A VIABILITY RESULT FOR CARATHÉODORY NON-CONVEX DIFFERENTIAL INCLUSION
 IN BANACH SPACES

Nabil Charradi and Saïd Sajid

Communicated by P.A. Cojuhari

Abstract

This paper deals with the existence of solutions to the following differential inclusion: $\dot{x}(t) \in F(t, x(t))$ a.e. on $[0, T[$ and $x(t) \in K$, for all $t \in[0, T]$, where $F:[0, T] \times K \rightarrow 2^{E}$ is a Carathéodory multifunction and K is a closed subset of a separable Banach space E.

Keywords: viability, measurable multifunction, selection, Carathéodory multifunction.

Mathematics Subject Classification: 34A60, 28B20.

1. INTRODUCTION

Let E be a separable Banach space, K a nonempty closed subset of E, T a strictly positive real and put $I:=[0, T]$. Let $F: I \times K \rightarrow 2^{E}$ be a multifunction measurable with respect to the first argument and uniformly continuous with respect to the second argument.

The aim of this work is to establish, for any fixed $x_{0} \in K$, the existence of an absolutely continuous function $x(\cdot): I \rightarrow K$ satisfying

$$
\begin{cases}\dot{x}(t) \in F(t, x(t)) & \text { a.e. on }[0, T[, \tag{1.1}\\ x(0)=x_{0}, & \text { for all } t \in I \\ x(t) \in K & \end{cases}
$$

Concerning this subject, we begin with recalling the pioneering work of Haddad [8], where the right-hand side is an upper semi-continuous convex and compact-valued multifunction $x \rightarrow F(x)$ in finite-dimensional space, while in [7] an existence result is established for a globally upper semi-continuous multifunction in Hilbert space, though K is convex.

The main improvement is the comparison with previous results on the same subject especially the work, of Duc Ha [6] which was the basis for several papers; see [1, 2, 11]. It has been proved the existence of solution to the problem (1.1), where $F(\cdot, x)$ is measurable and $F(t, \cdot)$ is $m(t)$-Lipschitz, $m(\cdot) \in L^{1}\left(I, \mathbb{R}^{+}\right)$. This result is a multivalued version of Larrieu's work [9]. More precisely, the existence of solutions of (1.1) was given under the following tangency condition:

$$
\forall(t, x) \in I \times K: \liminf _{h \rightarrow 0^{+}} \frac{1}{h} e\left(x+\int_{t}^{t+h} F(s, x) d s, K\right)=0
$$

where $e(\cdot, \cdot)$ denotes the Hausdorff excess and $\int_{t}^{t+h} F(s, x) d s$ stands for the Aumann integral of the multifunction $t \rightarrow F(t, x)$. Note that the convergence to zero of the above tangency condition depend on the t. Here techniques of existence of selections have been introduced, notably a Lemma given by Zhu [13], that will given another proof in this paper.

Different extensions of the result of Duc Ha [6] have been investigated by many authors in the case of functional differential inclusions or semilinear differential inclusions. See Aitalioubrahim [2], Lupulescu and Necula [10-12] and the references therein.

In current literature, regarding the differential inclusion without Lipschitz condition we refer the reader to the work of Fan and Li [5]. They considered the following differential inclusion:

$$
\begin{equation*}
\dot{u}(t) \in A(t) u(t)+F(t, u(t)) \tag{1.2}
\end{equation*}
$$

where $A(t)$ is a family of unbounded linear operators generating an evolution operator and $F(t, \cdot)$ is lower semicontinuous. However $\chi(F(t, D)) \leq k(t) \chi(D)$ for every bounded subset D, where χ is the measure of noncompactness and $k(\cdot) \in L^{1}\left(I, \mathbb{R}^{+}\right)$. Dong and Li [4] have established a viable solution to (1.2) when $A(t)=A$ and F is a Carathéodory single-valued map.

In this paper, we consider the existence of solutions to the problem (1.1) in general situation supposing that the right-hand side $(t, x) \rightarrow F(t, x)$ is measurable with respect to the first argument and uniformly continuous with respect to the second argument in the sense that

$$
\begin{aligned}
& \forall \varepsilon>0 \exists \delta(\varepsilon)>0 \forall(t, x, y) \in I \times K \times K: \\
& \quad\|x-y\| \leq \delta(\varepsilon) \Rightarrow d_{H}(F(t, x), F(t, y)) \leq \varepsilon
\end{aligned}
$$

where d_{H} denotes the Hausdorff distance.
This condition is weaker than the one adopted by Duc Ha [6] in the spatial case when the Lipschitz coefficient $m(t)$ is a constant $L>0$.

The following case deserves mentioning: F is a time-independant continuous multifunction and K is compact. In this case the above hypothesis is satisfied.

Our approach is based on Euler's method, it consists of constructing a sequence of approximate solutions by using Lebesgue's Differentiation Theorem and selection techniques.

2. NOTATIONS, DEFINITIONS AND THE MAIN RESULT

In all paper, E is a separable Banach space with the norm $\|\cdot\|$. For $x \in E$ and $r>0$, let $B(x, r):=\{y \in E:\|y-x\|<r\}$ be an open ball centered at x with radius r and $\bar{B}(x, r)$ be its closure, and put $B=B(0,1)$. For $x \in E$ and for nonempty bounded subsets A, B of E, we denote by $d_{A}(x)$ or $d(x, A)$ the real value $\inf \{\|x-y\|: y \in A\}$,

$$
e(A, B):=\sup \left\{d_{B}(x): x \in A\right\} \quad \text { and } \quad d_{H}(A, B)=\max \{e(A, B), e(B, A)\}
$$

We denote by $\mathcal{L}(I)$ the σ-algebra of Lebesgue measurable subsets of I, and $B(E)$ is the σ-algebra of Borel subsets of E for the strong topology. A multifunction is said to be measurable if its graph belongs to $\mathcal{L}(I) \otimes B(E)$. For more details on measurability theory, we refer the reader to the book by Castaing and Valadier [3].

Let $F: I \times K \rightarrow 2^{E}$ be a multifunction with nonempty closed values in E.
On F we make the following hypotheses:
$\left(\mathrm{H}_{1}\right)$ For each $x \in K, t \rightarrow F(t, x)$ is measurable.
$\left(\mathrm{H}_{2}\right)$ For all $t \in I, x \rightarrow F(t, x)$ is uniformly continuous as follows:

$$
\begin{aligned}
\forall \varepsilon>0 \exists \delta(\varepsilon)>0 & \forall \\
& (t, x, y) \in I \times K \times K: \\
& \|x-y\| \leq \delta(\varepsilon) \Rightarrow d_{H}(F(t, x), F(t, y)) \leq \varepsilon .
\end{aligned}
$$

$\left(\mathrm{H}_{3}\right)$ There exists $M>0$, for all $(t, x) \in I \times K$,

$$
\|F(t, x)\|:=\sup _{z \in F(t, x)}\|z\| \leq M
$$

$\left(\mathrm{H}_{4}\right)$ For all $t \in I$ and $x \in K$, for every measurable selection $\sigma(\cdot)$ of the multifunction $t \rightarrow F(t, x)$

$$
\liminf _{h \rightarrow 0^{+}} \frac{1}{h} d_{K}\left(x+\int_{t}^{t+h} \sigma(s) d s\right)=0
$$

which is equivalent to

$$
\liminf _{h \rightarrow 0^{+}} \frac{1}{h} e\left(x+\int_{t}^{t+h} F(s, x) d s, K\right)=0
$$

Let $x_{0} \in K$. Under hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ we shall prove the following result:
Theorem 2.1. There exists an absolutely continuous function $x(\cdot): I \rightarrow E$ such that

$$
\begin{cases}\dot{x}(t) \in F(t, x(t)) & \text { a.e. on }[0, T[, \\ x(0)=x_{0}, & \text { for all } t \in I . \\ x(t) \in K, & \end{cases}
$$

3. PRELIMINARY RESULTS

To begin with, let us recall the following lemmas that will be used in the sequel.
Lemma 3.1 ([13]). Let Ω be a nonempty set in E. Let $G:[a, b] \times \Omega \rightarrow 2^{E}$ be a multifunction with nonempty closed values satisfying:
(i) for every $x \in \Omega, G(\cdot, x)$ is measurable on $[a, b]$,
(ii) for every $t \in[a, b], G(t, \cdot)$ is (Hausdorff) continuous on Ω.

Then for any measurable function $x(\cdot):[a, b] \rightarrow \Omega$ the multifunction $G(\cdot, x(\cdot))$ is measurable on $[a, b]$.
Lemma 3.2 ([3]). Let $R: I \rightarrow 2^{E}$ be a measurable multifunction with nonempty closed values in E. Then R admits a measurable selection: there exists a measurable function $r: I \rightarrow E$ that is $r(t) \in R(t)$ for all $t \in I$.

We need also the following lemma, due to Zhu [13], established for a multifunction (not necessarily closed values) in Banach spaces (not necessarily separable). However, the result was proven for almost everywhere on I, because the measurability of a multifunction Γ adopted by this author is defined as follows: there exists a sequence $\left(\sigma_{n}(\cdot)\right)_{n \in \mathbb{N}}$ of measurable functions that is $\Gamma(t) \subset \overline{\left\{\sigma_{n}(t): n \in \mathbb{N}\right\}}$ a.e.on I. Here, we are concerned with this Lemma in the context of measurable closed-values multifunction in separable Banach spaces. This result is obtained at every element of I by a different method.

Lemma 3.3. Let $G: I \rightarrow 2^{E}$ be a measurable multifunction with nonempty closed values and $z(\cdot): I \rightarrow E$ a measurable function. Then for any positive measurable function $r(\cdot): I \rightarrow \mathbb{R}^{+}$, there exists a measurable selection $g(\cdot)$ of G such that for all $t \in I$,

$$
\|g(t)-z(t)\| \leq d(z(t), G(t))+r(t)
$$

Proof. Let $t \in I$. By the characterization of the lower bound, there exists $x \in G(t)$ such that

$$
\|x-z(t)\| \leq d(z(t), G(t))+r(t)
$$

Consider the following multifunction

$$
t \rightarrow Q(t)=\{x \in E:\|x-z(t)\| \leq d(z(t), G(t))+r(t)\}
$$

Obviously, Q is measurable with nonempty closed values. On the other hand, since G is measurable with closed values, then $Q(t) \cap G(t)$ is a measurable multifunction with nonempty closed values, hence by Lemma 3.2, admits a measurable selection $t \rightarrow g(t)$. This completes the proof.

4. PROOF OF THE MAIN RESULT

The proof is based on two steps. It consists of the construction of a sequence of approximants in the first one, while in the second step we establish the convergence of such approximate solutions.

Step 1. Construction of approximants.
For each integer $n>\max (T ; 1)$, put $\tau_{n}:=\frac{T}{n}$ and consider the following partition of the interval I with the points

$$
t_{i}^{n}=i \tau_{n}, \quad i=0,1, \ldots, n
$$

Remark that $I=\bigcup_{i=0}^{n-1}\left[t_{i}^{n}, t_{i+1}^{n}\right]$. Since $t \rightarrow F\left(t, x_{0}\right)$ is measurable with closed values, then by Lemma 3.2, there exists a measurable function $f_{0}(\cdot)$ such that for all $f_{0}(t) \in F\left(t, x_{0}\right)$. Note that by $\left(\mathrm{H}_{3}\right), f_{0}(\cdot) \in L^{1}(I, E)$.

For all $n \in \mathbb{N}^{*}$, put $f_{0}^{n}(\cdot)=f_{0}(\cdot)$. We shall prove the following theorem:
Theorem 4.1. For all $n \in \mathbb{N}^{*}$, there exist $\varphi_{0}(n) \in \mathbb{N}^{*}$, $x_{1}^{n} \in K, u_{0}^{n}(\cdot), f_{1}^{n}(\cdot) \in L^{1}(I, E)$ such that for all $t \in I$,

$$
f_{1}^{n}(t) \in F\left(t, x_{1}^{n}\right), \quad\left\|f_{1}^{n}(t)-f_{0}^{n}(t)\right\| \leq \frac{1}{2^{n+1}}
$$

and for almost every $t \in I$,

$$
u_{0}^{n}(t) \in F\left(t, x_{0}\right)+\frac{1}{2^{n}} \bar{B}, \quad\left\|u_{0}^{n}(t)-f_{0}(t)\right\| \leq \frac{1}{2^{n}}
$$

and

$$
x_{1}^{n}=x_{0}+\tau_{\varphi_{0}(n)} u_{0}^{n}(0) \in K
$$

Proof. By $\left(\mathrm{H}_{4}\right)$, for all $t \in[0, T[$,

$$
\liminf _{n \rightarrow+\infty} \frac{1}{\tau_{n}} d_{K}\left(x_{0}+\int_{t}^{t+\tau_{n}} f_{0}(s) d s\right)=0 .
$$

Then for all $t \in\left[0, T\left[\right.\right.$, there exists an integer $\varphi_{t}(n)>n$ such that

$$
\frac{1}{\tau_{\varphi_{t}(n)}} d_{K}\left(x_{0}+\int_{t}^{t+\tau_{\varphi_{t}(n)}} f_{0}(s) d s\right) \leq \frac{1}{2^{n+2}} .
$$

Hence, by the characterization of the lower bound, there exists $x_{1}(t) \in K$ such that

$$
\frac{1}{\tau_{\varphi_{t}(n)}}\left\|x_{1}(t)-x_{0}-\int_{t}^{t+\tau_{\varphi_{t}(n)}} f_{0}(s) d s\right\| \leq \frac{\tau_{\varphi_{t}(n)}}{2^{n+2}}+\frac{1}{2^{n+2}}
$$

Then

$$
\left\|\frac{x_{1}(t)-x_{0}}{\tau_{\varphi_{t}(n)}}-\frac{1}{\tau_{\varphi_{t}(n)}} \int_{t}^{t+\tau_{\varphi_{t}(n)}} f_{0}(s) d s\right\| \leq \frac{1}{2^{n+1}}
$$

On the other hand, in view of Lebesgue's Differentiation Theorem, we can suppose

$$
\left\|\frac{1}{\tau_{\varphi_{t}(n)}} \int_{t}^{t+\tau_{\varphi_{t}(n)}} f_{0}(s) d s-f_{0}(t)\right\| \leq \frac{1}{2^{n+1}} \quad \text { a.e. on } I .
$$

Therefore,

$$
\left\|\frac{x_{1}(t)-x_{0}}{\tau_{\varphi_{t}(n)}}-f_{0}(t)\right\| \leq \frac{1}{2^{n}} \quad \text { a.e. on } I
$$

Set

$$
u_{0}^{n}(t)=\frac{x_{1}(t)-x_{0}}{\tau_{\varphi_{t}(n)}}
$$

Then for all $t \in[0, T[$,

$$
x_{1}(t)=x_{0}+\tau_{\varphi_{t}(n)} u_{0}^{n}(t) \in K
$$

and

$$
\left\|u_{0}^{n}(t)-f_{0}(t)\right\| \leq \frac{1}{2^{n}} \quad \text { a.e. on } I
$$

from which we deduce that

$$
u_{0}^{n}(t) \in F\left(t, x_{0}\right)+\frac{1}{2^{n}} \bar{B}
$$

Particularly

$$
x_{0}+\tau_{\varphi_{t}(n)} u_{0}^{n}(t) \in K, \quad \text { for all } t \in\left[t_{0}^{n}, t_{1}^{n}\right],
$$

and

$$
u_{0}^{n}(t) \in F\left(t, x_{0}\right)+\frac{1}{2^{n}} \bar{B} \quad \text { a.e. on }\left[t_{0}^{n}, t_{1}^{n}[.\right.
$$

Let $\delta_{n}=\delta\left(\frac{1}{2^{n+2}}\right)$ be the real given by $\left(\mathrm{H}_{2}\right)$. Choose $\varphi_{0}(n)>\frac{T(M+1)}{\delta_{n}}$, and set

$$
x_{1}^{n}:=x_{1}\left(t_{0}^{n}\right)=x_{0}+\tau_{\varphi_{0}(n)} u_{0}^{n}(0) \in K
$$

Since

$$
\left\|x_{1}^{n}-x_{0}\right\|=\frac{T}{\varphi_{0}(n)}\left\|u_{0}^{n}(0)\right\| \leq \frac{T}{\varphi_{0}(n)}(M+1) \leq \delta_{n}
$$

then, by $\left(\mathrm{H}_{2}\right)$,

$$
d_{H}\left(F\left(t, x_{1}^{n}\right), F\left(t, x_{0}\right)\right) \leq \frac{1}{2^{n+2}}, \quad \text { for all } t \in I
$$

thus

$$
d\left(f_{0}(t), F\left(t, x_{1}^{n}\right)\right) \leq \frac{1}{2^{n+2}}, \quad \text { for all } t \in I
$$

In view of Lemma 3.3, there exists a measurable function $f_{1}^{n}(\cdot) \in L^{1}(I, E)$ such that $f_{1}^{n}(t) \in F\left(t, x_{1}^{n}\right)$ and for all $t \in I$,

$$
\left\|f_{1}^{n}(t)-f_{0}(t)\right\| \leq d\left(f_{0}(t), F\left(t, x_{1}^{n}\right)+\frac{1}{2^{n+2}} \leq \frac{1}{2^{n+1}}\right.
$$

By induction, for $p \in\{2, \ldots, n\}$, assume that have been constructed $\varphi_{p-2}(n) \in \mathbb{N}^{*}$, $x_{p-1}^{n} \in K, f_{p-1}^{n}(t) \in F\left(t, x_{p-1}^{n}\right)$ and $u_{p-2}^{n}(\cdot)$, satisfying the following relations:

$$
\begin{gathered}
u_{p-2}^{n}(t) \in F\left(t, x_{p-2}^{n}\right)+\frac{1}{2^{n}} \bar{B} \quad \text { a.e. on }\left[t_{p-2}^{n}, t_{p-1}^{n}[,\right. \\
\left\|u_{p-2}^{n}(t)-f_{p-2}^{n}(t)\right\| \leq \frac{1}{2^{n}} \quad \text { a.e. on }\left[t_{p-2}^{n}, t_{p-1}^{n}[,\right. \\
x_{p-1}^{n}:=x_{p}\left(t_{p-2}^{n}\right)=x_{p-2}^{n}+\tau_{\varphi_{p-2}(n)} u_{p-2}^{n}\left(t_{p-2}^{n}\right) \in K,
\end{gathered}
$$

and

$$
\left\|f_{p-1}^{n}(t)-f_{p-2}^{n}(t)\right\| \leq \frac{1}{2^{n+1}}, \quad \text { for all } t \in I
$$

Let us define $x_{p}^{n}, f_{p}^{n}(\cdot), u_{p-1}^{n}(\cdot)$ and $\varphi_{p-1}(n)$, that is, $\varphi_{p-1}(n)>\varphi_{p-2}(n)$. Indeed, for all $t \in I, f_{p-1}^{n}(t) \in F\left(t, x_{p-1}^{n}\right)$. Then, by $\left(\mathrm{H}_{4}\right)$,

$$
\liminf _{n \rightarrow+\infty} \frac{1}{\tau_{n}} d_{K}\left(x_{p-1}^{n}+\int_{t}^{t+\tau_{n}} f_{p-1}^{n}(s) d s\right)=0, \quad \text { for all } t \in[0, T[.
$$

Then for all $t \in\left[0, T\left[\right.\right.$, there exists $\varphi_{t}^{p-1}(n) \in \mathbb{N}$ such that $\varphi_{t}^{p-1}(n)>\varphi_{t}^{p-2}(n)$,

$$
\frac{1}{\tau_{\varphi_{t}^{p-1}(n)}} d_{K}\left(x_{p-1}^{n}+\int_{t}^{t+\tau_{\varphi_{t}^{p-1}(n)}} f_{p-1}^{n}(s) d s\right) \leq \frac{1}{2^{n+2}}
$$

Hence, by the characterization of the lower bound, there exists $x_{p}(t) \in K$ such that

$$
\frac{1}{\tau_{\varphi_{t}^{p-1}(n)}}\left\|x_{p}(t)-x_{p-1}^{n}-\int_{t}^{t+\tau_{\varphi_{t}^{p-1}(n)}} f_{p-1}^{n}(s) d s\right\| \leq \frac{\tau_{\varphi_{t}^{p-1}(n)}}{2^{n+2}}+\frac{1}{2^{n+2}} .
$$

Then

$$
\left\|\frac{x_{p}(t)-x_{p-1}^{n}}{\tau_{\varphi_{t}^{p-1}(n)}}-\frac{1}{\tau_{\varphi_{t}^{p-1}(n)}} \int_{t}^{t+\tau_{\varphi_{t}^{p-1}(n)}} f_{p-1}^{n}(s) d s\right\| \leq \frac{1}{2^{n+1}}
$$

On the other hand, in view of Lebesgue's Differentiation Theorem, we can suppose

$$
\left\|\frac{1}{\tau_{\varphi_{t}^{p-1}(n)}} \int_{t}^{t+\tau} f_{p-1}^{n}(s) d s-f_{p-1}^{n}(t)\right\| \leq \frac{1}{2^{n+1}(n)} \quad \text { a.e. on } I .
$$

Therefore,

$$
\left\|\frac{x_{p}(t)-x_{p-1}^{n}}{\tau_{\varphi_{t}^{p-1}(n)}}-f_{p-1}^{n}(t)\right\| \leq \frac{1}{2^{n}} \quad \text { a.e. on } I .
$$

Set

$$
u_{p-1}^{n}(t)=\frac{x_{p}(t)-x_{p-1}^{n}}{\tau_{\varphi_{t}^{p-1}(n)}},
$$

then for all $t \in[0, T[$

$$
x_{p}(t)=x_{p-1}^{n}+\tau_{\varphi_{t}^{p-1}(n)} u_{p-1}^{n}(t) \in K
$$

and

$$
\left\|u_{p-1}^{n}(t)-f_{p-1}^{n}(t)\right\| \leq \frac{1}{2^{n}} \quad \text { a.e. on } I
$$

from which, we get

$$
u_{p-1}^{n}(t) \in F\left(t, x_{p-1}^{n}\right)+\frac{1}{2^{n}} \bar{B} .
$$

Then we have

$$
x_{p-1}^{n}+\tau_{\varphi_{t}^{p-1}(n)} u_{p-1}^{n}(t) \in K, \quad \text { for all } t \in\left[t_{p-1}^{n}, t_{p}^{n}\right],
$$

and

$$
u_{p-1}^{n}(t) \in F\left(t, x_{p-1}^{n}\right)+\frac{1}{2^{n}} \bar{B} \quad \text { a.e. on }\left[t_{p-1}^{n}, t_{p}^{n}[.\right.
$$

Choose $\varphi_{p-1}(n)>\max \left(\varphi_{t_{p-1}^{n}}^{p-1}(n) ; \varphi_{p-2}(n)\right)$. Then $\varphi_{p-1}(n)>\frac{T(M+1)}{\delta_{n}}$. We set

$$
x_{p}^{n}:=x_{p}\left(t_{p-1}^{n}\right)=x_{p-1}^{n}+\tau_{\varphi_{p-1}}(n) u_{p-1}^{n}\left(t_{p-1}^{n}\right) \in K .
$$

Then

$$
\left\|x_{p}^{n}-x_{p-1}^{n}\right\|=\frac{T}{\varphi_{p-1}(n)}\left\|u_{p-1}^{n}\left(t_{p-1}^{n}\right)\right\| \leq \frac{T}{\varphi_{p-1}(n)}(M+1) \leq \delta_{n}
$$

hence, by $\left(\mathrm{H}_{2}\right)$,

$$
d_{H}\left(F\left(t, x_{p}^{n}\right), F\left(t, x_{p-1}^{n}\right)\right) \leq \frac{1}{2^{n+2}}, \quad \text { for all } t \in I
$$

By Lemma 3.3, there exists a measurable function $f_{p}^{n}(\cdot) \in L^{1}(I, E)$ such that $f_{p}^{n}(t) \in F\left(t, x_{p}^{n}\right)$ and for all $t \in I$,

$$
\left\|f_{p}^{n}(t)-f_{p-1}^{n}(t)\right\| \leq d\left(f_{p-1}^{n}(t), F\left(t, x_{p}^{n}\right)\right)+\frac{1}{2^{n+2}}
$$

Then

$$
\begin{equation*}
\left\|f_{p}^{n}(t)-f_{p-1}^{n}(t)\right\| \leq \frac{1}{2^{n+1}} \tag{4.1}
\end{equation*}
$$

Put $k_{n}=\varphi_{n}(n)$. Remark that the previous properties are satisfied for k_{n}.
Now, let us define the step functions.
For all $n \geq 1$, for all $p=1,2, \ldots, n$, for all $t \in\left[0, T\left[\right.\right.$, set $\theta_{n}(t)=t_{p-1}^{n}$, whenever $t \in\left[t_{p-1}^{n}, t_{p}^{n}\left[, f_{n}(t)=\sum_{p=1}^{n} \chi_{\left[t_{p-1}^{n}, t_{p}^{n}\right]}(t) f_{p-1}^{n}(t)\right.\right.$ and $u_{n}(t)=\sum_{p=1}^{n} \chi_{\left[t_{p-1}^{n}, t_{p}^{n}\right]}(t) u_{p-1}^{n}(t)$.

On each interval $\left[t_{p-1}^{n}, t_{p}^{n}\right]$ consider

$$
x_{n}(t)=x_{p-1}^{n}+\int_{t_{p-1}^{n}}^{t} u_{p-1}^{n}(s) d s
$$

Then

$$
\begin{cases}x_{n}\left(\theta_{n}(t)\right)=x_{p-1}^{n} \in K, & \text { for all } t \in[0, T[, \\ \dot{x}_{n}(t)=u_{n}(t) \in F\left(t, x_{n}\left(\theta_{k_{n}}(t)\right)\right)+\frac{1}{2^{n}} \bar{B} & \text { a.e. on } I, \\ \left\|u_{n}(t)-f_{n}(t)\right\| \leq \frac{1}{2^{n}} & \text { a.e. on } I .\end{cases}
$$

Step 2. The convergence of $\left(x_{n}(\cdot)\right)$
By construction for all $t \in I$,

$$
f_{n}(t) \in F\left(t, x_{n}\left(\theta_{k_{n}}(t)\right)\right) .
$$

On the other hand, let $t \in I$ and $p=1,2, \ldots, n$, by relation (4.1),

$$
\left\|f_{p}^{n}(t)-f_{p-1}^{n}(t)\right\| \leq \frac{1}{2^{n+1}}
$$

Then, by induction,

$$
\left\|f_{p}^{n}(t)-f_{0}(t)\right\| \leq \frac{p}{2^{n+1}}
$$

which implies

$$
\left\|f_{n}(t)-f_{0}(t)\right\| \leq \frac{n}{2^{n+1}} .
$$

Then

$$
\begin{aligned}
\left\|f_{n+1}(t)-f_{n}(t)\right\| & \leq\left\|f_{n+1}(t)-f_{0}(t)\right\|+\left\|f_{n}(t)-f_{0}(t)\right\| \\
& \leq \frac{n+1}{2^{n+2}}+\frac{n}{2^{n+1}} \leq \frac{3(n+1)}{2^{n+2}} .
\end{aligned}
$$

Let $t \in I$ and $(m, n) \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ with $m>n$. Then

$$
\begin{aligned}
\left\|f_{m}(t)-f_{n}(t)\right\| & \leq\left\|f_{m}(t)-f_{m-1}(t)\right\|+\left\|f_{m-1}(t)-f_{m-2}(t)\right\| \ldots\left\|f_{n+1}(t)-f_{n}(t)\right\| \\
& \leq \frac{3 m}{2^{m+1}}+\frac{3(m-1)}{2^{m}}+\ldots+\frac{3(n+1)}{2^{n+2}} \\
& \leq \frac{3}{2}\left(\frac{m}{2^{m}}+\frac{m-1}{2^{m-1}}+\ldots+\frac{n+1}{2^{n+1}}\right)
\end{aligned}
$$

Put $v_{n}=\frac{n}{2^{n}}$. Then according to a classical argument (the d'Alembert criterion), the numerical series $\sum_{i=0}^{+\infty} v_{i}$ converges, hence $\left(S_{n}\right)=\left(\sum_{i=0}^{n} v_{i}\right)$ is a Cauchy sequence.

Since

$$
\left\|f_{m}(t)-f_{n}(t)\right\| \leq S_{m}-S_{n}
$$

then $\left(f_{n}(\cdot)\right)_{n \geq 1}$ is a Cauchy sequence in $L^{1}(I, E)$. We denote by $f(\cdot)$ its limit.
Moreover, by relations

$$
x_{n}(t)=x_{0}+\int_{0}^{t} u_{n}(s) d s
$$

and

$$
\left\|u_{n}(t)-f_{n}(t)\right\| \leq \frac{1}{2^{n}}, \quad \text { a.e. on } I,
$$

it follows that the subsequence $\left(x_{n}(\cdot)\right)_{n}$ converges almost everywhere on I to an absolutely continuous function, namely $x(\cdot)$.

Recall that

$$
\left.\mid \theta_{k_{n}}(t)\right)-t \left\lvert\,<\frac{T}{n}\right.
$$

for all $n \geq 1$. Since

$$
\begin{aligned}
\left\|x_{n}\left(\theta_{k_{n}}(t)\right)-x(t)\right\| & \leq\left\|x_{n}\left(\theta_{k_{n}}(t)\right)-x_{n}(t)\right\|+\left\|x_{n}(t)-x(t)\right\| \\
& \leq \int_{\theta_{k_{n}}(t)}^{t}(M+1) d s+\left\|x_{n}(t)-x(t)\right\|
\end{aligned}
$$

then

$$
\lim _{n \rightarrow \infty} x_{n}\left(\theta_{k_{n}}(t)\right)=x(t), \quad \text { for all } t \in[0, T[
$$

Hence, by dominated convergence theorem, for all $t \in I$

$$
x(t)=\lim _{n \rightarrow \infty} x_{n}(t)=\lim _{n \rightarrow \infty}\left(x_{0}+\int_{0}^{t} u_{n}(s) d s\right)=x_{0}+\int_{0}^{t} f(s) d s
$$

so $f(t)=\dot{x}(t)$ a.e. on I.
In addition, for every $t \in\left[0, T\right.$ [we have $x_{n}\left(\theta_{k_{n}}(t)\right) \in K$. Since K is closed, then $x(t) \in K$. Moreover, as $x(\cdot)$ is $(M+1)$-Lipschitz, then $x(t) \in K$, for all $t \in[0, T]$.

Furthermore, observe that

$$
d\left(f(t), F(t, x(t)) \leq\left\|f(t)-f_{n}(t)\right\|+d_{H}\left(F\left(t, x_{n}\left(\theta_{k_{n}}(t)\right)\right), F(t, x(t))\right),\right.
$$

since $\left(f_{n}(\cdot)\right)$ converges to $f(\cdot)$ a.e. on $[0, T[$ and $x \rightarrow F(t, x)$ is continuous, then $\dot{x}(t)=f(t) \in F(t, x(t))$ for a.e. $t \in I$. This completes the proof of Theorem 2.1.

REFERENCES

[1] M. Aitalioubrahim, On viability result for first order functional differential inclusions, Mat. Vesnik 70 (2018), no. 4, 283-291.
[2] M. Aitalioubrahim, Viability result for semilinear functional differential inclusions in Banach spaces, Carpathian Math. Publ. 13 (2021), no. 2, 395-404.
[3] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[4] Q. Dong, G. Li, Viability for semilinear differential equations with infinite delay, Mathematics 2016, 4(4), 64 .
[5] Z. Fan, G. Li, Existence results for semilinear differential inclusions, Bull. Austral. Math. Soc. 76 (2007), no. 2, 227-241.
[6] T.X.D. Ha, Existence of viable solutions for nonconvex valued differential inclusions in Banach spaces, Portugal. Math. 52 (1995), Fasc. 2, 241-250.
[7] G. Haddad, Monotone trajectories for functional differential inclusions, J. Diff. Equations 42 (1981), no. 1, 1-24.
[8] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981), 83-100.
[9] M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
[10] V. Lupulescu, M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 495-512.
[11] V. Lupulescu, M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109-128.
[12] V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Port. Math. (N.S.) 63 (2006), no. 3, 335-349.
[13] Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), no. 2, 213-237.

Nabil Charradi
charradi84@gmail.com
© https://orcid.org/0000-0002-6382-8396
University Hassan II of Casablanca
Department of Mathematics, FSTM
Mohammedia, 28820, Morocco
Saïd Sajid (corresponding author)
saidsajid@hotmail.com
© https://orcid.org/0000-0002-4377-5928
University Hassan II of Casablanca
Department of Mathematics, FSTM
Mohammedia, 28820, Morocco
Received: March 17, 2023.
Revised: April 24, 2023.
Accepted: May 14, 2023.

