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1. INTRODUCTION

The paper is concerned with the existence of positive radial solutions for the nonlinear
Poisson equation with some some nonlocal condition, namely

−∆u = f(|x|, u), u|∂Ω =
∫

Ω

K(|x|, |y|)h
(
u(y)

)
dy, (1.1)

where | · | denotes the Euclidean norm in Rn, Ω = B(0, b) \ B(0, a) ⊂ Rn, 0 < a < b,
B(x0, r) is the open ball of radius r > 0 with center at point x0 ∈ Rn corresponding to
the Euclidean norm. Moreover, f : [a, b]×R+ → R+ is Carathédory function (i.e. f(·, u)
is measurable for every u ∈ R+ and f(r, ·) is continuous for almost every r ∈ [a, b]),
h : R+ → R+ is continuous and K : [a, b] × [a, b] → R+ is integrable with respect to
the first variable. Throughout this paper, R+ denotes [0, +∞).

The Poisson equation has been investigated for many years due to its significance
in many applications, especially in physics. Many phenomena which are modelled by
Poisson equation and possess the property of physical symmetry, require searching
for the so-called radial solutions. A lot of papers ([1, 3, 6–8,10,18,22–24]) have been
published on the existence of radial solutions for non-linear elliptic equations with
classic boundary conditions (e.g. those of Dirichlet, Neumann or Robin). Typically,
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the methods used in this research include the shooting method, the mountain pass
theorem and other topological-order methods, e.g. based on the cone expansion and
compression theorem.

While investigating the existence of radial solutions using an appropriate sub-
stitution, the boundary conditions become two-point conditions, i.e. a special case
of multiple-point conditions of the form F (u(t1), . . . , u(tk)) = 0. If the boundary
conditions refer to the values of the unknown function on the whole domain (integral
conditions), then they are called the nonlocal conditions. One of the first papers
investigating the nonlocal-type conditions was the one of Whyburn [30]. The integral
nonlocal conditions have proved to be applicable in many areas of physic such as
thermoelasticity (compare in [4] and [5]).

The research in the area of nonlocal conditions for ordinary and partial differential
equations has been continuously expanding. Many papers have been published, focusing
both on ordinary ([2,14,15,19,20,25–29]) and partial ([3,9,12,13,21]) equations. Radial
solutions for nonlocal elliptic equations have been investigated in [6,7] and [8], however,
in these papers the boundary conditions were the classic ones and the nonlocality
underlay just the equation itself.

Nonlinear nonlocal conditions can in turn be found in [12] and [13]. In [12], the
following problem is investigated:

Liui(x) = λifi(x, u(x)), x ∈ Ω, Biu(x) = ηihi[u], x ∈ ∂Ω, i = 1, . . . , n,

where Ω ⊂ Rm is a bounded domain with sufficiently regular boundary and Li is
a strongly uniformly elliptic operator. The nonlocal conditions studied in above problem
are general ones, but the author looks for weak solutions of this problem. Therefore
our results are different kind and are not comparable to mentioned above.

2. AUXILIARY PROBLEM

Since we are looking for radial solutions u(x) = U(|x|), where U : [a, b] → R, the prob-
lem (1.1) is reduced to the following boundary value problem for ordinary differential
equation 




−U ′′(r) − n − 1
r

U ′(r) = f(r, U(r)),

U(a) = ωn

b∫

a

K(a, r)rn−1h(U(r)) dr,

U(b) = ωn

b∫

a

K(b, r)rn−1h(U(r)) dr,

(2.1)

where ωn stands for the measure of the unit sphere in Rn.
To eliminate the term with the first derivative one can use the following substitution

τ = Φ(r) =
(

(n − 2)rn−2
)−1

, r ∈ [a, b]



Radial solutions for nonlinear elliptic equation. . . 677

in case n ≥ 3. Then (2.1) can be rewritten as




−v′′(t) = f̃(τ, v(τ)),

v(α) =
β∫

α

K̃(α, σ)h(v(σ)) dσ,

v(β) =
β∫

α

K̃(β, σ)h(v(σ)) dσ,

(2.2)

where α = Φ(b), β = Φ(a) and

f̃(τ, v) =
[
(n − 2)τ

]− 2n−2
n−2 f

([
(n − 2)τ

]− 1
n−2 , v

)
,

K̃(τ, σ) = ωn

[
(n − 2)σ

]− 2n−2
n−2 K

([
(n − 2)τ

]− 1
n−2 ,

[
(n − 2)σ

]− 1
n−2
)

.

As for n = 2, in terms of variables

t = Φ(r) = log r, (2.3)

the problem (2.1) can also be rewritten as (2.2) with

f̃(τ, v) = e2τ f(eτ , v), K̃(τ, σ) = 2πeσK(eτ , eσ), α = log a, β = log b.

Finally, to obtain the boundary value problem on [0, 1], we use the affine mapping

t = A(τ) = τ − α

β − α
.

Then, above substitution yields




−w′′(t) = g(t, w(t)),

w(0) =
1∫

0

k0(s)h(w(s)) ds,

w(1) =
1∫

0

k1(s)h(w(s)) ds,

(2.4)

where
g(t, w) = f̃ ((β − α)t + α, w) ,

k0(s) = K̃ (α, (β − α)s + α) ,

k1(s) = K̃ (β, (β − α)s + α) .
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By definitions of f̃ and K̃ we have:

— for n ≥ 3,

g(t, w) =
{

(n − 2)[(β − α)t + α]
}− 2n−2

n−2

· f
({

(n − 2)[(β − α)t + α]
}− 1

n−2 , w
)

,

k0(s) = ωn

{
(n − 2)[(β − α)s + α]

}− 2n−2
n−2

· K
(

b,
{

(n − 2)[(β − α)s + α]
}− 1

n−2
)

,

k1(s) = ωn

{
(n − 2)[(β − α)s + α]

}− 2n−2
n−2

· K
(

a,
{

(n − 2)[(β − α)s + α]
}− 1

n−2
)

,

where α =
(

(n − 2)bn−2
)−1

, β =
(

(n − 2)an−2
)−1

,
— for n = 2,

g(t, w) =
(

b

a

)2t

a2f

((
b

a

)t

a, w

)
,

k0(s) = 2π

(
b

a

)s

aK

(
a,

(
b

a

)s

a

)
,

k1(s) = 2π

(
b

a

)s

aK

(
b,

(
b

a

)s

a

)
.

Since each mapping which transforms problem 1 to problem 2, is diffeomorphism,
we get the following result.

Proposition 2.1. The boundary value problem (1.1) has a positive radial solution if
and only if the problem (2.4) has a positive solution.

Therefore, firstly we shall investigate the problem (2.4). The method we use it
standard for boundary value problems. Namely, we reformulate the problem (2.4) as
an equivalent fixed point problem. We will employ the following fixed point theorem.

Theorem 2.2 ([11]). Let K be a cone in a Banach space X, i.e. K is nonempty
convex and closed set such that:

(C1) λK ⊂ K for λ ≥ 0,
(C2) K ∩ (−K) = {0}, where 0 denotes the zero in X.

Let Ω1 and Ω2 be two bounded open neighbourhoods of zero such that Ω1 ⊂ Ω2 and
T : K ∩ (Ω2 \ Ω1) → K a completely continuous mapping. Suppose that one of the
following two conditions is satisfied:



Radial solutions for nonlinear elliptic equation. . . 679

(CE) ∥T (x)∥ ≤ ∥x∥ for x ∈ K ∩ ∂Ω1 and ∥T (x)∥ ≥ ∥x∥ for x ∈ K ∩ ∂Ω2,

and

(CC) ∥T (x)∥ ≥ ∥x∥ for x ∈ K ∩ ∂Ω1 and ∥T (x)∥ ≤ ∥x∥ for x ∈ K ∩ ∂Ω2.

Then operator T has a fixed point in K ∩ (Ω2 \ Ω1).

3. EXISTENCE OF SOLUTIONS FOR AUXILIARY PROBLEM

Denote by C([0, 1]) the Banach space of all continuous functions w : [0, 1] → R with
the norm

∥w∥ = sup
t∈[0,1]

|w(t)|.

Moreover, C1([0, 1]) is the space of all continuous whose first derivatives belong to
C([0, 1]) and AC([0, 1]) is the space of all absolutely continuous functions defined
on [0, 1].

We say that w : [0, 1] → R is Carathéodory’s solution to the problem (2.4) if
w ∈ C1([0, 1]), w′ ∈ AC([0, 1]), w′′(t) = −g(t, w(t)) for almost every t and the
boundary conditions of (2.4) hold.

For any function w ∈ C([0, 1]), we shall use the following notation

H0(w) :=
1∫

0

k0(s)h(w(s)) ds, H1(w) :=
1∫

0

k1(s)h(w(s)) ds. (3.1)

Then by direct computation we obtain the following

Lemma 3.1. A function w : [0, 1] → R is Carathéodory’s solution of the problem (2.4)
if and only if w satisfies the following integral equation

w(t) =
1∫

0

G(t, s)g(s, w(s)) ds +
(
H1(w) − H0(w)

)
· t + H0(w),

where G : [0, 1] × [0, 1] → R is the Green function corresponding to the Dirichlet
boundary value problem, i.e.

G(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

Consider the operator T : C([0, 1]) → C([0, 1]), defined by

(Tw)(t) =
1∫

0

G(t, s)g(s, w(s)) ds + (1 − t) · H0(w) + t · H1(w),

for w ∈ C([0, 1]).
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We assume the following assumption holds: for arbitrary M > 0, there is a function
hM ∈ L1(0, 1) such that g(t, w) ≤ hM (w) for almost every t ∈ [0, 1] and w ∈ [0, M ].
Then the function g is said L1–Carathéodory’s function.

Then by using the classical Arzelá–Ascoli Theorem ([16,17]), we get

Lemma 3.2. The operator T is completely continuous.

Now, we shall prove that the problem (2.4) has at least one positive solution.
The following assumptions will be needed:

(i) lim
w→0+

sup
t∈[0,1]\S1

g(t,w)
w = 0,

(ii) lim
w→0+

h(w)
w = 0,

(iii) lim
w→+∞

inf
t∈[c,d]\S2

g(t,w)
w = +∞,

(iv) lim
w→+∞

h(w)
w = +∞,

(v)
d∫
c

ki(s) ds > 0 for i = 0, 1,

where [c, d] ⊂ (0, 1) is some interval and S1, S2 ⊂ R are some sets with zero Lebesgue
measure.

Note that by the assumption (i) we get g(t, 0) = 0 for t ∈ [0, 1] \ S1. On the other
hand, the assumption (ii) yields h(0) = 0. Then the zero function is a solution of
problem (2.4). Applying Theorem 2.2 with condition (CE) we shall show the existence
of nontrivial solution to problem (2.4)

Theorem 3.3. Assume that the conditions (i), (ii) hold. If we suppose that the
condition (iii) is satisfied or both conditions (iv) and (v) are satisfied, then the problem
(2.4) has at least one positive solution.

Proof. In the Banach space C([0, 1]) we define a set

K :=
{

w ∈ C([0, 1]) : w(t) ≥ 0 for t ∈ [0, 1], inf
t∈[c,d]

w(t) ≥ min{c, 1 − d} ∥w∥
}

.

It is easy to see that K is a cone in the space C([0, 1]).
In the first part of the proof we shall show that the operator T maps all nonnegative

functions into the cone K. It is clear that Tw ≥ 0 for w ≥ 0.
Observe that

G(t, s) ≤ s(1 − s), (3.2)

for any pair (t, s) ∈ [0, 1] × [0, 1], hence

∥Tw∥ ≤
1∫

0

s(1 − s)g(s, w(s)) ds + max{H0(w), H1(w)}.



Radial solutions for nonlinear elliptic equation. . . 681

On the other hand, if t ∈ [c, d] and s ∈ [0, 1] we have

G(t, s) =
{

s(1 − t), s ≤ t,
t(1 − s), t ≥ s,

≥
{

s(1 − d), s ≤ t,
c(1 − s), t ≥ s,

≥ min{c, 1 − d}s(1 − s).

(3.3)

Thus, we obtain

(Tw)(t) ≥
1∫

0

min{c, 1 − d}s(1 − s)g(s, w(s)) ds

+ min{c, 1 − d} max{H0(w), H1(w)}

= min{c, 1 − d}
( 1∫

0

s(1 − s)g(s, w(s)) ds + max{H0(w), H1(w)}
)

≥ min{c, 1 − d} ∥Tw∥ ,

for t ∈ [c, d]. Hence,

inf
t∈[c,d]

(Tw)(t) ≥ min{c, 1 − d} ∥Tw∥ ,

which implies that T (K) ⊂ K.
In the next step, we shall introduce two bounded open neighbourhoods of zero

in C([0, 1]) such that Ω1 ⊂ Ω2, for which the condition (CE) of Theorem 2.2 will be
satisfied.

By assumption (i), there exists a constant M1 > 0 such that

g(s, w) ≤ 3 · w for 0 < w < M1 and s ∈ [0, 1] \ S1.

Now, we can choose ε > 0 such that

ε ·
1∫

0

ki(s) ds ≤ 1
2 for i = 0, 1.

Next, by assumption (ii), there is a constant M2 > 0 such that

h(w) ≤ ε · w for 0 < w < M2. (3.4)

Let R1 := min{M1, M2} and Ω1 := BC([0,1])(0, R1), where BC([0,1])(w0, R) is the
open ball in C([0, 1]) of radius R > 0 with center at w0 ∈ C([0, 1]). Assume that
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w ∈ K ∩ ∂Ω1. Then w(s) ≤ M1 and w(s) ≤ M2 for s ∈ [0, 1]. Hence, by (3.2) and (3.4)
for any t ∈ [0, 1] we obtain

(Tw)(t) =
1∫

0

G(t, s)g(s, w(s)) ds +
(
H1(w) − H0(w)

)
t + H0(w)

≤
1∫

0

s(1 − s)g(s, w(s)) ds + max{H0(w), H1(w)}

=
1∫

0

s(1 − s)g(s, w(s)) ds +
1∫

0

ki(s)h(w(s)) ds

≤
1∫

0

s(1 − s)3w(s) ds +
1∫

0

ki(s)εw(s) ds

≤ 1
2 ∥w∥ + 1

2 ∥w∥ = ∥w∥ .

Therefore ∥Tw∥ ≤ ∥w∥ for w ∈ K ∩ ∂Ω1.

First, we consider the case in which the assumption (ii) holds. We can choose
a number L > 0 such that

L(min{c, 1 − d})2
d∫

c

s(1 − s) ds = 1.

By the condition (iii), there is a constant M3 > min{c, 1 − d}R1 such that

g(s, w) ≥ L · w for w ≥ M3 and s ∈ [0, 1] \ S2. (3.5)

Define R2 := 1
min{c,1−d} M3 and Ω2 := BC([0,1])(0, R2). Then, we observe that

Ω1 ⊂ Ω2.
Let w ∈ K and ∥w∥ = R2. Since the function w belongs to the cone K, we have

w(t) ≥ min{c, 1 − d} ∥w∥ = M3 for t ∈ [c, d].
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According to the above inequality, by (3.3) and (3.5) taking t0 ∈ [c, d], we get

(Tw)(t0) =
1∫

0

G(t0, s)g(s, w(s)) ds + (H1(w) − H0(w)) t0 + H0(w)

≥
1∫

0

G(t0, s)g(s, w(s)) ds

≥
d∫

c

G(t0, s)g(s, w(s)) ds

≥
d∫

c

L min{c, 1 − d}s(1 − s)w(s) ds

≥ L(min{c, 1 − d})2
d∫

c

s(1 − s) ds ∥w∥ = ∥w∥ ,

thus ∥Tw∥ ≥ ∥w∥ for w ∈ K ∩ ∂Ω2.
Applying the condition (CE) of Theorem 2.2 to T , we obtain that T has a fixed

point in K ∩ (Ω2 \ Ω1), i.e. BVP (2.4) has a positive solution.
In the last part of the proof, we assume that the conditions (iv) and (v) are satisfied

(instead of (iii)). We do not change the definition of the set Ω1, for which the first
inequality of the condition (CE) is fulfilled. However, we introduce the new definition
of Ω2 and we will show that ∥Tw∥ ≥ ∥w∥ for w ∈ K ∩ ∂Ω2.

We set

η := 1

min{c, 1 − d} min
{

d∫
c

ki(s) ds : i = 0, 1
} . (3.6)

By the assumption (iv), there is a constant M4 > min{c, 1−d}R1 such that h(w) ≥ ηw
for w ≥ M4. Let R2 := 1

min{c,1−d} M4 and Ω2 := BC([0,1])(0, R2). Then Ω1 ⊂ Ω2. Take
w ∈ K such that ∥w∥ = R2. Hence w(t) ≥ M4 for t ∈ [c, d]. One can note that

(H1(w) − H0(w)) t + H0(w) ≥ min{H0(w), H1(w)}. (3.7)
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for any w ∈ C([0, 1]). Positivity of g, (3.6) and (3.7) yields

(Tw)(t) ≥
1∫

0

G(t, s)g(s, w(s)) ds + (H1(w) − H0(w)) t0 + H0(w)

≥ Hj(w) =
1∫

0

kj(s)h(w(s)) ds

≥
d∫

c

kj(s)h(w(s)) ds

≥
d∫

c

kj(s)ηw(s) ds

≥ ∥w∥ · η min{c, 1 − d}
d∫

c

kj(s) ds = ∥w∥ ,

where
Hj(w) = min{H0(w), H1(w)}.

Therefore ∥Tw∥ ≥ ∥w∥ for w ∈ K ∩ ∂Ω2 and, by Theorem 2.2, BVP (2.4) has at least
one positive solution.

Now, we are ready formulate the main result for elliptic problem (1.1), but at first
we introduce the following assumptions:

(i’) lim
u→0+

sup
r∈[a,b]\P1

f(r,u)
u = 0, where P1 is some set with zero Lebesgue measure;

(iii’) lim
u→+∞

inf
r∈[r1,r2]\P2

f(r,u)
u = +∞, where [r1, r2] ⊂ (a, b) is some interval and P2 is

some set with zero Lebesgue measure;
(v’)

∫
Ω

K(r, |y|)h
(
u(y)

)
dy > 0 for r = a, b.

Theorem 3.4. Assume that f : [a, b] × R+ → R+ is L1–Carathéodory’s function and
the conditions (i’), (ii) hold. If the condition (iii’) is fulfilled or both the assumptions
(iv) and (v) are satisfied the problem (1.1) has at least one positive radial solution.

Proof. Since the assumptions (i’), (iii’), (v’) provide respectively the assumptions (i),
(iii), (v) we can use Theorem 3.3 for the auxiliary problem (2.4) after appropriate
change of variable. Therefore, by Proposition 2.1 we get the problem (1.1) has at least
one positive radial solution.
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4. EXAMPLES

To illustrate how our main result can be used in practise we present some examples.
Example 4.1. Consider the problem

−∆u = upg(|x|), u|∂Ω =
∫

Ω

|xy|uq(y) dy,

where Ω = B(0, b) \ B(0, a) ⊂ Rn, 0 < a < b, p, q > 1 and g : [a, b] → R+ is continuous.
Then via Theorem 3.4 the above problem admits a positive radial solution.
Example 4.2. Denote by L∞([a, b],R+

)
the set of all measurable nonnegative func-

tions defined on [a, b] which are bounded almost everywhere and by C
(
R+,R+

)

set of all continuous nonnegative functions on R+. Let us consider the problem
(1.1) with f(r, u) =

∑m
i=1 Ai(r)Bi(u), where Ai ∈ L∞([a, b],R+

)
, Bi ∈ C

(
R+,R+

)
,

limu→0+
Bi(u)

u = 0 and limu→+∞
Bi(u)

u = +∞, i = 1, . . . , m. Moreover, we assume
that the conditions (ii) from Section 3 is satisfied. Since Ai ∈ L∞([a, b],R+

)
, there

are constants Mi > 0 and a sets Pi ∈ [a, b] with measure zero such that Ai(r) ≤ Mi

for r ∈ [a, b] \ Pi. Let us define set P :=
⋃m

i=1 Pi, which has measure zero. Then f is
L1-Carathéodory’s function. Moreover, since lim

u→0+

Bi(u)
u = 0 and lim

u→+∞
Bi(u)

u = +∞,
the conditions (i’) and (iii’) hold with P1 = P2 = P . Hence, by Theorem 3.4,
the problem (1.1) has at least one positive solution.
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