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Abstract. This paper deals with the existence of solutions to the following differential
inclusion: @(t) € F(t,xz(t)) a.e. on [0,T[ and z(t) € K, for all ¢ € [0,T], where
F :[0,T) x K — 2F is a Carathéodory multifunction and K is a closed subset of
a separable Banach space FE.
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1. INTRODUCTION

Let E be a separable Banach space, K a nonempty closed subset of F, T a strictly
positive real and put I :=1[0,7]. Let F: [ x K — 2% be a multifunction measurable
with respect to the first argument and uniformly continuous with respect to the second
argument.

The aim of this work is to establish, for any fixed zo € K, the existence of
an absolutely continuous function z(-) : I — K satisfying

x(t) € F(t,x(t)) a.e.on [0,T7],
z(0) = o, (L.1)
xz(t) e K forall t e I.

Concerning this subject, we begin with recalling the pioneering work of Haddad [8],
where the right-hand side is an upper semi-continuous convex and compact-valued
multifunction z — F(z) in finite-dimensional space, while in [7] an existence result
is established for a globally upper semi-continuous multifunction in Hilbert space,
though K is convex.
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The main improvement is the comparison with previous results on the same subject
especially the work, of Duc Ha [6] which was the basis for several papers; see [1,2,11].
It has been proved the existence of solution to the problem (1.1), where F(-,z) is
measurable and F(t,-) is m(t)-Lipschitz, m(-) € L'(I,RT). This result is a multivalued
version of Larrieu’s work [9]. More precisely, the existence of solutions of (1.1) was
given under the following tangency condition:

t+h
1
V(t,z) e I x K : liminfe<x+ / F(s,x)ds,K) =0,
h—0+ h

where e(-,-) denotes the Hausdorff excess and j;Hh F(s,x)ds stands for the Aumann
integral of the multifunction ¢ — F(¢,z). Note that the convergence to zero of the
above tangency condition depend on the ¢t. Here techniques of existence of selections
have been introduced, notably a Lemma given by Zhu [13], that will given another
proof in this paper.

Different extensions of the result of Duc Ha [6] have been investigated by many
authors in the case of functional differential inclusions or semilinear differential in-
clusions. See Aitalioubrahim [2], Lupulescu and Necula [10-12] and the references
therein.

In current literature, regarding the differential inclusion without Lipschitz condition
we refer the reader to the work of Fan and Li [5]. They considered the following
differential inclusion:

u(t) € A(t)u(t) + F(t,u(t)), (1.2)

where A(t) is a family of unbounded linear operators generating an evolution operator
and F(t,-) is lower semicontinuous. However x (F'(t, D)) < k(t)x(D) for every bounded
subset D, where y is the measure of noncompactness and k(-) € L(I,R*). Dong and
Li [4] have established a viable solution to (1.2) when A(¢) = A and F is a Carathéodory
single-valued map.

In this paper, we consider the existence of solutions to the problem (1.1) in general
situation supposing that the right-hand side (¢,x) — F(¢, z) is measurable with respect
to the first argument and uniformly continuous with respect to the second argument
in the sense that

Ve > 036(e) > 0V(t,z,y) e I x K X K :
oz —yll < 0(e) = du(F(t,x), F(t,y)) <e,

where dy denotes the Hausdorff distance.

This condition is weaker than the one adopted by Duc Ha [6] in the spatial case
when the Lipschitz coefficient m(t) is a constant L > 0.

The following case deserves mentioning: F' is a time-independant continuous
multifunction and K is compact. In this case the above hypothesis is satisfied.

Our approach is based on Euler’s method, it consists of constructing a sequence
of approximate solutions by using Lebesgue’s Differentiation Theorem and selection
techniques.
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2. NOTATIONS, DEFINITIONS AND THE MAIN RESULT

In all paper, FE is a separable Banach space with the norm || - ||. For z € E and r > 0,
let B(z,r):={y € E: ||y —z|| <r} be an open ball centered at x with radius r and

B(z,r) be its closure, and put B = B(0,1). For € E and for nonempty bounded
subsets A, B of E, we denote by d4(z) or d(z, A) the real value inf{||z — y|| : y € A},

e(A4,B) :=sup{dp(z) :x € A} and dy(A,B)=max{e(4,B),e(B,A)}.

We denote by L£(I) the o-algebra of Lebesgue measurable subsets of I, and B(F) is
the o-algebra of Borel subsets of E for the strong topology. A multifunction is said to
be measurable if its graph belongs to £(I) ® B(E). For more details on measurability
theory, we refer the reader to the book by Castaing and Valadier [3].

Let F : I x K — 2P be a multifunction with nonempty closed values in E.

On F we make the following hypotheses:

(Hy) For each x € K, t — F(t,z) is measurable.
(Hg) Forallt € I, x — F(t,z) is uniformly continuous as follows:

Ve >035(e) > 0V(t,z,y) € I x K x K :
e —yll < 0(e) = du(F(t,x), F(t,y)) <e.
(H3) There exists M > 0, for all (¢,2) € I x K,

[F(t z)| == sup ||z]| < M.
z€F(t,x)

(Hy4) For allt € I and = € K, for every measurable selection o(-) of the multifunction
t — F(t,x)

t+h
I}E}égf %dK <x + / o(s)d5> =0,
t
which is equivalent to
t+h

1
lim inf he(:c + / F(s,x)ds, K) =0.
¢

h—0t

Let 9 € K. Under hypotheses (H;)—(H,) we shall prove the following result:
Theorem 2.1. There exists an absolutely continuous function x(-) : I — E such that
x(t) € F(t,x(t)) a.e. on[0,T],

z(0) = xo,
z(t) € K, forallt eI
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3. PRELIMINARY RESULTS

To begin with, let us recall the following lemmas that will be used in the sequel.

Lemma 3.1 ([13]). Let Q be a nonempty set in E. Let G : [a,b] x Q — 2F be
a multifunction with nonempty closed values satisfying:

(i) for every x € Q, G(-,x) is measurable on [a,b],
(ii) for everyt € [a,b], G(t,-) is (Hausdorff) continuous on Q.

Then for any measurable function x(-) : [a,b] — Q the multifunction G(-,z(-)) is
measurable on [a,b].

Lemma 3.2 ([3]). Let R : I — 2F be a measurable multifunction with nonempty
closed values in E. Then R admits a measurable selection: there exists a measurable
function v : I — E that is r(t) € R(t) for all t € I.

We need also the following lemma, due to Zhu [13], established for a multifunction
(not necessarily closed values) in Banach spaces (not necessarily separable). However,
the result was proven for almost everywhere on I, because the measurability of
a multifunction I adopted by this author is defined as follows: there exists a sequence
(0n(+))nen of measurable functions that is I'(¢) C {0, (¢) : n € N} a.e.on I. Here, we are
concerned with this Lemma in the context of measurable closed-values multifunction
in separable Banach spaces. This result is obtained at every element of I by a different
method.

Lemma 3.3. Let G : I — 2F be a measurable multifunction with nonempty closed
values and z(-) : I — E a measurable function. Then for any positive measurable
function r(-) : I — RT, there exists a measurable selection g(-) of G such that
foralltel,
llg(t) — 2(B)|| < d(z(t), G(t) +r(t).
Proof. Let t € I. By the characterization of the lower bound, there exists € G(t)
such that
[z —2()]| < d(z(t), G(t)) +7(t).

Consider the following multifunction
t—=Qt)={z€E : [z—z)| <d(=(t),G1)) +r(t)}.

Obviously, @ is measurable with nonempty closed values. On the other hand, since G
is measurable with closed values, then Q(¢t) N G(t) is a measurable multifunction with
nonempty closed values, hence by Lemma 3.2, admits a measurable selection ¢t — g(t).
This completes the proof. O

4. PROOF OF THE MAIN RESULT
The proof is based on two steps. It consists of the construction of a sequence of

approximants in the first one, while in the second step we establish the convergence
of such approximate solutions.
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Step 1. Construction of approximants.
For each integer n > max(T;1), put 7, := % and consider the following partition
of the interval I with the points

n _ ; A
ti =11y, 1=0,1,...,n.

Remark that I = U?:_Ol [t t},]. Since t — F(t,x0) is measurable with closed val-
ues, then by Lemma 3.2, there exists a measurable function fo(-) such that for all
fo(t) € F(t,z0). Note that by (Hs), fo(-) € L' (I, E).

For all n € N*, put fi'(-) = fo(-). We shall prove the following theorem:

Theorem 4.1. For alln € N*, there ezist po(n) € N*, 27 € K, u?(-), fi*(-) € L'(I, E)
such that for allt € I,

FE) € Ftah), IR0~ 01 < 5

and for almost every t € I,
n 1= n
up (t) € F(t, o) + 50 B, lug(t) = fo(®)]| <
and
= z0 + T%(n)ug(O) € K.
Proof. By (Hy), for all t € [0, T,
t+7n

lim inf idK (a:o + / fo(s)ds> =0.
t

n—+0oo T,

Then for all ¢ € [0, T, there exists an integer ¢, (n) > n such that

t+7—¢t(ﬂ)
1
dx <£C() + / fo(S)dS) < o’
t

T, (n)

Hence, by the characterization of the lower bound, there exists 1 (¢) € K such that

7o, (n)
1 Te, (n) 1
. x1(t) — zo — / fo(s)ds|| < 2£+2 + L
®,(n) )
Then
t+70, (n)
xl(t) — X9 o 1 fo(s)ds < 1

To, (n) T, (n)
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

7o, (n)
1 1
fo(s)ds — fo(t)|| < —= a.e.on I.
T 2n+1
. (n) /
Therefore,
t) — 1
z1(t) — @0 —fot)|| < 5 ae. onl.
To,(n) 2
Set
n Jfl(t) — Zo
o(t) = :
To, (n)

Then for all ¢ € [0, T,
#1(t) = 20 + 7y, Ul (1) € K,
and
n 1
lug (t) — fo(t)| < on e on I

from which we deduce that

| —

ull (t) € F(t,z9) + —B.

n

DN

Particularly
To + T, (myuo (t) € K, for all t € [tg, ],

and 1
ug(t) € F(t,zo) + Q—HE a.e. on [t, t1].

Let 0, = 0(54=) be the real given by (H). Choose ¢, (n) > T(]gijl), and set

zt = z1(l5) = o + Ty (n)ug (0) € K.

Since T T
! — x| = ——|lug (0)| < M+1)<6,,
Jof = aoll = s WG] £ (04 +1
then, by (Haz),
1
dp (F(t,z7), F(t,z0)) < forall t € I,

thus

d(fo(t), F(t,2})) < 2 forall t € I.
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In view of Lemma 3.3, there exists a measurable function f7*(-) € L'(I, E) such that
fI(t) € F(t,z}) and for all t € I,

1)~ o]l < dCfolt), F(t,3) + g < o =

By induction, for p € {2,...,n}, assume that have been constructed ¢, ,(n) € N*,
Ty € K, fl4(t) € F(t, 9:2_1) and uy_,(-), satisfying the following relations:

n n 1= n n
uy_o(t) € F(t,xy_5) + 273 a.e. on [ty oty 4,

n n 1 n n
luo(t) = fa @l < 57 ae. on [ g, 8,

Tpo1 = Tp(ty o) =Ty 0 +Tp o Up-a(ly o) €K,

and
||f;71(t) — f;ﬂz(t)H < 2n1+1, forallt e I.
Let us define zy;, f'(+), up_1() and ¢,_,(n), that is, ¢, ,(n) > ¢, _,(n). Indeed,
forallt eI, f” ( ) F( " ,)- Then, by (Ha),
t4+7n
17%13_,1_25 TldK( o+ / gl(s)ds> =0, forallte][0,T]
t

Then for all ¢ € [0, T, there exists ¢?~!(n) € N such that ¢?~!(n) > pP~3(n),

t+7 p 100

1 1

T,ildK <x2_1 + / ;Z;L_l(s)ds) S W,
o ) /

Hence, by the characterization of the lower bound, there exists x,(¢) € K such that

AT op—1(n)
1 ’7' p 1(n) ]_
p— xp(t) — Ty g — / ;_1(5)d5 < 2n+2 + iz
ey (n) f
Then
tHsaf*l(n)
xp(t) - ‘rp 1 1 n (S)dS 1
T p-1 T p—1 - 2ntl
v (n) Apf_l(n) f
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

t+T«pf_1(n)
1 1
/ “i(s)ds — i (t)|| < 557 aeon I
Tﬂ*l(n) 2
t t
Therefore,
() —2p 0, ol < 1 ac on I
Tgof L(n) p - 2n
Set
n 1<t) _ xp(t) _J"p 1,
. Ter " m)
t

then for all ¢ € [0, 7

and

from which, we get

n 1 =
uy_q(t) € F(t,z,_4) + Q—B

Then we have

T, 1+ wafl(n)uz_l(t) €K, foralltelt, ;,t)],

and

uy 1 (t) € F(t,z, 1)+

o B a.e. on [ty_1,t, [

1
2n
Choose ¢,_, (n) > max(oP" (n);¢,_,(n)). Then ¢, _, (n) > M We set

o1
Ty i=ap(ty ) =7y + Tspp_l(n)u;‘fl(tgfl) e K.
Then T T
[z — x|l = WHU;&( p—)ll < ) (M +1) < 0n,

hence, by (Ha),

du(F(t,z,), F(t, z,_ for all t € I.

1
1) < BETE
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By Lemma 3.3, there exists a measurable function f7'(-) € L'(I,E) such that
fy(t) € F(t,z) and for all ¢ € I,

L) = Fya O] < U (0, F (. 23) + g
Then 1
16~ Fia O < s (11)

Put k, = ¢, (n). Remark that the previous properties are satisfied for k,.
Now, let us define the step functions.

For all n > 1, forallp:12 ,m, for all t € [0,T7, set0 (t) =154,

te [ty_1, 15l fal Zx[t” o (O f5-1(£) and un Zx[tn oy (g1 ().

n
p—1>"p

whenever

On each interval [ | consider

t

e
Then
T (On(t) =) € K, for all t € [0, T7,
1
Tn(t) = un(t) € F(t, xn (0, (t))) + 2—B a.e.on I,
1
[un(t) — fa(O)] < o a.e. on I.

Step 2. The convergence of (xn(-))
By construction for all ¢t € I,

fn(t) € F(t, 20Ok, (1))

On the other hand, let t € I and p = 1,2,...,n, by relation (4.1),

1730~ a0l < gy

Then, by induction,

150 = hoOl < 5

which implies
n

1Fa(t) = So(®)] < s

Then

N

i1 () = fa (DI < [ fnra(®) = So (O + 1 £n(t) = fo(®)]
n+1 n 3(n+1)
on+2 gn+1 = on+2

IN
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Let t € I and (m,n) € N* x N* with m > n. Then

Hfm(t) - fn(t)H < ||fm(t) - fm—l(t)H + ”fm—l(t) - fm—Q(t)” ce ”fn-l—l(t) - fn(t)H

3m  3(m—1) - 3(n+1)
— 9m+1 om e on+2
< §(ﬂ ym-t L“)
— 2\2m om—1 on+l )°

Put v, = g&. Then according to a classical argument (the d’Alembert criterion),
the numerical series Z:;OS v; converges, hence (S,) = (3.1, v;) is a Cauchy sequence.
Since

[fm () = fa(®)]l < Sm — S,

then (f,,(*))n>1 is a Cauchy sequence in L!(I, E). We denote by f(-) its limit.

Moreover, by relations
t

xn(t) = x0 + /un(s)ds
0

and X
”un(t) - fn(t)” S 27, a.e. on I,

it follows that the subsequence (z,(-)), converges almost everywhere on I to an abso-
lutely continuous function, namely z(-).
Recall that

O, (1) 1] <

for all n > 1. Since

[ (O, () — ()|

IN

2 (B, (1)) — En(B)]] + [2n(t) — ()]
< / (M + 1)ds + |n(t) — 2(2)],
Ok, (1)

then
lim z, (0, (t)) = z(t), forallte[0,T].

n—oo

Hence, by dominated convergence theorem, for all ¢ € T

t t

z(t) = lim z,(t) = lim (onr/un(s)ds) :zOJr/f(s)ds,

n— o0 n—o00
0 0

so f(t) = x(t) a.e. on I.
In addition, for every ¢ € [0,T[ we have x, (0, (t)) € K. Since K is closed, then
x(t) € K. Moreover, as z(-) is (M + 1)-Lipschitz, then z(t) € K, for all ¢ € [0, T].
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Furthermore, observe that

d(f(t)vF(tvx(t)) < ||f(t) - fn(t)” + dH(F(tvmn(ekn(t)))vF(tvx(t)))7

since (fn(+)) converges to f(-) a.e. on [0,7] and x — F(¢,z) is continuous, then
x(t) = f(t) € F(t,z(t)) for a.e. t € I. This completes the proof of Theorem 2.1.
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