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1. INTRODUCTION

In this paper, we are concerned with the existence and regularity properties of the
following Cauchy–Dirichlet problem





ut − divA(x, t,∇u)
= −div

(
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

)
in ΩT ,

u = g on ∂Ω × (0, T ),
u(·, 0) = g(·, 0) on Ω × {0},

(1.1)

where ΩT = Ω × (0, T ), Ω an open, bounded Lipschitz domain in RN of dimension
N ≥ 2 and 0 < T < ∞. Throughout the paper we assume that the functions
A : Ω × R+ × R → R are such that A(·, ·, ζ) are Lebesgue measurable for all ζ ∈ R
and A(x, t, ·) are continuous for almost (x, t) ∈ ΩT . We also assume that the following
structure conditions are satisfied

A(x, t, ζ)ζ ≥ C1

(
|ζ|p(x,t) + a(x, t)|ζ|q(x,t)

)
, (1.2)

|A(x, t, ζ)| ≤ C2

(
|ζ|p(x,t)−1 + a(x, t)|ζ|q(x,t)−1

)
, (1.3)

where C1 and C2 are positive constants.
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The modulating coefficient a(·, ·) is assumed to satisfy the following

∃α1, α2 ∈ R+ : α1 ≤ a(x, t) ≤ α2. (1.4)

In addition, we suppose that

(A(x, t, ζ) −A(x, t, η)) (ζ − η) > 0, ζ ̸= η. (1.5)

The exponents p and q are measurable functions in ΩT satisfying the following
conditions





2N
N+2 < p− = ess inf

ΩT

p(x, t) ≤ p(x, t) ≤ p+ = ess sup
ΩT

p(x, t) < ∞,

|p(x1, t1) − p(x2, t2)| ≤ ω(dp((x1, t1), (x2, t2))),
(1.6)

and




2N
N+2 < q− = ess inf

ΩT

q(x, t) ≤ q(x, t) ≤ q+ = ess sup
ΩT

q(x, t) < ∞,

|q(x1, t1) − q(x2, t2)| ≤ ω(dp((x1, t1), (x2, t2))),
(1.7)

where ω : [0,∞] → [0, 1] denotes a modulus of continuity. More precisely, we shall
assume that ω(·) is a concave non-decreasing function with limρ→0 ω(ρ) = ω(0) = 0.
Moreover, the parabolic distance is given by

dp((x1, t1), (x2, t2)) = max
{

|x1 − x2|,
√

|t1 − t2|
}
.

In addition, for the modulus of continuity ω(·) we assume the following weak logarithmic
continuity condition

lim sup
ρ→0

ω(ρ) log
(

1
ρ

)
< +∞. (1.8)

Equations of the type (1.1) where the modulating coefficient a(x, t) could be
degenerate on a set of zero measure are often called the double phase problems. The
study of the double-phase problems started in the late 80th with the works of Zhikov
in a series of remarkable papers [23–25] who introduced such classes of operators
to describe models of strongly anisotropic materials by treating the Euler–Lagrange
equation of the functional

N∑

i=1

∂

∂xi
ai(x,∇u) = b(x), a.e. x ∈ Ω, (1.9)

where ai satisfy some nonstandard growth conditions like, for example,
∑

ij

ai
ζj

(x, ζ)λiλj ≥ m
(
1 + |ζ|2

) p−2
2 |λ|2, ∀ζ, λ ∈ RN , a.e. x ∈ Ω,

|ai
ζj

(x, ζ)| ≤ M
(
1 + |ζ|2

) q−2
2 , ∀ζ ∈ RN , a.e. x ∈ Ω, ∀i, j,
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for some positive constants m, M , and for exponents q ≥ p ≥ 2. Integral functionals
of the form (1.9) have been considered by several authors concerning regularity
results and non-standard growth, see for example, Baroni–Colombo–Mingione [6],
Filippis–Mingione [10], Ragusa–Tachikawa [18] and the references therein. Later on,
Marcellini [17] and Bögelein–Duzaar–Marcellini [8] give some existence results of a class
of parabolic equations of the type

ut = divDζf(x, u,∇u) −Duf(x, u,∇u), (1.10)

with a convex integrand f : Ω ×R×RN → [0,+∞] satisfying the p, q-growth condition
of the type

ν|ζ|p ≤ f(x, u, ζ) ≤ M(1 + |u|q + |ζ|q),
with some positive constants ν, M . It is worth mentioning that Arora–Shmarev [5]
recently studied the variable exponent case of (1.10). In the parabolic setting, the
case p = q is well understood. Whereas, existence and regularity results for parabolic
systems with p-growth in the cases of constant or variable exponents can be found
in [13,14,20] and references therein.

In this framework, a particularly relevant class of interest is given by equations
where the modulating coefficient a(·, ·) is bounded away from zero and thus the growth
of the flux is controlled by operators with distinct exponents. Those types of equations
are of a (p, q)-phase which is a special case of the double phase problems. Such
equations arise in many mathematical models of physical processes. An important
example where equation (1.1) arises is the study of the following nonlinear Schrödinger
equation

iψt = −∆ψ + q(x)ψ − λf(x)|ψ|γ−2ψ − ∆qψ +W ′(x, ψ),
where ∆qψ = div(|∇ψ|q−2∇ψ) is a q-Laplacian. This class of equations was introduced
by Derrick [11] and later by Benci-D’Avenia-Fortunato-Pisani [7] for the elliptic case,
where (p, 2)-equations were used as a model for elementary particles in order to
produce soliton-type solutions. We also mention the works of Cherfils–Il’yasov [9],
where the authors studied the steady state solutions of reaction-diffusion systems, and
of Zhikov [23] who studied problems related to nonlinear elasticity theory. It is worth
noting that the existence and the regularity properties of the elliptic case of (1.1) has
been studied by Ambrosio–Rădulescu [2], Zhang–Rădulescu [22] and references therein.
Moreover, the boundedness of the solutions to (1.1) with the homogeneous Dirichlet
boundary conditions can be derived from Theorem 1 in [13].

The aim of the present paper is also to develop a variational approach in the
parabolic setting in the spirit of papers [4, 15, 16, 21]. The approach we used to
prove the existence and the uniqueness of (1.1) is to construct a family of solutions
by Galerkin approximation, which solves the homogeneous case of (1.1). Next, we
deduce some energy bounds. These estimates with the compact embedding yield the
desired convergence of the approximate solutions to general solutions. Afterward,
by using the well known Moser’s iteration technique which is essentially based on
a combination of a Sobolev and a Caccioppoli type inequalities, the question of local
boundedness of the solution to (1.1) is proved. Finally, for sufficiently regular data
and by using the approach presented in [4], we derive the global boundedness of the
weak solution to (1.1).
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2. PRELIMINARY AND MAIN RESULTS

2.1. THE FUNCTION SPACES

We collect here the background information on the variable Lebesgue and Sobolev
spaces used throughout the paper. We refer to the monograph [3] for further informa-
tion.

Let Ω be a bounded domain with Lipschitz-continuous boundary p : Ω → [p−, p+] ⊂
(1,+∞) be a measurable function. The set

Lp(x)(Ω) =



u : u is a measurable real-valued function ,

∫

Ω

|u(x)|p(x)dx < ∞



 ,

equipped with the Luxemburg norm

∥u∥Lp(x)(Ω) = inf



λ > 0 :

∫

Ω

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

≤ 1



 .

is a reflexive and separable Banach space and C∞
0 (Ω) is dense in Lp(x)(Ω). The norm

∥ · ∥Lp(·)(Ω) can be estimated as follows:

−1 + ∥u∥p−

Lp(x)(Ω) ≤
∫

Ω

|u|p(x) dx ≤ 1 + ∥u∥p+

Lp(x)(Ω), ∀u ∈ Lp(x)(Ω). (2.1)

Moreover, if p1(x) ≥ p2(x) a.e. in Ω, then Lp1(x)(Ω) is continuously embedded
in Lp2(x)(Ω) and

∥u∥Lp2(x)(Ω) ≤ C∥u∥Lp1(x)(Ω), ∀u ∈ Lp1(x)(Ω).

Let W 1,p(x)(Ω) denote the space of measurable functions u such that, u and the
distributional derivative ∇u are in Lp(x)(Ω). The norm

∥u∥1,p(x) = ∥u∥p(x) + ∥∇u∥p(x)

makes W 1,p(x)(Ω) a Banach space. It is well known that if p(x) satisfies the log-Hölder
condition (1.6)2, then C∞(Ω) is dense in W 1,p(x)(Ω). Moreover, we can define the
Sobolev space with zero boundary value W 1,p(x)

0 (Ω) as the closure of the C∞
0 (Ω), with

respect to the norm of W 1,p(x)(Ω). It is known that for the elements of W 1,p(x)
0 (Ω),

the Poincaré inequality holds

∥u∥Lp(x)(Ω) ≤ C∥∇u∥Lp(x)(Ω),

and an equivalent norm of W 1,p(x)
0 (Ω) can be defined by

∥u∥
W

1,p(x)
0 (Ω) = ∥∇u∥Lp(x)(Ω).
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For the study of parabolic problem (1.1), we need the spaces of functions depend-
ing on (x, t) ∈ ΩT . With a slight abuse of the notation, we consider more general
nonstandard parabolic Sobolev. Then, by W p(x,t)

g (ΩT ) we denote the Banach space

W p(x,t)
g (ΩT ) :=

{
u ∈ Lp(x,t)(ΩT ) : ∇u ∈ Lp(x,t)(ΩT ), u− g ∈ L1(0, T ;W 1,1

0 (Ω))
}

equipped by the norm

∥u∥W p(x,t)(ΩT ) := ∥u∥Lp(x,t)(ΩT ) + ∥∇u∥Lp(x,t)(ΩT ).

If g = 0 we write W p(x,t)
0 (ΩT ) instead of W p(x,t)

g (ΩT ). W p(x,t)(ΩT )′ is the dual of
W

p(x,t)
0 (ΩT ) such that

ω ∈ W p(x,t)(ΩT )′ ⇔





∃(ω0, . . . , ωN ), ω0 ∈ Lp′(x,t)(ΩT ), ωi ∈ Lp′(x,t)(ΩT ),
∀ϕ ∈ W

p(x,t)
0 (ΩT ),

⟨ω, ϕ⟩ =
∫

Ω

(
ω0ϕ+

N∑

i=1
ωiDiϕ

)
dxdt.

Let us now define

W (ΩT ) :=
{
ω ∈ W p(x,t)(ΩT ) : ωt ∈ W p(x,t)(ΩT )′

}
,

such that if ω ∈ W (ΩT ) then there exists ωt ∈ W p(x,t)(ΩT )′ satisfying

< ωt, φ >= −
∫

ΩT

ωφt dxdt, ∀φ ∈ C∞
0 (ΩT ).

The previous equality makes sense due to the inclusions

W p(x,t)(ΩT ) ↪→ L2(ΩT ) ∼= (L2(ΩT ))′ ↪→ W p(x,t)(ΩT )′,

which allow us to identify ω as an element of W p(x,t)(ΩT )′. For more results about
spaces W p(x,t)(ΩT ) and W p(x,t)(ΩT )′ see for instance [4, 16] and references therein.

2.2. IMBEDDING AND TECHNICAL LEMMAS

To derive our existence and regularity results, we will need the following

Lemma 2.1 ([16, Lemma 2.3]). Assume that u ∈ C0([0, T ];L2(Ω)) ∩W p(x,t)
0 (ΩT ) and

the exponent p satisfies the conditions (1.6) and (1.8). Then there exists a constant
C = C(N, p−, p+,diam(Ω)), such that the following estimate

∥u∥p−

Lp(x,t)(ΩT ) ≤ C

(
∥u∥

4p+
N+2
L∞(0,T ;L2(Ω)) + 1

)

∫

ΩT

|∇u|p(x,t) + 1 dxdt


 (2.2)

holds.
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Theorem 2.2 ([16, Theorem 1.3]). Let Ω ⊂ RN an open, bounded Lipschitz domain
with N ≥ 2 and p(x, t) > 2N

N+2 satisfying (1.6) and (1.8). Furthermore, define

p̂(x, t) = max{2, p(x, t)}.

Then the inclusion W (ΩT ) ↪→ Lp̂(x,t)(ΩT ) is compact.

Proposition 2.3. If u ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) and p > 2N

N+2 , then
we have the following estimation



∫

ΩT

|u(x, t)|l dxdt




N
N+p

≤ C



ess sup

t∈(0,T )

∫

Ω

|u(x, t)|2 dxdt+
∫

ΩT

|∇u(x, t)|p dxdt



 ,

(2.3)

where l = pN+2
N .

Proof. Clearly l > 2 for p > 2N
N+2 . Then, by using Proposition 3.1 in Chapter I of [12],

we get

∫

ΩT

|u(x, t)|l dxdt ≤ C


ess sup

t∈(0,T )

∫

Ω

|u(x, t)|2 dxdt




p
N ∫

ΩT

|∇u(x, t)|p dxdt.

Therefore, by applying Young’s inequality we get that


∫

ΩT

|u(x, t)|l dxdt




N
N+p

≤ C



ess sup

t∈(0,T )

∫

Ω

|u(x, t)|2 dxdt+
∫

ΩT

|∇u(x, t)|p dxdt



 .

This completes the proof.

2.3. MOLLIFICATION IN TIME

It would be technically convenient to have at hand a formulation of weak solution
involving the time derivative ut. Unfortunately, solutions of (1.1), whenever they exist,
possess a modest degree of time regularity, and, in general, ut has a meaning only
in the sense of distributions. In order to be nevertheless able to test properly, there
are several possibilities to smooth the solution with respect to the time direction.
To overcome these faculties, we consider the Friedrichs mollifier as was done in [1].
Indeed, taking the kernel

ρ ≥ 0, ρ ∈ C∞
0 (RN ), ρ(x) ≡ 0 for |x| ≥ 1,

∫

RN

ρ(x) dx = 1,
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we introduce regularization of f ∈ L1(RN+1) by

Ihf = fh(x, t) = h−1
t+h∫

t

∫

RN

f(y, τ)ρh(x− y) dydτ,

ρh(x) = h−Nρ(h−1x)

(2.4)

The basic property of the mollification (2.4), which can be retrieved from [1, Lemma 3.1],
is summarized in the following:
Lemma 2.4. If the exponent p satisfies the conditions (1.6) and (1.8), then fh → f
in Lp(x,t)(ΩT ) as h → 0, for any f ∈ Lp(x,t)(ΩT ).

2.4. FORMULATION OF THE PROBLEM AND MAIN RESULTS

We consider a space-time cylinder ΩT ≡ Ω×(0, T ), where Ω ∈ RN is a bounded domain
with N ≥ 2. On the lateral boundary ∂Ω × (0, T ), we consider the Cauchy–Dirichlet
boundary data given by

{
g ∈ C0([0, T ];L2(Ω)) ∩W p(x,t)(ΩT ) ∩W q(x,t)(ΩT ),
∂tg ∈ L(p−)′(0, T ;W−1,(p−)′(Ω)).

(2.5)

As for the right-hand side of (1.1), we assume that

F ∈ Lp(x,t)(ΩT ) ∩ Lq(x,t)(ΩT ). (2.6)

In the following, we describe the concept of weak solutions to Cauchy–Dirichlet
problems as for instance those considered in (1.1).
Definition 2.5. Assume that g and F fulfill (2.5) and (2.6). We define a measurable
map u : ΩT → R in the class

u ∈ C0([0, T ];L2(Ω)) ∩W p(x,t)
g (ΩT ) ∩W q(x,t)

g (ΩT ) with ∂tu ∈ W s(x,t)(ΩT )′,

where s(x, t) = max{p(x, t), q(x, t)} as a weak solution to the parabolic double phase
associated to (1.1) if and only if the variational equality



∫

Ω

uϕdx




T

0

+
∫

ΩT

−uϕt +A(x, t,∇u).∇ϕ dxdt

=
∫

ΩT

[
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

]
∇ϕ dxdt

(2.7)

holds for every test function ϕ ∈ W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ) with ∂tϕ ∈ W s(x,t)(ΩT )′.

We can write (2.7) in a way that is technically more convenient and involves the
discrete time derivative. This can be accomplished by using the Friedrichs mollifier of
a function. Then, we get the following lemma.
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Lemma 2.6. If u is a solution of equation (1.1) in the sense of Definition 2.5, then
for uh defined in (2.4), and for any 0 ≤ t1 ≤ t2 ≤ T , the following relation

t2∫

t1

∫

Ω

{
uh,tφ+ [A(x, t,∇u)]h .∇φ

−
[
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

]
∇φ
}
dxdt = 0,

(2.8)

holds for any tested function φ ∈ W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ) with ∂tφ ∈ W s(x,t)(ΩT )′.

Proof. We introduce the following regularization operator:

I−hf = f−h(x, t) = h−1
t∫

t−h

∫

RN

f(y, τ)ρh(x− y) dydτ.

Consider equation (2.7) with

ϕ = I−h(φχ), φ ∈ W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ) with ∂tφ ∈ W s(x,t)(ΩT )′.

Since

−
∫

ΩT

u
∂I−h(φχ)

∂t
dxdt =

t2∫

t1

∫

Ω

uh,tφχ dxdt,

it follows that

t2∫

t1

∫

Ω

[
uh,tφχ+ [A(x, t,∇u)]h .∇(φχ)

−
[
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

]
∇(φχ)

]
dxdt = 0.

Passing here from χ ∈ C∞
0 (t1, t2) to characteristic function of the segment [t1, t2],

we obtain the desired relation (2.8).

The main results are given in the following theorems.

Theorem 2.7. Assume that g and F fulfill the assumptions (2.5) and (2.6). Then,
there exists a unique solution

u ∈ C0([0, T ];L2(Ω)) ∩W p(x,t)
g (ΩT ) ∩W q(x,t)

g (ΩT ) with ∂tu ∈ W s(x,t)(ΩT )′
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of the problem (1.1) in the sense of Definition 2.5 such that

sup
0≤t≤T

∫

Ω

|u(·, t)|2 dx+
∫

ΩT

|∇u|p(x,t) dxdt+
∫

ΩT

|∇u|q(x,t) dxdt

≤ C

{
∥g(·, 0)∥2

L2(Ω) + ∥g∥L∞(0,T ;L2(Ω)) + ∥∂tg∥(p−)′

L(p−)′ (0,T ;W −1,(p−)′ (Ω))

+
∫

ΩT

|∇g|p(x,t) + |∇g|q(x,t) dxdt+
∫

ΩT

|F |p(x,t) + |F |q(x,t) dxdt

}

with a positive constant

C = C(N,α1, p
±, q±,diam(Ω)).

Theorem 2.8. Let the assumptions (1.2)-(1.8), (2.5) and (2.6) be satisfied. Let u be
the solution to (1.1) in the sense of Definition 2.5. Then u is locally bounded in ΩT .

Theorem 2.9. Let the conditions of Theorem 2.8 be fulfilled. Additionally, we assume
that g ∈ C1([0, T ];W 1,∞(Ω)) and

∣∣∣div(|F |p(x,t)−2F + a(x, t)|F q(x,t)−2F |)
∣∣∣ ≤ h(x, t), (2.9)

where h is a nonnegative function and h ∈ L1(0, T ;L∞(Ω)). Then, if u is a weak
solution to (1.1) in the sense of Definition 2.5, u is globally bounded in ΩT .

3. EXISTENCE AND UNIQUENESS

In this section, we will establish some existence results to problem (1.1). These results
will be used to prove our main existence Theorem. The starting point is to consider
the following homogeneous case of equation (1.1).





ut − divA(x, t,∇u)
= −div

(
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

)
in ΩT ,

u = 0 on ∂Ω × (0, T ),
u(·, 0) = g(·, 0) on Ω × {0}.

(3.1)

Furthermore, initial values g(·, 0) ∈ L2(Ω) are given and the vector field A(x, t,∇u)
satisfies (1.3)–(1.5) and F ∈ Lp(x,t)(ΩT ) ∩ Lq(x,t)(ΩT ), also the exponents p and q are
complied with (1.6)–(1.8). Then, we have the following lemma.
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Lemma 3.1. There exists at least one weak solution

u ∈ C0([0, T ];L2(Ω)) ∩W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ) with ∂tu ∈ W s(x,t)(ΩT )′

to the equation (3.1) in the sense of Definition 2.5 such that

sup
0≤t≤T

∫

Ω

|u(·, t)|2 dx+
∫

ΩT

|∇u|p(x,t) dxdt+
∫

ΩT

|∇u|q(x,t) dxdt

≤ C

{
∥g(·, 0)∥2

L2(Ω) +
∫

ΩT

|F |p(x,t) + |F |q(x,t) dxdt

} (3.2)

with a positive constant

C = C(N,α1, p
±, q±,diam(Ω))

and
s(x, t) = max(p(x, t), q(x, t)).

Proof. Let {ϕk}∞
i=1 ⊂ W 1,p+

0 ∩W 1,q+

0 be an orthonormal basis in L2(Ω). Next, we fix
a positive integer m and define the approximate solution to (3.1) as follows

um(x, t) =
m∑

i=1
C

(m)
i (t)ϕi(x),

where the coefficients C(m)
i (t) are defined via the identity

∫

Ω

{
um

t ϕi(x) +
[
A(x, t,∇um) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇ϕi(x)

}
dx = 0

(3.3)
for i = 0, . . . ,m and t ∈ (0, T ) with the initial condition

{
(Cm

i )′(t) = Fi(t, C(m)
1 (t), . . . , C(m)

m (t)),
C

(m)
i (0) =

∫
Ω g(·, 0)ϕi(x) dx, i = 1, . . . ,m,

(3.4)

where we abbreviated

Fi(t, ·) = −
∫

Ω

[
A(·, t,∇u(m))

− |F (·, t)|p(·,t)−2F (·, t) − a(x, t)|F (·, t)|q(·,t)−2F (·, t)
]
∇ϕi(x) dx,

since {ϕi(x)} is orthonormal in L2(Ω). Therefore, by Theorem 1.44 in [19], we assume
that for every finite system (3.4), there exists a solution C(m)

i (t), i = 1, . . . ,m, on the
interval (0, Tm) for some Tm > 0. Next, we multiply (3.3) by C

(m)
i (t), we integrate
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the resulting equation over (0, τ) for an arbitrary τ ∈ (0, Tm), and we sum up the
resulting equation over i = 1, . . . ,m. Then, we obtain

0 =
m∑

i=1

∫

Ωτ

u
(m)
t ϕi(x)C(m)

i (t) +
[
A(x, t,∇u(m))

− |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
.∇ϕi(x)C(m)

i (t) dxdt

=
∫

Ωτ

u
(m)
t u(m) +

[
A(x, t,∇u(m))

− |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
.∇u(m) dxdt.

(3.5)

Since g(·, 0) ∈ L2(Ω) and {ϕi}∞
i=1 ∈ L2(Ω), we get the following estimate

∫

Ω

|u(m)(·, 0)|2 dx

=
∫

Ω

∣∣∣∣∣
m∑

i=1
C

(m)
i (0)ϕi(x)

∣∣∣∣∣

2

dx =
∫

Ω

∣∣∣∣∣∣

m∑

i=1

∫

Ω

g(·, 0)ϕi(x) dx ϕi(x)

∣∣∣∣∣∣

2

dx

≤
∫

Ω

∣∣∣∣∣∣

∞∑

i=1

∫

Ω

g(·, 0)ϕi(x) dx ϕi(x)

∣∣∣∣∣∣

2

dx =
∫

Ω

|g(·, 0)|2 dx,

where we used the fact that

g(·, 0) =
∞∑

i=1

∫

Ω

g(x, 0)ϕi(x) dx ϕi(x),

since {ϕi}∞
i=1 is an orthonormal basis in L2(Ω). Therefore, the first term in the

right-hand side of (3.5) reads
∫

Ωτ

u
(m)
t u(m) dxdt

= 1
2

∫

Ωτ

∂t

[
u(m)

]2
dxdt = 1

2

∫

Ω

∣∣∣u(m)(·, τ)
∣∣∣
2
dx− 1

2

∫

Ω

∣∣∣u(m)(·, 0)
∣∣∣
2
dx

≥ 1
2

∫

Ω

∣∣∣u(m)(·, τ)
∣∣∣
2
dx− 1

2 ∥g(·, 0)∥2
L2(Ω) ,

for all τ ∈ (0, Tm).
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Therefore, (3.5) becomes

1
2

∫

Ω

|u(m)(·, τ)|2 dx+
∫

Ωτ

A(x, t,∇u(m)).∇u(m) dxdt

≤ 1
2∥g(·, 0)∥2

L2(Ω) +
∫

Ωτ

[
|F |p(x,t)F + a(x, t)|F |q(x,t)−2F

]
∇u(m) dxdt,

(3.6)

for all τ ∈ (0, Tm). Next, by using (1.2)–(1.4) on the left-hand side of (3.6) and
estimating the right-hand side of (3.6) by the absolute value, we obtain the following

1
2

∫

Ω

|u(m)(·, τ)|2 dx+ C1

∫

Ωτ

|∇u(m)|p(x,t) dxdt+ α1C1

∫

Ωτ

|∇u(m)|q(x,t) dxdt

≤ 1
2∥g(·, 0)∥2

L2(Ω) +
∫

Ωτ

p(x, t) − 1
p(x, t) ε

1
1−p(x,t) |F |p(x,t) dxdt

+
∫

Ωτ

1
p(x, t)ε|∇u

(m)|p(x,t) dxdt+
∫

Ωτ

q(x, t) − 1
q(x, t) ε

1
1−q(x,t) |F |q(x,t) dxdt

+
∫

Ωτ

1
q(x, t)ε|∇u

(m)|q(x,t) dxdt

≤ 1
2∥g(·, 0)∥2

L2(Ω) + C

∫

Ωτ

|F |p(x,t) + |F |q(x,t) dxdt

+ ε

p−

∫

Ωτ

|∇u(m)|p(x,t) dxdt+ ε

q−

∫

Ωτ

|∇u(m)|q(x,t) dxdt,

for a.e. τ ∈ (0, Tm), where we used Young’s inequality for ε ∈ (0, 1). Then, we obtain

sup
0≤τ≤Tm

∫

Ω

|u(m)(·, τ)|2 dx+
∫

Ωτ

|∇u(m)|p(x,t) dxdt+
∫

Ωτ

|∇u(m)|q(x,t) dxdt

≤ ∥g(·, 0)∥2
L2(Ω) + C

∫

ΩTm

|F |p(x,t) + |F |q(x,t) dxdt.

(3.7)

Therefore, u(m) is uniformly bounded in L∞(0, Tm;L2(Ω)) and ∇u(m) is uniformly
bounded in Lp(x,t)(ΩTm

) ∩ Lq(x,t)(ΩTm
). Next, by using (2.2) and (3.7) we get
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the following estimate

∥u(m)∥Lp(x,t)(ΩTm )

≤ C

{[∥∥∥u(m)
∥∥∥

4p+
N+2

L∞(0,Tm;L2(Ω))
+ 1
]
∥g(·, 0)∥2

L2(Ω)

+ C

∫

ΩTm

1 + |F |p(x,t) + |F |q(x,t) dxdt

} 1
p−

≤ C

{
∥g(·, 0)∥2

L2(Ω) +
∫

ΩTm

1 + |F |p(x,t) + |F |q(x,t) dxdt

} 1
p−

(
4p+
N+2 +1

)

.

(3.8)

By the same method, we get also

∥u(m)∥Lq(x,t)(ΩTm )

≤ C

{
∥g(·, 0)∥2

L2(Ω) +
∫

ΩTm

1 + |F |p(x,t) + |F |q(x,t) dxdt

} 1
q−

(
4q+
N+2 +1

)

.
(3.9)

Consequently, we have shown that u(m) is uniformly bounded in W p(x,t)(ΩTm) ∩
W q(x,t)(ΩTm) and L∞(0, Tm;L2(Ω)) independently of m. As a result, the solution of
system (3.4) can be continued to the maximal interval (0, T ).

Our next aim is to derive the uniform boundedness of u(m)
t over W s(x,t)(ΩT )′.

For this reason, we introduce the following subspace

Wm(ΩT ) =
{
η : η =

m∑

i=1
diϕi, di ∈ C1([0, T ])

}
⊂ W

p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ).

Next, we choose

φ(x, t) =
m∑

i=1
di(t)ϕi(x) ∈ Wm(ΩT ) with di(0) = di(T ) = 0

as a test function in (3.3). Then, we get

−
∫

ΩT

u(m)φt dxdt =
∫

ΩT

um
t φ dxdt

= −
∫

ΩT

[
A(x, t,∇u(m)) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt.
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Note that ∂tφ exists since di ∈ C([0, T ]). Then, we get the following estimate
∣∣∣∣∣∣

∫

Ω

u(m)φt dxdt

∣∣∣∣∣∣

≤
∫

ΩT

[
|A(x, t,∇u(m))| + |F |p(x,t)−1 + a(x, t)|F |q(x,t)−1

]
|∇φ| dxdt

≤ C

∫

ΩT

[
|∇u(m)|p(x,t)−1 + |∇u(m)|q(x,t)−1

+ |F |p(x,t)−1 + |F |q(x,t)−1
]

(|∇φ| + |φ|) dxdt

≤ C

{∥∥∥|∇u(m)|p(x,t)−1 + |F |p(x,t)−1
∥∥∥

Lp′(x,t)(ΩT )
∥φ∥W 1,p(x,t)(ΩT )

+
∥∥∥|∇u(m)|q(x,t)−1 + |F |q(x,t)−1

∥∥∥
Lq′(x,t)(ΩT )

∥φ∥W 1,q(x,t)(ΩT )

}
.

(3.10)

Next, we are going to prove the boundedness of terms in the right-hand side of (3.1).
Therefore, by using (2.1) and (3.7), we obtain

∥∥∥∥|∇u(m)|p(x,t)−1 + |F |p(x,t)−1
∥∥∥∥

Lp′(x,t)(ΩT )

≤ C





∫

ΩT

|∇u(m)|p(x,t) dxdt+
∫

ΩT

|F |p(x,t) dxdt+ 1





1
p−

≤ C(N, p+, p−,diam(Ω)).
Also, by the same method we get

∥∥∥∥|∇u(m)|q(x,t)−1 + |F |q(x,t)−1
∥∥∥∥

Lq′(x,t)(ΩT )
≤ C(N, q+, q−,diam(Ω)).

Thus, by combining all the previous estimates into (3.10), we obtain
∣∣∣∣∣∣

∫

ΩT

u
(m)
t φ dxdt

∣∣∣∣∣∣
≤ C(N,α1, p

±, q±,diam(Ω))∥φ∥W s(x,t)(ΩT )

where s(x, t) = max{p(x, t), q(x, t)}. This shows that u(m)
t ∈ W s(x,t)(ΩT )′. Accordingly,

by (3.7), (3.8), and (3.9) we get that




u(m) ∈ W
p(x,t)
0 (ΩT ) ⊆ Lp−(0, T ;W 1,p−

0 (Ω)),
u(m) ∈ W

q(x,t)
0 (ΩT ) ⊆ Lq−(0, T ;W 1,q−

0 (Ω)),
u(m) ∈ L∞(0, T ;L2(Ω)),
u

(m)
t ∈ W s(x,t)(ΩT )′.
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Therefore, there exists a subsequence {u(m)} and a limit map u such that





u(m) ⇀∗ u in L∞(0, T ;L2(Ω)),
∇u(m) ⇀ ∇u in Lp(x,t)(ΩT ),
∇u(m) ⇀ ∇u in Lq(x,t)(ΩT ),
u

(m)
t ⇀ ut in W s(x,t)(ΩT )′.

Consequently, by using Theorem 2.2, we get

{
u(m) → u strongly in Lŝ(x,t)(ΩT ),
u(m) → u a.e in ΩT

with ŝ(x, t) = max{2, s(x, t)}. Further, the growth condition (1.3) of A(x, t, ·) and the
energy estimate (3.7) imply that sequence {A(x, t,∇u(m))}m∈N is bounded Ls′(x,t)(ΩT ).
Then, for another subsequence there exists A0 ∈ Ls′(x,t)(ΩT ) such that

A(x, t,∇u(m)) ⇀ A0 in Ls′(x,t)(ΩT ).

We claim that A(x, t,∇u) = A0 for almost every (x, t) ∈ ΩT . Indeed, we have for
every s ≤ m, where m ∈ N is fixed, that

−
∫

ΩT

u
(m)
t φ+

[
A(x, t,∇u(m)) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt = 0,

(3.11)
for all test functions φ ∈ Ws(ΩT ). Then, by passing to the limit m → ∞, we have

−
∫

ΩT

utφ+
[
A0 − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt = 0, (3.12)

for all φ ∈ Ws(ΩT ) ⊂ W
p(x,t)
0 (ΩT ) ∩ W

q(x,t)
0 (ΩT ). According to the monotonicity

assumption (1.5), we get

∫

ΩT

(
A(x, t,∇u(m)) −A(x, t,∇ω)

)
∇(u(m) − ω) dxdt ≥ 0, (3.13)
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for all ω ∈ Ws(ΩT ). Therefore, by adding (3.11) to (3.13) with φ = u(m) − ω, we get

0 ≤ −
∫

ΩT

u
(m)
t (u(m) − ω) +

[
A(x, t,∇u(m))

− |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇(u(m) − ω) dxdt

+
∫

ΩT

(
A(x, t,∇u(m)) −A(x, t,∇ω)

)
∇(u(m) − ω) dxdt

= −
∫

ΩT

u
(m)
t (u(m) − ω) +

[
A(x, t,∇ω)

− |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇(u(m) − ω) dxdt.

(3.14)

As a result, by testing (3.12) with φ = u(m) − ω, subtracting the resulting from (3.14)
and passing to the limit m → ∞, we arrive at

−
∫

ΩT

[A0 −A(x, t,∇u)] ∇(u− ω) dxdt ≥ 0,

for all ω ∈ Ws(ΩT ). SinceWs(ΩT ) ⊂ W
p(x,t)
0 (ΩT )∩W q(x,t)

0 (ΩT ) is dense, we are allowed
to choose ω ∈ W

p(x,t)
0 (ΩT ) ∩W q(x,t)

0 (ΩT ). On that account we choose ω = u± εξ with
ξ ∈ W

p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ) and ε is an arbitrary constant such that

−ε
∫

ΩT

[A0 −A(x, t,∇(u± εξ))] ∇ξ dxdt ≥ 0.

Therefore, ∫

ΩT

[A0 −A(x, t,∇(u± εξ))] ∇ξ dxdt = 0.

Finally, after passing to the limit ε → 0 we obtain
∫

ΩT

[A0 −A(x, t,∇u)] ∇ξ dxdt = 0, ∀ξ ∈ W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT ).

Hence, A0 = A(x, t,∇u) a.e. in ΩT .
To complete the proof, we need to show that u(·, 0) = g(·, 0). First of all, we should

mention that we get from (3.12) and integration by parts the following
∫

ΩT

uφt −
[
A(x, t,∇u) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt

=
∫

Ω

(uφ)(·, 0) dx,
(3.15)
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for all φ ∈ W
p(x,t)
0 (ΩT ) ∩W q(x,t)

0 (ΩT ) with φ(·, T ) = 0. Moreover, as in (3.11) we have
that
∫

ΩT

u(m)φt −
[
A(x, t,∇u(m)) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt

=
∫

Ω

(u(m)φ)(·, 0) dx,
(3.16)

for all φ ∈ W
p(x,t)
0 (ΩT ) ∩ W

q(x,t)
0 (ΩT ) with φ(·, T ) = 0. Also, from the definition

of u(m) we get

u(m)(·, 0) =
m∑

i=1
Cm

i (0)ϕi(x) =
m∑

i=1

∫

Ω

g(·, 0)ϕi(x) dx ϕi(x)

→
m→∞

∞∑

i=1

∫

Ω

g(·, 0)ϕi(x) dx ϕi(x) = g(·, 0).

That being so, after passing to the limit m → ∞ in (3.16), we have
∫

ΩT

uφt −
[
A(x, t,∇u) − |F |p(x,t)−2F − a(x, t)|F |q(x,t)−2F

]
∇φ dxdt

=
∫

Ω

(gφ)(·, 0) dx.
(3.17)

Hence, by comparing (3.15) and (3.17) we get the desired result.

Now, the existence of solutions to the initial value problem (3.1) can be extended
to our main problem as follows

Proof. As a consequence of Lemma 3.1, there exists at least one solution

v ∈ L∞(0, T ;L2(Ω)) ∩W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT )

to the following problem




vt − divÃ(x, t,∇v)
= −div

(
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

)
− ∂tg in ΩT ,

v = 0 on ∂Ω × (0, T ),
v(·, 0) = g(·, 0) − g on Ω × {0},

where
Ã(x, t,∇v) = A(x, t,∇(v + g)).
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Knowing that ∂tg ∈ L(p−)′(0, T ;W−1,(p−)′), we have
∫

ΩT

∂tg v dxdt ≤ ∥∂tg∥L(p−)′ (0,T ;W −1,(p−)′ ) ∥v∥Lp− (0,T ;W 1,p− )

≤ C(ε) ∥∂tg∥(p−)′

L(p−)′ (0,T ;W −1,(p−)′ )
+ ε

∫

Ω

|∇v|p−
dxdt

≤ C(ε) ∥∂tg∥(p−)′

L(p−)′ (0,T ;W −1,(p−)′ )
+ ε

∫

Ω

|∇v|p(x,t) dxdt+ 1,

where we used (2.1) and Young’s inequality. Therefore, by using the proof of Lemma 3.1
with u = v + g, it is easy to show that u is the desired solution to (1.1) with the
following energy estimate

sup
0≤t≤T

∫

Ω

|u(·, t)|2 dx+
∫

ΩT

|∇u|p(x,t) dxdt+
∫

ΩT

|∇u|q(x,t) dxdt

≤ C

{
∥g(·, 0)∥2

L2(Ω) + ∥g∥L∞(0,T ;L2(Ω)) + ∥∂tg∥(p−)′

L(p−)′ (0,T ;W −1,(p−)′ (Ω))

+
∫

ΩT

|∇g|p(x,t) + |∇g|q(x,t) dxdt+
∫

ΩT

|F |p(x,t) + |F |q(x,t) dxdt

}
,

where we used the fact that

|∇u|p(x,t) ≤ 2p+−1
[
|∇v|p(x,t) + |∇g|p(x,t)

]
,

which implies that

|∇u|p(x,t) − 2p+−1|∇g|p(x,t) ≤ 2p+−1|∇v|p(x,t),

and also by the same method that

|∇u|q(x,t) − 2q+−1|∇g|q(x,t) ≤ 2q+−1|∇v|q(x,t) and |u|2 − 2|g|2 ≤ 2|v|2.

Finally, we show the uniqueness of the weak solution. Let u1 and u2 be the solutions
of (1.1). We consider φ = u1 − u2 as a test function in the weak formulation of both
solutions. Then, by subtracting we obtain

∫

ΩT

[(u1 − u2)(u1 − u2)t − (A(x, t,∇u1) −A(x, t,∇u2)∇(u1 − u2))] dxdt = 0.

Therefore, by using (1.5) we arrive at

0 ≥ 1
2

∫

ΩT

∂t(u1 − u2)2 dxdt =
∫

ΩT

(u1 − u2)(u1 − u2)t dxdt.
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Then, we get

0 ≤ 1
2∥u1(t) − u2(t)∥2

L2(Ω) ≤ 0, ∀t ∈ (0, T ],

since u1(·, 0) = u2(·, 0) = g(·, 0). Hence, we get the desired result.

4. LOCAL BOUNDEDNESS OF THE SOLUTION

Let K(ρ) = {x ∈ Ω : |x| < ρ
β
α } and 0 < ρ < 1 be small enough such that

Qloc = K(ρ
β
α ) × (t0 − ρβ , t0) ⊂ ΩT ,

and

2N
N + 2 < p−

loc = ess inf
Qloc

p(x, t) ≤ p(x, t) ≤ l = β
2 +N

N
, ∀(x, t) ∈ Qloc, (4.1)

and

2N
N + 2 < q−

loc = ess inf
Qloc

q(x, t) ≤ q(x, t) ≤ l = β
2 +N

N
, ∀(x, t) ∈ Qloc, (4.2)

where β = max(p−
loc, q

−
loc) and α = max{p+, q+}. We claim that u is bounded in

K( 1
2ρ

β
α ) × (t0 − 1

2ρ
β , t0). To prove this, we take ρ0, ρ1, τ0 and τ1 such that

1
2ρ

β
α ≤ ρ1 < ρ0 ≤ ρ

β
α , t0 − ρβ ≤ τ0 < τ1 ≤ t0 − 1

2ρ
β .

Let ξ(x) and ψ(t) be piecewise linear continuous functions depend respectively on x
and t such that

ξ(x) =
{

1, for |x| ≤ ρ1,

0, for |x| ≥ ρ0,
and ψ(t) =

{
1, for t ≥ τ1,

0, for t ≤ τ0.

Then, we have

0 ≤ |ξ′| ≤ 1
ρ0 − ρ1

and 0 ≤ ψ′ ≤ 1
τ1 − τ0

.

In the weak formulation (2.8) we take φ = ξαψα(uh −k)+, where uh are regularizations
of the form (2.4), k a positive constant and (uh − k)+ = max{uh − k, 0}. Then, for all
t ∈ (0, T ] we have
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0 =
∫

Ωt

uh,tφ+ [A(x, t,∇u)]h.∇φ

−
[
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

]
∇φ dxdt

→
h→0

−
∫

Ωt

uφt dxdt+
∫

Ω

uφ dx

∣∣∣∣
t

0
+
∫

Ωt

A(x, t,∇u).∇φ dxdt

−
∫

Ωt

[
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

]
∇φ dxdt

≥ −α
2

∫

Ωt

ξαψα−1ψ′(u− k)2
+ dxdt+ 1

2

∫

Ω

φ(x, t)(u− k)+(x, t) dxdt

+ C

∫

Ωt

ξαψα
[
|∇u|p(x,t) + a(x, t)|∇u|q(x,t)

]
dxdt

− C

∫

Ωt

αξα−1ξ′ψα(u− k)+

[
|∇u|p(x,t)−1 + a(x, t)|∇u|q(x,t)−1

]
dxdt

−
∫

Ωt

[
|F |p(x,t)−1F + |F |q(x,t)−1F

]
∇φ dxdt.

(4.3)

Next, by using Young’s inequality we get the following estimates
∫

Ωt

ξα−1ξ′ψα(u− k)+

[
|∇u|p(x,t)−1 + a(x, t)|∇u|q(x,t)−1

]
dxdt

≤ ε

∫

K(k,ρ0,τ0)

ξ
(α−1)p(x,t)

p(x,t)−1 ψα|∇u|p(x,t) dxdt

+ C(ε)
∫

K(k,ρ0,τ0)

ψα(u− k)p(x,t)|∇ξ|p(x,t) dxdt

+ υ

∫

K(k,ρ0,τ0)

ξ
(α−1)q(x,t)

q(x,t)−1 ψα|∇u|q(x,t) dxdt

+ C(υ)
∫

K(k,ρ0,τ0)

ψα(u− k)q(x,t)|∇ξ|q(x,t) dxdt

≤ ε

∫

K(k,ρ0,τ0)

ξαψα|∇u|p(x,t) dxdt+ C

(ρ0 − ρ1)p+

∫

K(k,ρ0,τ0)

(u− k)p(x,t) dxdt

+ υ

∫

K(k,ρ0,τ0)

ξαψα|∇u|q(x,t) dxdt+ C

(ρ0 − ρ1)q+

∫

K(k,ρ0,τ0)

(u− k)q(x,t) dxdt,

(4.4)
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and also,

∫

Ωt

[
|F |p(x,t)−1 + |F |q(x,t)−1

]
∇φ dxdt

≤ C(ε)
{ ∫

K(k,ρ0,τ0)

|F |p(x,t) dxdt

+ 1
(ρ0 − ρ1)p+

∫

K(k,ρ0,τ0)

(u− k)p(x,t) dxdt

+
∫

K(k,ρ0,τ0)

|F |q(x,t) dxdt+ 1
(ρ0 − ρ1)q+

∫

K(k,ρ0,τ0)

(u− k)q(x,t) dxdt

}

+ ε

{ ∫

K(k,ρ0,τ0)

ξαψα|∇u|p(x,t) dxdt+
∫

K(k,ρ0,τ0)

ξαψα|∇u|q(x,t) dxdt

}
,

(4.5)

where we used the fact that 0 ≤ ξ ≤ 1, p(x,t)
p(x,t)−1 ≥ α

α−1 and q(x,t)
q(x,t)−1 ≥ α

α−1 which

imply that ξ
(α−1)p(x,t)

p(x,t)−1 ≤ ξα and ξ
(α−1)q(x,t)

q(x,t)−1 ≤ ξα. Also, we took

K(k, ρ0, τ0) = {K(ρ0) × (τ0, t0)} ∩ {u > k}

as the effective domain of integration. Therefore, by combining (4.4) and (4.5) into
(4.3) we arrive at

ess sup
t∈(0,t0)

∫

Ω

ξαψα(u− k)2
+ dx

+
∫

K(k,ρ0,τ0)

ξαψα|∇u|p−
loc dxdt+

∫

K(k,ρ0,τ0)

ξαψα|∇u|q−
loc dxdt

≤ C

{
1

τ1 − τ0

∫

K(k,ρ0,τ0)

|u− k|2 dxdt

+ 1
(ρ0 − ρ1)p+

∫

K(k,ρ0,τ0)

(u− k)p(x,t) dxdt

+
∫

K(k,ρ0,τ0)

|F |p(x,t) + |F |q(x,t) dxdt+
∫

K(k,ρ0,τ0)

ξαψα dxdt

}
,

(4.6)
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where C is a positive constant independent of k, ρ0, ρ1, τ0 and τ1. For l = βN+2
N ,

it follows from Proposition 2.3 that



∫

K(k,ρ2,τ2)

(u− k)l dxdt




N
N+β

≤ C

{ ∫

K(k,ρ1,τ1)

|∇u|p−
loc + |∇u|q−

loc dxdt+ ess sup
t∈(0,t0)

∫

K(ρ1)

|(u− k)+|2 dx

+ 1
(ρ1 − ρ2)p+

∫

K(k,ρ1,τ1)

(u− k)p−
loc dxdt

+ 1
(ρ1 − ρ2)q+

∫

K(k,ρ1,τ1)

(u− k)q−
loc dxdt

}
,

(4.7)

for all 1
2ρ

β
α ≤ ρ2 < ρ1 < ρ0 ≤ ρ

β
α and t0 − ρβ ≤ τ0 < τ1 < τ2 ≤ t0 − 1

2ρ
β . Afterward,

by combining (4.6) and (4.7) and taking ρ0 − ρ1 = ρ1 − ρ2 and τ1 − τ0 = τ2 − τ1,
we obtain




∫

K(k,ρ2,τ2)

(u− k)l dxdt




N
N+β

≤ C

{
1

τ2 − τ0

∫

K(k,ρ0,τ0)

|u− k|2 dxdt+ 1
(ρ0 − ρ2)p+

∫

K(k,ρ0,τ0)

(u− k)p(x,t) dxdt

+ 1
(ρ0 − ρ2)q+

∫

K(k,ρ0,τ0)

(u− k)q(x,t) dxdt

+
∫

K(k,ρ0,τ0)

|F |p(x,t) + |F |q(x,t) + 1 dxdt
}
,

where we used (2.1). Since β > 2N
N+2 which implies that l > 2 and by using (4.1) and

(4.2) we get the following estimates

(u− k)p(x,t) ≤ (u− k)up(x,t)−1 = (u− k)ul−1up(x,t)−l ≤ C(u− k)ul−1

= C(u− k)(u− k + k)l−1 ≤ C
(
(u− k)l + (u− k)kl−1)

≤ C
(
(u− k)l + kl

)
,

and also, by the same method

(u− k)q(x,t) ≤ C
(
(u− k)l + kl

)
.
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Therefore, if k ≥ k0 (for k0 > 0 large enough) we get




∫

K(k,ρ2,τ2)

(u− k)l dxdt




N
N+β

≤ C

{
1

τ2 − τ0

( ∫

K(k,ρ0,τ0)

|u− k|l dxdt
) 2

l

|K(k, ρ0, τ0)|1− 2
l

+ 1
(ρ0 − ρ2)α

[ ∫

K(k,ρ0,τ0)

(u− k)l dxdt+Kl |K(k, ρ0, τ0)|
]

+ |K(k, ρ0, τ0)|
}
.

(4.8)

If k > h ≥ k0, we have

|K(k, ρ0, τ0)| ≤
∫

K(k,ρ0,τ0)

∣∣∣∣
u− h

k − h

∣∣∣∣
l

dxdt ≤
∫

K(h,ρ0,τ0)

∣∣∣∣
u− h

k − h

∣∣∣∣
l

dxdt.

Then (4.8) can be rewritten as




∫

K(k,ρ2,τ2)

(u− k)l dxdt




N
N+β

≤ C

{
1

τ2 − τ0
(k − h)2−l

∫

K(k,ρ0,τ0)

(u− h)l dxdt

+ 1
(ρ0 − ρ2)α

(
1 +

(
k

k − h

)l
) ∫

K(k,ρ0,τ0)

(u− h)l dxdt

+ (k − h)−l

∫

K(k,ρ0,τ0)

(u− h)l dxdt

}
,

(4.9)

for all k > h ≥ k0, 1
2ρ

β
α ≤ ρ2 < ρ0 ≤ ρ

β
α , t0 − ρβ ≤ τ0 < τ2 ≤ t0 − 1

2ρ
β . Let ε > 0

be determined. Considering the absolute continuity of the Lebesgue integral, we take
H > k0 large enough such that

t0∫

t0−ρβ

∫

K(ρ
β
α )

(u−H)l
+ dxdt ≤ ερN+β . (4.10)
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For m = 0, 1, . . ., set

km = 2H − H

2m
, ρm =

(
1
2 + 1

2m+1

)
ρ

β
α , τm = t0 − 1

2ρ
β − 1

2m+1 ρ
β ,

and
Jm =

∫

K(km,ρm,τm)

(u− km)l dxdt.

Since the constant C in (4.9) is independent of h, k, ρ0, ρ2, τ0 and τ2, we substitute
the previous data respectively with km, km+1, ρm, ρm+1, τm and τm+1. Thereby,
we get

J
N

N+β

m+1 ≤ C

{
2m+2

ρβ

(
2m+1

H

)l−1

Jm

+ 2m+2

ρβ
(1 + 2(m+2)l)Jm +

(
2(m+1)

H

)l

Jm

}
.

(4.11)

By taking H > 1, we can simplify (4.11) as follows:

J
N

N+β

m+1 ≤ CJ
N

N+β
m

{
2ml

ρβ
J

β
N+β

m + 2mlJ
β

N+β
m

}
. (4.12)

Since (4.10) implies that J0 ≤ ερN+β , we can prove by induction for suitable δ ∈ (0, 1)
that

Jm ≤ δmερN+β , for m = 0, 1, . . . (4.13)
In fact, assume that (4.13) holds for m. It follows by combining (4.12) with (4.13) that

J
N

N+β

m+1 ≤ CJ
N

N+β
m

[
2mlδ

mβ
N+β ε

β
N+β + 2mlδ

mβ
N+β ε

β
N+β ρβ

]
.

Since 0 < ρ < 1 and by letting

ε
β

N+β ≤ δ
N

N+β , 2lδ
β

N+β ≤ 1,

we get that
Jm+1 ≤ Cδm+1ερN+β .

By induction, (4.13) holds for all m. As a result, we obtain that

0 = lim
m→∞

Jm =
∫

K(2H, 1
2 ρ

β
α ,t0− 1

2 ρβ)

(u− 2H)l dxdt,

i.e.
ess sup

K( 1
2 ρ

β
α )×(t0− 1

2 ρβ ,t0)

u ≤ 2H.

Hence, we proved that u is locally bounded above in ΩT . Moreover, by substituting −u
for u, we obtain similarly that u is locally bounded below. The proof of Theorem 2.8
is completed.
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5. GLOBAL BOUNDEDNESS OF THE SOLUTION

We begin our proof by assuming that g ∈ C1([0, T ];W 1,∞(Ω)) and F fulfills (2.9).
Afterward, we consider the following problem





vt − divÃ(x, t,∇v)
= −div

(
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

)
− ∂tg in ΩT ,

v = 0 on ∂Ω × (0, T ),
v = g(·, 0) − g on Ω × {0},

(5.1)

where

Ã(x, t,∇v) = A(x, t,∇(g + v)).

By Lemma 3.1, there exists a solution

v ∈ L∞(0, T ;L2(Ω)) ∩W
p(x,t)
0 (ΩT ) ∩W

q(x,t)
0 (ΩT )

with vt ∈ W s(x,t)(ΩT )′ of equation (5.1) in the sense of Definition 2.5. Thereafter,
we introduce the following

vk = min{|v|, k}sign(v) =





k if v > k,

v if |v| ≤ k,

−k if v < −k.
(5.2)

For every m ∈ N, the function v2m−1
k can be taken for test function in the weak

formulation of (5.1) such that we have the following estimate

t∫

0

∫

Ω

vtv
2m−1
k dxdτ =

∫

Ω

vv2m−1
k dx

∣∣∣∣
τ=t

τ=0
−

t∫

0

∫

Ω

v∂t(v2m−1
k ) dxdτ

=
∫

Ω

vv2m−1
k dx

∣∣∣∣
τ=t

τ=0
−

t∫

0

∫

Ω

vk∂t(v2m−1
k ) dxdτ

=
∫

Ω

vv2m−1
k dx

∣∣∣∣
τ=t

τ=0
− 2m− 1

2m

∫

Ω

v2m
k dx

∣∣∣∣
τ=t

τ=0
.

(5.3)
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Next, we have

t∫

0

∫

Ω

Ã(x, t,∇vk).∇v2m−1
k dxdτ

= (2m− 1)
t∫

0

∫

Ω

v
2(m−1)
k Ã(x, t,∇vk)∇vk dxdτ

= (2m− 1)
{ t∫

0

∫

Ω

v
2(m−1)
k A(x, t,∇(vk + g))∇(vk + g) dxdτ

−
t∫

0

∫

Ω

v
2(m−1)
k A(x, t,∇(vk + g))∇g dxdτ

}

= (2m− 1){I1 + I2}.

Therefore, by using (1.2)–(1.4), the assumption on g, Young’s and Hölder’s inequalities
we get the following

I1 ≥ C1

{ t∫

0

∫

Ω

|∇(vk + g)|p(x,t)v
2(m−1)
k dxdτ

+ α1

t∫

0

∫

Ω

|∇(vk + g)|q(x,t)v
2(m−1)
k dxdτ

}
,

and

I2 ≤ C2

{ t∫

0

∫

Ω

|∇(vk + g)|p(x,t)−1v
2(m−1)
k |∇g| dxdτ

+ α1

t∫

0

∫

Ω

|∇(vk + g)|q(x,t)−1v
2(m−1)
k |∇g| dxdτ

}
= C2{I3 + I4},

with

I3 ≤ ε

t∫

0

∫

Ω

|∇(vk + g)|p(x,t)v
2(m−1)
k dxdτ + C(ε)

t∫

0

∫

Ω

|∇g|p(x,t)v
2(m−1)
k dxdτ

≤ ε

t∫

0

∫

Ω

|∇(vk + g)|p(x,t)v
2(m−1)
k dxdτ + C(ε)

t∫

0

|Ω| 1
m



∫

Ω

v2m
k dx




2(m−1)
2m

dτ,
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and

I4 ≤ ε

t∫

0

∫

Ω

|∇(vk + g)|q(x,t)v
2(m−1)
k dxdτ + C(ε)

t∫

0

|Ω| 1
m



∫

Ω

v2m
k dx




2(m−1)
2m

dτ.

Thereafter, since |vk| ≤ k, and by using Hölder’s inequality and (2.9) we get the
following estimate

t∫

0

∫

Ω

[
−div

(
|F |p(x,t)−2F + a(x, t)|F |q(x,t)−2F

)
− ∂tg

]
v2m−1

k dxdt

≤
t∫

0

∫

Ω

(h(x, t) + |∂tg|) v2(m−1)
k vk dxdt

≤ C

t∫

0

|Ω| 1
m



∫

Ω

v2m
k dx




2(m−1)
2m

dτ.

(5.4)

Combining (5.3)–(5.4) into the weak formulation of (5.1), we arrive at
∫

Ω

vv2m−1
k dx

∣∣∣∣
τ=t

τ=0
− 2m− 1

2m

∫

Ω

v2m
k dx

∣∣∣∣
τ=t

τ=0

+
t∫

0

∫

Ω

|∇(vk + g)|p(x,t)v
2(m−1)
k dxdτ +

t∫

0

∫

Ω

|∇(vk + g)|q(x,t)v
2(m−1)
k dxdτ

≤ C

t∫

0

|Ω| 1
m



∫

Ω

v2m
k dx




2(m−1)
2m

dτ.

(5.5)

Next, by introducing the function ym(t) = ∥vk∥L2m(Ω)(t) and using the fact that
vv2m−1

k ≥ v2m
k and v(·, 0)v2m−1

k (·, 0) = v2m(·, 0), we obtain from (5.5) the following

1
2my2m

m (t) ≤ 1
2my2m

m (0) + C|Ω| 1
m

t∫

0

y2(m−1)
m (τ) dτ. (5.6)

Let z(t) be the solution of the following equation

1
2mz2m(t) = 1

2mz2m(0) + C|Ω| 1
m

t∫

0

z2(m−1)(τ) dτ, (5.7)
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with z(0) = ∥v0∥L2m(Ω) + δ, where ∥v0∥L2m(Ω) = ∥v(x, 0)∥L2m(Ω) and δ > 0 is an
arbitrary positive constant. The function z(t) can be constructed as the solution of
the Cauchy problem for the ODE obtained from (5.7) by means of differentiation

{
z′(t) = C|Ω| 1

m z−1, t > 0,
z(0) = ∥v0∥L2m(Ω) + δ.

(5.8)

This equation can be explicitly integrated and the solution of (5.8) has the form

z(t) =
√

2C|Ω| 1
m t+

(
∥v0∥L2m(Ω) + δ

)2
.

By the choice of the initial data ym(0) − z(0) = −δ < 0, which yields ym(t) < y(t) for
all t > 0. Indeed, if the assertion is false then by the monotonicity property of z(t)
and the given initial data, we have that

t∗ = sup{t ≥ 0 : ym(t) < z(t)} < +∞.

Since 0 ≤ ym(t) ≤ k|Ω| 1
m , it follows from (5.6) that t∗ > 0. Therefore, by subtracting

(5.6) from (5.7), we find that

0 = 1
2m

(
y2m

m (t∗) − z2m(t∗)
)

≤ C|Ω| 1
m

t∗∫

0

(
y2(m−1)

m (τ) − z2(m−1)(τ)
)

︸ ︷︷ ︸
<0

dτ

+ 1
2m
(
y2m

m (0) − z2m(0)
)

︸ ︷︷ ︸
<0

< 0,

which is impossible. Thus, ym(t) ≤ z(t) for every m and δ. Letting m → ∞ we conclude
that for every δ > 0

∥vk∥L∞(Ω)(t) ≤
√

2C|Ω| 1
m t+

(
∥v0∥L∞(Ω) + δ

)2 = C(t) ≤ C(T ).

Next, let us choose k ≥ C(T ) + 1. Under this choice of k, we get

vk = min{|v|, k}sign(v) = v.

Hence, since u = v + g is the solution of (1.1) and g ∈ L∞(Ω) we conclude the proof
of Theorem 2.9.
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