 2] and [4, Theorem 3.4], we arrive at

|ψ∆(s)| ≤ −α
Reµ∗(s)(iz)

s∫

−∞

e∆
⊖Reµ∗(s)(iz)(t, s)∆t

+ −α
Reµ∗(s)(iz)

s∫

−∞

e∆
⊖Reµ∗(s)(iz)(t, s)∆t

= −α
Reµ∗(s)(iz)

[
1 − 0

]
+ −α

Reµ∗(s)(iz)

[
0 − 1

]
,

which is finite. Therefore fn converges pointwise to g∆(s)e⊖iz(σ(t), s) and
|fn| ≤ α|e⊖iz(σ(t), s)| which we have just shown is integrable. Hence, by the Lebesgue
dominated convergence theorem,

ψ∆(s) = ψ′(s) = lim
n→∞

∫

T

fn =
∫

T

lim
n→∞

fn =
∫

T

(
f̂(t, s)e⊖iz(σ(t), s)

)∆s

∆t,

completing the proof.

Using Lemma 3.1, the proof that ψ is constant and ultimately the Fourier convolu-
tion theorem F{f ∗ g}(z; t0) = F{f}(z; t0)F{g}(z; t0) follows as in [15].

The T = Z Fourier transform is

F{f}(z; 0) :=
∑

k∈Z

f(k)
(1 + iz)k+1 .

We now present its contour integral inversion. The fundamental observation for the
following result is that the reciprocal of exponential function used the Fourier transform
is used as the kernel of the inverse transformation. Since the exponential function on
the integers is an exponential with base 1 + iz, a contour integral is a natural form
for the inversion because it leads to residues which are not difficult to compute. The
contour is chosen as a circle around z = i since the kernel of the inversion integral
has poles at z = i and arranging for its radius to be between 0 and 1 guarantees the
interior of the contour is analytic when F has a typical branch cut.

Theorem 3.2. If T = Z and F is analytic, except possibly on a branch cut (−∞, 0],
then

F−1{F}(t; 0) := 1
2π

∮

C

F (z)(1 + iz)tdz,

where C is a circle with center z = i and radius 0 < r < 1.
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Proof. We will show that F−1
{

F{f}(·; 0)
}

(t; 0) = f(t). Calculate

F−1
{

F{f}(·; 0)
}

(t; 0) = 1
2π

∮

C

F{f}(z; 0)(1 + iz)tdz

= 1
2π

∮

C

∑

k∈Z
f(k)(1 + iz)t−k−1dz

= 1
2π
∑

k∈Z
f(k)

∮

C

(1 + iz)t−k−1dz

= 1
2π
∑

k∈Z
f(k)it−k−1

∮

C

(z − i)t−k−1dz.

By residue theorem,

∮

C

(z − i)t−k−1dz =
{

0, t− k − 1 ̸= −1,
2πi, t− k − 1 = −1 ↔ t = k.

Therefore, F−1
{

F{f}(·; 0)
}

(t, 0) = f(t), completing the proof.

With modification to the contour C, the same principle can be applied to a much
larger class of time scales, as we now show. In the case that follows, the poles of
the exponential function in the inversion integral are at most simple poles due to
injectivity of µ, meaning the residues are trivial to compute. In general, this result can
be extended to non-injective µ at the cost of higher order poles introducing derivatives
with respect to z to the calculation of the residues.

Theorem 3.3. Let T be a countable time scale of the form {. . . , t−1, t0, t1, . . .} such
that for all m, n, tm < tn if and only if m < n. If F is analytic, except possibly on
a branch cut (−∞, 0] and the graininess function µ : T → [0,∞) associated with T is
injective, then

F−1{F}(t; s) = 1
2π

∮

C

F (z)eiz(t, s)dz,

where
∮

C

is understood as lim
m→∞

∮

Cm

, where Cm is a contour surrounding the points

{
i

tk
: −m ≤ k ≤ m

}
.
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Proof. Calculate directly

F−1 {F{f}(·; s)} (t; s) = 1
2π

∮

C

F{f}(z; s)eiz(t, s)dz

= 1
2π

∮

C



∫

T

f(τ)e⊖iz(σ(τ), s)∆τ


 eiz(t, s)dz

= 1
2π

∫

T

f(τ)
∮

C

eiz(t, τ)
1 + iµ(τ)zdz∆τ

= 1
2π

∫

T

f(τ) 1
iµ(τ)

∮

C

eiz(t, τ)
z − i

µ(τ)
dz∆τ.

Since the graininess function is injective, we know that e⊖iz(t, τ) has no factors of the
form 1 + iµ(τ)z. Therefore, by the residue theorem,

F−1{F{f}(·; s)}(t; s) = 1
2πi

∫

T

f(τ) 1
µ(τ)

∮

C

eiz(t, τ)
z − i

µ(τ)
dz∆τ

= 1
2πi

∫

T

f(τ) 2πi
µ(τ)e− 1

µ(τ)
(t, τ)dz∆τ.

Since the map τ 7→ − 1
µ(τ) violates regressivity at all τ ∈ T, e− 1

µ(τ)
(τ, t) = 0 for all

t ̸= τ and e− 1
µ(τ)

(τ, t) = 1 when t = τ . Therefore, the integral reduces to an integral
over the singleton {t} and we obtain F−1{F{f}(·; s)}(t; s) = f(t), completing the
proof.

4. HEAT EQUATION

Taking the Fourier transform of (1.1) with respect to the x variable yields the initial
value problem

∂û

∂t
= (iz)2u = −z2u, û(0, z) = ĝ(z), (4.1)

which has unique solution
û(t, z) = ĝ(z)e−z2t. (4.2)

Inversion of (4.2) is the crucial for the solution of (1.1). We will do so via the convolution
theorem; first, a technical lemma involving the Hermite polynomials. Recall [1, p. 280]
the recurrence

2zHn(z) −H ′
n(z) = Hn+1(z). (4.3)

Lemma 4.1. The following formula holds:

ez2t dn

dzn

[
e−z2t

]
= (−1)nt

n
2 Hn(z

√
t). (4.4)
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Proof. For the base case, let n = 1. Then the left-hand side of (4.4) is

ez2t d
dz e

−z2t = −2zt.

On the other hand, the right-hand side of (4.4) is

(−1)
√
tH1

(
z
√
t
)

= (−1)
√
t(2z

√
t) = −2zt,

completing the base case. Now assume (4.4) holds for n = N . Then using (4.3),

ez2t dN+1

dzN+1 = ez2t d
dz

[
dN

dzN
e−z2t

]
= ez2t d

dz

[
(−1)N t

N
2 HN (z

√
t)e−z2t

]

= (−1)N t
N
2 ez2t d

dz

[
HN (z

√
t)e−z2t

]

= (−1)N t
N
2 ez2t

[√
tH ′

N (z
√
t) +HN (z

√
t)(−2zt)

]
e−z2t

= (−1)N+1t
N+1

2

[
2z

√
tHN (z

√
t) −H ′

N (z
√
t)
]

(4.3)= (−1)N+1t
N+1

2 HN+1(z
√
t),

completing the proof.

Now we invert the exponential function.

Lemma 4.2. If x ∈ Z with x < 0, then

F−1 {vt} (x; 0) =
(−1)|x|−1t

|x|−1
2 H|x|−1(i

√
t)et

i|x|−1(|x| − 1)! ,

where vt(z) = e−z2t.

Proof. Compute

F−1 {vt} (x; 0) = 1
2π

∮

C

e−z2t(1 + iz)xdz.

The integrand is an analytic function of z when x ≥ 0, so the integral becomes
identically zero for such x. So assume that x < 0. Then we obtain by the residue
theorem

F−1 {vt} (x; 0) = 1
2π

∮

C

e−z2t

(1 + iz)|x| dz = 1
2πi|x|

∮

C

e−z2t

(z − i)|x| dz

= 1
i|x|−1

1
(|x| − 1)!

d|x|−1

dz|x|−1

[
e−z2t

∣∣∣
z=i

.
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We compute with (4.4) taking n = |x| − 1 to obtain

F−1 {vt} (x; 0) = 1
i|x|−1(|x| − 1)!

[
(−1)|x|−1t

|x|−1
2 H|x|−1(z

√
t)e−z2t

]
z=i

=
(−1)|x|−1t

|x|−1
2 H|x|−1(i

√
t)et

i|x|−1(|x| − 1)! ,

completing the proof.

With the inversion from Lemma 4.2, the convolution theorem completes the
solution of (1.1) on the time scale T = Z. We recall what it means for an rd-continuous
function f to be of exponential order α: there exists a constant K and t0 ∈ T such
that |f(t)| ≤ Keα(t, t0). The more general idea of double exponential order (α, γ)
[8, Definition 3.2] says there is s ∈ T and α, γ ∈ R so that the restrictions f

∣∣
(−∞,s]∩T

and f
∣∣
[s,∞)∩T are of exponential order α and γ, respectively. It is known that if f is of

double exponential order (α, γ), then its time scales Fourier transform exists.

Theorem 4.3. If x ∈ T = Z, t ∈ [0,∞), and the initial function g is of double
exponential order (α, γ), then (1.1) has solution

u(x, t) =
(
F−1 {vt} ∗ g

)
(x; 0),

where vt(z) = e−z2t.

Proof. Let ĝ = F{g}. By the convolution theorem,

u(x, t) = F−1 {ĝvt} (x) = 1
2π

∮

C

ĝ(ξ)e−ξ2t(1 + iξ)xdξ.

Therefore, compute

∂u

∂t
= 1

2π

∮

C

ĝ(ξ)
(
−ξ2) e−ξ2t(1 + iξ)xdξ.

On the other hand,

∆x(1 + iξ)x = (1 + iξ)x+1 − (1 + iξ)x = iξ(1 + iξ)x,

and hence ∆xx(1 + iξ)x = −ξ2(1 + iξ)x. Thus,

∆xxu(x, t) = 1
2π

∮

C

ĝ(ξ)e−ξ2t∆xx(1 + iξ)xdξ

= 1
2π

∮

C

ĝ(ξ)e−ξ2t(−ξ2)(1 + iξ)xdξ = ∂u

∂t
,

completing the proof.
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Example 4.4. We approximate the time derivative with
∂u

∂t
(t, x) ≈ u(t+ h, x) − u(t, x)

h
(4.5)

for some h > 0 and when T = Z we express

u∆2
xx(t, x) = u(t, x+ 2) − 2u(t, x+ 1) + u(t, x).

Solving the resulting equation for u(t+ h, x) yields

u(t+ h, x) = u(t, x) + h
(
u(t, x+ 2) − 2u(t, x+ 1) + u(t, x)

)
,

which we use to approximate the values in the t-direction in Figure 1. As |x| → ∞
this scheme potentially introduces accumulations of errors that grow large, so it is not
optimized for solutions that involve large values of x. The purpose of the numerical
solution here is to visualize near the initial value.

Fig. 1. The T = Z case with h = 0.001. The black lines are solutions of (1.1) at each
x ∈ T for 0 ≤ t ≤ 1.0. The initial data is a function g : T → [500, 700] whose values
were randomly sampled from the uniform distribution on that interval. The curved
surface between them is linearly interpolated to help visualize the structure of the

solution

Let T be a time scale whose graininess map µ : T → [0,∞) is an injective map,
i.e. for all t, s ∈ T, if µ(t) = µ(s), then t = s. We further simplify assumptions by
assuming T can be expressed as a unilateral or bilateral sequence. Throughout, we
interpret the contour C as in Theorem 3.3. We will use the bijection π defined by
π(xk) = k so π−1(k) = xk, where k is an integer.
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Lemma 4.5. Let T = {x0, x1, . . .} with x0 < x1 < . . .. If x∗, x ∈ T with x < x∗, then

F−1 {vt} (x;x∗) =
π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

)

×
π(x∗)−1∑

j=π(x)

e
t

µ(xj )2
π(x∗)−1∏

k=π(x),k ̸=j

(
1

i
µ(xj) − i

µ(xk)

)
dz,

where vt(z) = e−z2t.
Proof. Since exponential functions on this type of time scale reduce to a product,
we compute

F−1 {vt} (x;x∗) = 1
2πi

∫

C

e−·2teiz(x, x∗)dz = 1
2πi

∫

C

e−z2t

eiz(x∗, x)dz

= 1
2πi

∫

C

e−z2t

π(x∗)−1∏

k=π(x)

(
1

1 + µ(xk)iz

)
dz

= 1
2πi

π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

)∫

C

e−z2t

π(x∗)−1∏

k=π(x)

(
1

z − i
µ(xk)

)
dz.

Since the graininess is injective, the integrand contains a product of simple poles,
so we algebraically rearrange as

F−1 {vt} (x;x∗)

=
π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

) π(x∗)−1∑

j=π(x)

Res
z= i

µ(xj )

e−z2t

π(x∗)−1∏

k=π(x)

(
1

z − i
µ(xk)

)
dz

=
π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

) π(x∗)−1∑

j=π(x)

Res
z= i

µ(xj )

e−z2t

π(x∗)−1∏

k=π(x),k ̸=j

(
1

z − i
µ(xk)

)
dz

z − i
µ(xj)

.

With this form, we easily resolve the residues in the sum by substituting
z = i

µ(xj) into the numerators, yielding

F−1 {vt} (x;x∗)

=
π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

) π(x∗)−1∑

j=π(x)

e
−
(

i
µ(xj )

)2
t

π(x∗)−1∏

k=π(x),k ̸=j

(
1

i
µ(xj) − i

µ(xk)

)
dz

=
π(x∗)−1∏

k=π(x)

(
1

iµ(xk)

) π(x∗)−1∑

j=π(x)

e
t

µ(xj )2
π(x∗)−1∏

k=π(x),k ̸=j

(
1

i
µ(xj) − i

µ(xk)

)
dz,

completing the proof.
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Corollary 4.6. If T = qN0 with q > 1, then for x < x∗,

F−1 {vt} (x;x∗) =
logq(x∗)−1∏

k=logq(x)

(
1

i(q − 1)qk

)

×
logq(x∗)−1∑

j=logq(x)

e
t

(q−1)2q2j

π(x∗)−1∏

k=logq(x),k ̸=j

(
1

i
(q−1)qj − i

(q−1)qk

)
dz,

where vt(z) = e−z2t and logq denotes the logarithm with base q.

The proof of the following theorem is the same as the proof of Theorem 4.3.

Theorem 4.7. If T is a countable time scale with injective graininess representable
by a bilateral or unilateral sequence, t ∈ [0,∞), and g is of double exponential order
(α, γ), then (1.1) has solution u(x, t) =

(
F−1 {vt} ∗ g

)
(x;x∗), where vt(z) = e−z2t.

We now present the special case of T being a quantum time scale.

Example 4.8. From the definition of the ∆-derivative, we express

u∆2
xx(t, x) =

µ(x)µ(q2x)u(t, q2x) −
(
µ(x) + µ(qx)

)
u(t, qx) + µ(qx)u(t, x)

µ(x)2µ(qx)

=
q2(q − 1)xu(t, q2x) −

(
(q − 1)x+ q(q − 1)x

)
u(t, qx) + q(q − 1)xu(t, x)

q(q − 1)2x2

=
q2u(t, q2x) −

(
1 + q

)
u(t, qx) + qu(t, x)

q(q − 1)x .

Simplifying this expression with the definition of µ on this time scale yields

u∆2
xx(t, x) = u(t, q2x) − (1 + q)u(t, qx) + qu(t, x)

q(q − 1)2x2 .

So again approximating ∂u

∂t
with (4.5), we ultimately arrive at the recurrence

u(t+ h, x) = u(t, x) + h

q(q − 1)2x2

[
u(t, q2x) − (1 + q)u(t, qx) + qu(t, x)

]
, (4.6)

which we use to create Figure 2. Our comment on the limitation of this scheme from
Example 4.4 also applies here.
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Fig. 2. The q-case with q = 1.11 and h = 0.001. The black lines use (4.6) to approxi-
mate a solution of (1.1) at each x ∈ T for 0 ≤ t ≤ 0.1. The initial data is a function
g : T → [−0.3, 0.3] whose values were randomly sampled from the uniform distribution
on that interval. The colored regions between them is a surface made of linear interpo-

lations to help visualize the structure of the solution

5. CONCLUSIONS

In this work we used operator techniques to find explicit solutions to the heat equation
with a space variable defined on certain time scales. A major goal of future research
will be to extend these techniques to arbitrary time scales. The calculations here give
insight into the main hurdles of extending our technique further: understanding the
contour integral for an arbitrary time scale, for which the recent work [20] gives hints
of the proper approach and loosening the injectivity requirement leads to residues
that are not simple substitutions but rather require differentiation with respect to the
frequency variable for each element of the range of µ.

The question of generalizing the time variable in (1.1) to more general time scales
is certainly of interest – in that case, applying the Fourier transform to the spatial
variable would lead to a dynamic equation instead of (4.1), meaning inversion would
involve a function of form e−z2(t, s). Calculation of residues related to this function
would generally involve differentiation of it with respect to z, which can be approached
using techniques from [21]. Of course different types of problems from the IVP (1.1) to
boundary value problems and IBVPs like in [19] are also of interest. Even generalizing
the time scale for the space variable to allow limit points could be of some interest
in the wider literature. Finally, extending our technique to other types of equations
such as wave equations or more general lattice differential equations could be pursued.
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More broadly, a better understanding of the inversion contour integral for Fourier
and related transforms is likely to give insight to other topics in the time scales. We
highlight two such topics here: first, fractional calculus on time scales has a variety
of foundations but two of the most popular are the axiomatic framework defining
a general class of hα monomials [27] and the other defines the fractional operator
directly as a certain inverse Laplace transform [2]. In the former case, the existence of
functions satisfying the axioms could be established with contour integral techniques
and in the latter case, the connection is direct. The second topic could be special
functions on time scales, for which a certain contour integral inversion was proposed
in the thesis [7] for extending large classes of special functions, such as hypergeometric
series, to arbitrary time scales.

Acknowledgements
Rui A. C. Ferreira was supported by the “Fundação para a Ciência e a Tecnolo-
gia (FCT)” through the program “Stimulus of Scientific Employment, Individual
Support–2017 Call” with reference CEECIND/00640/2017.

REFERENCES

[1] G.E. Andrews, R. Askey, R. Ranjan, Special Functions, Cambridge University Press,
Cambridge, 2000.

[2] N.R.O. Bastos, D. Mozyrska, D.F.M. Torres, Fractional derivatives and integrals on
time scales via the inverse generalized Laplace transform, Int. J. Math. Comput. 11
(2011), J11, 1–9.

[3] M. Bohner, G.Sh. Guseinov, The convolution on time scales, Abstr. Appl. Anal. Art.
2007, Art. ID 58373, 24 pp.

[4] M. Bohner, G. Guseinov, B. Karpuz, Properties of the Laplace transform on time scales
with arbitrary graininess, Integral Transforms Spec. Funct. 22 (2011), no. 11, 785–800.

[5] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Inc.,
Boston, MA, 2001.

[6] S. Cheng, Partial Difference Equations, Taylor & Francis, London, 2003.

[7] T. Cuchta, Discrete Analogues of Some Classical Special Functions, Missouri University
of Science, 2015.

[8] T. Cuchta, S. Georgiev, Analysis of the bilateral Laplace transform on time scales with
applications, Int. J. Dyn. Syst. Differ. Equ. 11 (2021), no. 3–4, 255–274.

[9] T. Cuchta, D. Grow, N. Wintz, A dynamic matrix exponential via a matrix cylinder
transformation, J. Math. Anal. Appl. 479 (2019), 733–751.

[10] J. Davis, I. Gravagne, R. Marks, Bilateral Laplace transforms on time scales: convergence,
convolution, and the characterization of stationary stochastic time series, Circuits,
Systems And Signal Processing 29 (2010), no. 6, 1141–1165.



490 Tom Cuchta and Rui A.C. Ferreira

[11] J.M. Davis, I.A. Gravagne, R.J. Marks, Time scale discrete Fourier transforms, 2010
42nd Southeastern Symposium On System Theory (SSST), 102–110.

[12] L.C. Evans, Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics,
vol. 19, American Mathematical Society, Providence, RI, 2010.

[13] R. Floreanini, L. Vinet, Symmetries of the q-difference heat equation, Lett. Math. Phys.
32 (1994), no. 1, 37–44.

[14] M. Friesl, A. Slavík, P. Stehlík, Discrete-space partial dynamic equations on time scales
and applications to stochastic processes, Appl. Math. Lett. 37 (2014), 86–90.

[15] S. Georgiev, V. Darvish, The generalized Fourier convolution on time scales, Integral
Transforms Spec. Funct. 34 (2022), no. 3, 1–17.

[16] S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete
calculus, Results Math. 18 (1990), no. 1–2, 18–56.

[17] S. Hilger, Special functions, Laplace and Fourier transform on measure chains, Dynam.
Systems Appl. 8 (1999), 471–488.

[18] S. Hilger, An application of calculus on measure chains to Fourier theory and Heisenberg’s
uncertainty principle, J. Difference Equ. Appl. 8 (2002), 897–936.

[19] B. Jackson, Partial dynamic equations on time scales, J. Comput. Appl. Math. 186
(2006), no. 2, 391–415.

[20] B. Jackson, J. Davis, An ergodic approach to Laplace transforms on time scales, J. Math.
Anal. Appl. 502 (2021), 125231.

[21] B. Karpuz, Analyticity of the complex time scale exponential, Complex Anal. Oper.
Theory 11 (2017), no. 1, 21–34.

[22] J. Mallet-Paret, Spatial patterns, spatial chaos, and traveling waves in lattice differential
equations, Stochastic and spatial structures of dynamical systems (Amsterdam, 1995),
105–129, [in:] Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45,
North-Holland, Amsterdam, 1996.

[23] R. Marks II, I.A. Gravagne, J.M. Davis, J.J. DaCunha, Nonregressivity in switched
linear circuits and mechanical systems, Math. Comput. Modelling 43 (2006), no. 11–12,
1383–1392.

[24] A. Slavík, Asymptotic behavior of solutions to the semidiscrete diffusion equation, Appl.
Math. Lett. 106 (2020), 106392, 7 pp.

[25] A. Slavík, P. Stehlík, Explicit solutions to dynamic diffusion-type equations and their
time integrals, Appl. Math. Comput. 234 (2014), 486–505.

[26] A. Slavík, P. Stehlík, Dynamic diffusion-type equations on discrete-space domains,
J. Math. Anal. Appl. 427 (2015), 525–545.

[27] P. Williams, Fractional calculus on time scales with Taylor’s theorem, Fract. Calc. Appl.
Anal. 15 (2012), no. 4, 616–638.



The heat equation on time scales 491

Tom Cuchta
cuchta@marshall.edu

Department of Mathematics
Marshall University
1 John Marshall Drive, Huntington, WV 25755, USA

Rui A.C. Ferreira (corresponding author)
raferreira@fc.ul.pt

Grupo Física-Matemática
Departamento de Matemática
Faculdade de Ciências
Universidade de Lisboa
Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal

Received: November 2, 2022.
Revised: March 24, 2023.
Accepted: April 13, 2023.


