ON THE PATH PARTITION OF GRAPHS

Mekkia Kouider and Mohamed Zamime

Communicated by Gyula O.H. Katona

Abstract

Let G be a graph of order n. The maximum and minimum degree of G are denoted by Δ and δ, respectively. The path partition number $\mu(G)$ of a graph G is the minimum number of paths needed to partition the vertices of G. Magnant, Wang and Yuan conjectured that

$$
\mu(G) \leq \max \left\{\frac{n}{\delta+1}, \frac{(\Delta-\delta) n}{(\Delta+\delta)}\right\}
$$

In this work, we give a positive answer to this conjecture, for $\Delta \geq 2 \delta$.
Keywords: path, partition.
Mathematics Subject Classification: 05C20.

1. INTRODUCTION

Throughout the paper, all graphs are finite, simple and undirected. Let G be a graph with vertex-set $V(G)$ and edge-set $E(G)$. We denote by n the order of G. The neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V: u v \in E\}$. The degree of v, denoted by $d(v)$, is the size of its neighborhood. The minimum degree of the graph G is denoted by $\delta(G)$, and the maximum degree by $\Delta(G)$.

Let A and B be two subsets of $V(G)$. Let $\varepsilon(A, B)$ be the number of edges with one end vertex in the set A the other one in the set B.

In this work, we deal with the partition problem. The cover problem and the partition problem constitute a large and important class of well studied problems in the fields of graph theory. A cycle cover of a graph (resp. a path cover) is a set \mathcal{C} of cycles (resp. paths) of the graph such that each vertex belongs to at least one cycle (resp. one path) of \mathcal{C}. Many results on these concepts, have been given in the literature. For example, Kouider [5,6], and Kouider and Lonc [7] studied the problem of covering a graph by a minimum number of cycles. More details and references can be found in the survey of Manuel [12].

Among the many variations of the partition problem, we mention the path partition that has been studied intensively for about sixty years. A family \mathcal{P} of paths is called
a path partition of a graph G if its members cover the vertices of the graph and are vertex disjoint. Its cardinality $|\mathcal{P}|$ is the number of paths of \mathcal{P}. The path partition number of G is

$$
\mu(G)=\min \{|\mathcal{P}|: \mathcal{P} \text { is a path partition of } G\}
$$

The concept of path partition number was introduced by Ore [13] in 1961. Several works have been done in this topic. See for example $[1,2,4,8,9]$.

In 1996, Reed proved in [14] the following result.
Theorem 1.1 ([14]). Let G be a connected cubic graph on n vertices. Then

$$
\mu(G) \leq\left\lceil\frac{n}{9}\right\rceil
$$

Furthermore, for 2-connected graphs, a better bound is established by Yu [15].
Theorem 1.2. Let G be a 2-connected cubic graph on n vertices. Then

$$
\mu(G) \leq\left\lceil\frac{n}{10}\right\rceil
$$

For regular graphs, in 2009, Magnant and Martin [10] conjectured the following.
Conjecture 1.3 ([10]). Let G be a d-regular graph on n vertices. Then

$$
\mu(G) \leq \frac{n}{d+1} .
$$

They verified this last conjecture for the case $d \leq 5$ (see [10]). In 2018, Han obtained an asymptotic answer.

Theorem 1.4 ([4]). For every $c, 0<c<1$ and $\alpha>0$, there exists n_{0} such that if $n \geq n_{0}, d \geq c n$ and G is a d-regular graph on n vertices, then $n /(d+1)$ vertex-disjoint paths cover all vertices of G except αn.

Gruskys and Letzter [3] improved this result by allowing to take $\alpha=0$.
In 2016, Magnant, Wang and Yuan [11] extended Conjecture 1.3 to general graphs as follows.

Conjecture 1.5 ([11]). Let G be a graph on n vertices. Then

$$
\mu(G) \leq \max \left\{\frac{n}{\delta+1}, \frac{(\Delta-\delta) n}{(\Delta+\delta)}\right\}
$$

If true, the last conjecture would be sharp. For $\delta+2 \leq \Delta$, the bound is achieved by the collection of disjoint copies of $K_{\delta, \Delta}$. For $\delta=\Delta$, it is achieved by the collection of disjoint copies of complete graphs $K_{\delta+1}$. This conjecture is proved in [11] for the case $\delta=1$ and $\delta=2$.

In this work, we prove Conjecture 1.5 for all graphs with maximum degree Δ at least 2δ.

Theorem 1.6. Let G be a graph of order n of minimum degree $\delta,(\delta \geq 2)$, and maximum degree Δ with $\Delta \geq 2 \delta$. Then

$$
\mu(G) \leq \frac{(\Delta-\delta) n}{(\Delta+\delta)}
$$

We remark that $\frac{n}{\delta+1} \leq \frac{(\Delta-\delta) n}{(\Delta+\delta)}$ if and only if $\delta+2 \leq \Delta$. So for $\delta \geq 2$ and $\Delta \geq 2 \delta$, the inequality of the theorem is equivalent to

$$
\mu(G) \leq \max \left\{\frac{n}{\delta+1}, \frac{(\Delta-\delta) n}{(\Delta+\delta)}\right\}
$$

which is the inequality of Conjecture 1.5 .

2. PRELIMINARIES

Let us introduce the following notations and definitions. Let \mathcal{P} be a minimum path partition of $V(G)$. So, $|\mathcal{P}|=\mu(G)$. Let p_{i} be the number of paths of order $i \in\{1,2\}$ in \mathcal{P}.

We may suppose that $p_{1}+p_{2} \neq 0$, otherwise we have $\mu(G) \leq \frac{n}{3}$. As $\Delta \geq 2 \delta$, we get $\mu(G) \leq \frac{(\Delta-\delta) n}{(\Delta+\delta)}$ and the problem is resolved.

Let V_{1} be the set of isolated vertices of \mathcal{P} and V_{2} be the set of end vertices of the isolated edges of \mathcal{P}. We denote by R any path in \mathcal{P}, and we write $R=R[a, b]=[a, \ldots, b]$ if a and b are the end vertices of R. We set $\operatorname{End}(R)=\{a, b\}$. Let $\operatorname{Int}(R)$ be the set of internal vertices of R. Let $\mathcal{A} \subseteq \mathcal{P}$. We denote by $\operatorname{Int}(\mathcal{A})($ resp. $\operatorname{End}(\mathcal{A}))$ the set of internal (resp. end) vertices of the paths of \mathcal{A}. For i fixed, we denote by R_{i} any path of order i. We set \mathcal{R}_{i} the set of paths of order i. By $a b c d$ or $[a, b, c, d]$ we denote a path with 4 vertices. For i odd, $i \geq 3$, let us set $C_{i}=\bigcup_{R \in \mathcal{R}_{i}} c(R)$, where $c(R)$ denotes the central vertex of the path R.

Example 2.1. Let us illustrate the above notations relative to a partition in Figure 1. We consider

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{x_{1}\right\}, \quad \mathcal{R}_{2}=\left\{\left[x_{2}, x_{3}\right],\left[x_{4}, x_{5}\right],\left[x_{6}, x_{7}\right]\right\}, \\
& \mathcal{R}_{3}=\left\{\left[x_{8}, \ldots, x_{9}\right]\right\}, \\
& \mathcal{R}_{4}=\left\{\left[x_{10}, \ldots, x_{11}\right],\left[x_{12}, \ldots, x_{13}\right]\right\}, \\
& \mathcal{R}_{5}=\left\{\left[x_{14}, \ldots, x_{15}\right],\left[x_{16}, \ldots, x_{17}\right],\left[x_{18}, \ldots, x_{19}\right],\left[x_{20}, \ldots, x_{21}\right]\right\}, \\
& \operatorname{End}\left(\mathcal{R}_{3}\right)=\left\{x_{8}, x_{9}\right\}, \quad \operatorname{End}\left(\mathcal{R}_{4}\right)=\left\{x_{10}, x_{11}, x_{12}, x_{13}\right\}, \\
& \operatorname{End}\left(\mathcal{R}_{5}\right)=\left\{x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}\right\}, \\
& C_{3}=\left\{w_{1}\right\}, \quad C_{5}=\left\{w_{5}, w_{6}, w_{7}, w_{8}\right\} .
\end{aligned}
$$

Fig. 1. Illustration of the definitions

For $x \in \operatorname{End}(R), N_{\text {ext }}(x)$ is the set of non path neighbors (neighbors of x outside its own path R) and $N_{\text {ext }}\left(X^{\prime}\right)=\bigcup_{x \in X^{\prime}} N_{\text {ext }}(x)$ with $X^{\prime} \subset \operatorname{End}(\mathcal{P})$. Now using $N_{\text {ext }}\left(V_{1} \cup V_{2}\right)$, we define a subset X of $\operatorname{End}(\mathcal{P})$, and we denote $N_{\text {ext }}(X)$ by W. Let $X_{1}=V_{1} \cup V_{2}, W_{1}=N_{\text {ext }}\left(x_{1}\right)$ and for $t \geq 1, X_{t}$ being defined, let

$$
X_{t+1}=X_{t} \cup\left(\bigcup_{N_{\text {ext }}\left(X_{t}\right) \cap I n t(R) \neq \emptyset, R \in \mathcal{R}} \operatorname{End}(R)\right) .
$$

Let $s \geq 1$ the first integer such that $X_{s}=X_{s+1}$. Let us set $X=X_{s}$, $W=N_{\text {ext }}(x)$ and for $t \in\{1, \ldots, s\}$, let $W_{t+1}=N_{e x t}\left(X_{t+1}\right) \backslash N_{e x t}\left(X_{t}\right)$. Then $W=\bigcup_{i=1}^{i=s} W_{i}$. Here is an example of that construction.

Example 2.2. For the partition in Figure 1, we have

$$
\begin{aligned}
X_{1} & =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\} \\
X_{2} & =X_{1} \cup\left\{x_{8}, x_{9}, \ldots, x_{15}\right\}, \\
X_{3} & =X_{2} \cup\left\{x_{16}, x_{17}, x_{18}, x_{19}\right\}, \\
X_{4} & =X_{3} \cup\left\{x_{20}, x_{21}\right\}=X, \\
W_{1} & =\left\{w_{1}, w_{2}, \ldots, w_{5}\right\}, \quad W_{2}=\left\{w_{6}, w_{7}\right\}, \quad W_{3}=\left\{w_{8}\right\}, \\
W & =\left\{w_{1}, w_{2}, \ldots, w_{8}\right\} .
\end{aligned}
$$

Let $X_{0}=\emptyset$. Pick $w_{r} \in W_{r}$ for some r. By definition of w_{r}, there exists a sequence

$$
\alpha\left(w_{r}\right)=x_{1} w_{1}, x_{2} w_{2}, \ldots, x_{r} w_{r}
$$

where for each $t \in\{1, \ldots, r\}, x_{t} \in X_{t}-X_{t-1}, w_{t} \in W_{t}$ and $x_{t} w_{t}$ is an edge joining two paths of the partition. In addition, for each $t \in\{1, \ldots, r-1\}$, w_{t} and x_{t+1} are in the same path of the partition.

The sequence $\alpha\left(w_{r}\right)$ has a good order if the vertex w_{r} belongs to a path R with end vertices, say x_{r+1} and x_{r+1}^{\prime}, in $X_{r+1}-X_{r}$. The vertex w_{r} is then said to be of good order. Using a sequence $\alpha\left(w_{r}\right)$ with good order, we can define two new partitions as follows.

For each $i \in\{1, \ldots, r+1\}$, we orient the paths of \mathcal{P} such that each x_{i} is the terminal extremity. We denote by w_{t}^{+}and w_{t}^{-}the successor and the predecessor of w_{t}, respectively.
(1) $\mathcal{P}_{1}\left(w_{r}\right)$ is obtained from \mathcal{P} by deleting the edges $w_{t} w_{t}^{+}, 1 \leq t \leq r$ and adding the edges $x_{t} w_{t}$ for $1 \leq t \leq r$;
(2) $\mathcal{P}_{2}\left(w_{r}\right)$ is obtained from \mathcal{P} by deleting the edges $w_{t} w_{t}^{+}, 1 \leq t \leq r-1$ and the edge $w_{r} w_{r}^{-}$and adding the edges $x_{t} w_{t}$ for $1 \leq t \leq r$.

If we consider the sets of edges of these partitions we note that

$$
E\left(\mathcal{P}_{2}\right)=\left(E\left(\mathcal{P}_{1}\right)-w_{r} w_{r}^{-}\right) \cup w_{r} w_{r}^{+} .
$$

Furthermore, $\left|\mathcal{P}_{2}\right|=\left|\mathcal{P}_{1}\right|=\mu(G)$.
For example, the sequence $\alpha\left(w_{2}\right)$ in the graph of Figure 2, defines two partitions. We have

$$
\mathcal{P}_{1}\left(w_{2}\right)=\left\{x_{1}^{\prime} x_{1} w_{1} w_{1}^{-}, w_{1}^{+} x_{2} w_{2} w_{2}^{-} x_{3}^{\prime}, x_{3} w_{2}^{+}, x_{4}^{\prime} w_{3}^{-} w_{3} w_{3}^{+} x_{4}\right\}
$$

and

$$
\mathcal{P}_{2}\left(w_{2}\right)=\left\{x_{1}^{\prime} x_{1} w_{1} w_{1}^{-}, w_{1}^{+} x_{2} w_{2} w_{2}^{+} x_{3}, w_{2}^{-} x_{3}^{\prime}, x_{4}^{\prime} w_{3}^{-} w_{3} w_{3}^{+} x_{4}\right\} .
$$

Fig. 2. Graph with $\mu(G)=4$

We denote by $R_{i}\left[x^{\prime}, x\right]$ any path of order i oriented from x^{\prime} to x. So x^{\prime} is the initial end of R_{i} and x is its terminal end.

Observation 2.3. If $w \in W_{t}$, then for some i, w belongs to some path $R_{i}\left[x^{\prime}, x\right]$. The path $R_{i_{1}}\left[w^{+}, x\right]$ is in $\mathcal{P}_{1}(w)$ and the path $R_{i_{2}}\left[x^{\prime}, w^{-}\right]$is in $\mathcal{P}_{2}(w)$. Note that the subpath $R_{i_{1}}\left[w^{+}, x\right]\left(\right.$ resp. $\left.R_{i_{2}}\left[x^{\prime}, w^{-}\right]\right)$is of order $i_{1}\left(\right.$ resp. $\left.i_{2}\right)$ such that $i_{1}+i_{2}+1=i$.

3. PROOF OF THEOREM 1.6

We choose a minimum path-partition \mathcal{P}_{0} such that:
(1) p_{1} is minimum,
(2) if (1) is satisfied, then p_{2} is minimum.

Let \mathcal{P}^{\prime} be the set of paths with end vertices in X. Let $p=\left|\mathcal{P}^{\prime}\right|$. Let p_{i} be the number of paths of order i in \mathcal{P}^{\prime}.

Let us outline the sketch of the proof.
In view to bound $\mu(G)$ we want to bound p_{1} and p_{2}. We consider the set X generated by $V_{1} \cup V_{2}$, and therefore the two sets $W=N_{\text {ext }}(X)$ and $\varepsilon(X, W)$. Note that the cardinality of X is $2 p-p_{1}$, The proof of our theorem is done through the following steps. We want to bound in two manners the number of edges $\varepsilon(X, W)$. The upper bound will use W and Δ, the lower bound will use X and δ.

In the first part of the proof, we show some claims relative to the set W and one relative to the lower bound of $\varepsilon(x, W)$ for $x \in X$.

In the second part of the proof, we calculate the bounds of $\varepsilon(X, W)$. We get finally an upper bound for $p_{1}+2 p_{2}$ in function of p, δ and Δ, and, then an upper bound for $\mu(G)$.

3.1. CLAIMS

Claim 3.1.

(1) For each $v \in V_{1}, N(v) \subset C_{3}$.
(2) For each $a \in V_{2}, N(a) \subset C_{3} \cup \operatorname{Int}\left(\mathcal{R}_{4}\right) \cup C_{5}$.

So, $\begin{cases}|N(a) \cap R| \leq 1, & \text { for every path } R \text { of order } 3 \text { or } 5, \\ |N(a) \cap R| \leq 2, & \text { for every path } R \text { of order } 4 .\end{cases}$
Proof. (1) Let v be a vertex of V_{1}. By the minimality of \mathcal{P}_{0}, v is not adjacent to an end vertex of another path in \mathcal{P}_{0}. Let w be a neighbor of v in a path oriented from x^{\prime} to x. We have two partitions. In \mathcal{P}_{0}, we replace the path v and the path $R_{i}\left[x^{\prime}, x\right]$ either by the pair of paths $v R_{i_{1}}[w, x], R_{i_{2}}\left[x^{\prime}, w^{-}\right]$or by the pair of paths $R_{i_{1}^{\prime}}\left[x^{\prime}, w\right] v$, $R_{i_{2}^{\prime}}\left[w^{+}, x\right]$. By the minimality of p_{1}, w is both predecessor of x and successor of x^{\prime}. So the order of $R_{i}\left[x^{\prime}, x\right]$ is 3 , and w is the center of $R_{i}\left[x^{\prime}, x\right]$. Thus, $N(v) \subset C_{3}$.
(2) Let w be a neighbor of a in $R_{i}\left[x^{\prime}, x\right]$. As precedently, we get two partitions and by definition of \mathcal{P}_{0}, each of $R_{i}\left[x^{\prime}, w^{-}\right]$and $R_{i}\left[w^{+}, x\right]$ should be of order at most two. So $N(a) \subset C_{3} \cup C_{5} \cup \operatorname{Int}\left(\mathcal{R}_{4}\right)$, completing the proof of Claim 3.1.

Claim 3.2. Let W_{a} be the set of vertices of good order in W. Then:
(1) $W_{a} \subset C_{3} \cup \operatorname{Int}\left(\mathcal{R}_{4}\right) \cup C_{5}$,
(2) $W=W_{a}$.

Proof. (1) Suppose that there exists $w \in W_{a}$ such that w is in the path $R_{i}\left[x^{\prime}, x\right]$. By Observation 2.3, we have $i-1=i_{1}+i_{2}$. If $i_{1} \geq 3$ (resp. $i_{2} \geq 3$), then $\mathcal{P}_{1}(w)$ (resp. $\left.\mathcal{P}_{2}(w)\right)$ contains $p_{1}-1$ paths of order 1 or p_{1} paths of order 1 and $p_{2}-1$ paths of order 2. A contradiction with the definition of \mathcal{P}_{0}. Thus, $W_{a} \subset C_{3} \cup \operatorname{Int}\left(\mathcal{R}_{4}\right) \cup C_{5}$.
(2) Suppose that $W \neq W_{a}$. In $W_{b}-W_{a}$ there exists necessarily a vertex $w=w_{r}$ with sequence $\alpha(w)=x_{1} w_{1}, x_{2} w_{2}, \ldots, x_{r} w_{r}$ with $x_{t} \in X_{t}-X_{t-1}$ and x_{r} is an end vertex of some path $R=\left[x_{r}^{\prime}, \ldots, x_{r}\right]$. By the definition of w, the vertex w belongs to a path $R^{\prime}=\left[x_{j}^{\prime}, \ldots, x_{j}\right]$ with $x_{j} \in X_{j}, j \leq r$. By the definition of X_{j}, the path R^{\prime} contains one element of W_{a}, say w_{a}. By the definition of W_{a}, w_{a} is adjacent to a vertex $x^{\prime \prime}$ of X_{j-1}, end vertex of a path $R^{\prime \prime}$. Since $W_{a} \subset C_{3} \cup \operatorname{Int}\left(\mathcal{R}_{4}\right) \cup C_{5}$, then $\left|R^{\prime}\right|=4$ or 5 and $w=w_{a}^{-}$or $w=w_{a}^{+}$. The end vertex $x_{r} \in X_{r}$ and the end vertex $x^{\prime \prime} \in$ X_{j-1} are adjacent respectively to w and w_{a}, successive vertices of the same path R^{\prime}.

We get a partition with $p-1$ paths. We replace the three paths R, R^{\prime} and $R^{\prime \prime}$ by the two paths composed by $R \cup R^{\prime} \cup R^{\prime \prime} \cup\left\{x_{r} w, x^{\prime \prime} w_{a}\right\}-\left\{w w_{a}\right\}$ (see Figure 3), a contradiction with the minimality of \mathcal{P}_{0}. Thus, $W_{b}=\emptyset$ and so, $W=W_{a}$. This completes the proof of Claim 3.2.

Fig. 3. Paths $R, R^{\prime}, R^{\prime \prime}$

Claim 3.3. For each path R of order 4 in \mathcal{P}_{0}, we have $|W \cap V(R)| \leq 2$. Furthermore, if $|W \cap V(R)|=2$, then there is a unique $x \in X$ such that $W \cap V(R) \neq \emptyset$ and thus $\varepsilon(X, R)=4$.

Proof. By the minimality of \mathcal{P}_{0} for each path $R \in \mathcal{R}_{4}$, we have $|W \cap V(R)| \leq 2$. Now, assume that there exists a path $R \in \mathcal{R}_{4}$ such that $W \cap V(R)=\left\{w_{1}, w_{2}\right\}$ where $w_{i} \in N_{\text {ext }}\left(x_{i}\right), i=1,2$. By taking off the edge $w_{1} w_{2}$ and adding the edges $x_{1} w_{1}$ and $x_{2} w_{2}$ we obtain a partition with $p-1$ paths, a contradiction. So $x_{1}=x_{2}$. Let $R^{\prime}\left(x_{1}\right)$ be the path of extremity x_{1} in the partition. We may suppose $R=\left[x_{0}^{\prime}, w_{1}, w_{2}, x_{0}\right]$. If x_{0} is neighbor of w_{1}, then we replace the two paths R and $R^{\prime}\left(x_{1}\right)$ by the path $R^{\prime}\left(x_{1}\right) \cup\left[w_{2}, x_{0}, w_{1}, x_{0}^{\prime}\right]$. We get a partition with $p-1$ paths, a contradiction. So, there is no edge $x_{0} w_{1}$. Similarly, there is no edge $x_{0}^{\prime} w_{2}$. It follows that $\varepsilon(X, R)=4$, completing the proof of Claim 3.3.

For $i \in\{1,2\}$, let \mathcal{R}_{4}^{i} be the set of paths of order 4 , which contain exactly i elements of W.

For the lower bound we shall need the following claim.

Claim 3.4.

(1) If $x \in X \cap V\left(\mathcal{R}_{1} \cup \mathcal{R}_{3}\right)$, then x has $d(x)$ neighbors in W.
(2) If $x_{1}, x_{2} \in X \cap V\left(\mathcal{R}_{4}\right)$, then the set $\left\{x_{1}, x_{2}\right\}$ has $d\left(x_{1}\right)+d\left(x_{2}\right)-1$ neighbors in W if x_{1}, x_{2} belong to $V\left(\mathcal{R}_{4}^{1}\right)$, and it has $d\left(x_{1}\right)+d\left(x_{2}\right)$ neighbors if x_{1}, x_{2} belong to $V\left(\mathcal{R}_{4}^{2}\right)$.
(3) If $x \in X \cap V\left(\mathcal{R}_{2} \cup \mathcal{R}_{5}\right)$, then x has $d(x)-1$ neighbors in W.

Proof. (1) If $x \in V_{1}$, then by Claim 3.1, $N(x) \subset W$. If $x \in X \cap V\left(\mathcal{R}_{3}\right)$, then let $R=x y x^{\prime}$. By the minimality of μ, x and x^{\prime} are not adjacent. It follows that $N(x) \subset W$.
(2) Let $R^{\prime}=x_{1} y z x_{2}$. By the minimality of p, there is no edge $x_{1} x_{2}$.

First assume that $W \cap R^{\prime}=\{y\}$. By definition of W, y is neighbor of an end vertex, say x of path $R=\left[x^{\prime}, \ldots, x\right]$. If $x_{1} z \in E(G)$, then we replace the two paths R and R^{\prime} by exactly one path $x_{2} z x_{1} y x \ldots x^{\prime}$, a contradiction with the minimality of the path partition. It follows that $N\left(x_{1}\right) \subset W$. Note that $\left(N\left(x_{2}\right)-\{z\}\right) \subset W$.

Now assume that $W \cap V\left(R^{\prime}\right)=\{y, z\}$, then $N\left(x_{1}\right) \subset W$ and $N\left(x_{2}\right) \subset W$.
(3) Clearly if $x \in V_{2}$, then x has $d(x)-1$ neighbors in W. Let $R^{\prime \prime}=x_{1} y z t x_{2}$. By Claim 3.2, we have $W \cap V\left(R^{\prime \prime}\right)=\{z\}$. It follows that $N\left(x_{1}\right)-\{y\} \subset W$ and $N\left(x_{2}\right)-\{t\} \subset W$, completing the proof of Claim 3.4.

Now we bound first $\left|\mathcal{P}^{\prime}\right|$ then $\mu(G)$.

3.2. CALCULATIONS OF THE BOUNDS

(1) The bound of $p_{1}+2 p_{2}$.

Let $k=\frac{\Delta}{\delta}$. We shall prove the following inequality.

Claim 3.5.

$$
p_{1}+2 p_{2} \leq\left(p_{3}+p_{4}+p_{5}\right)(k-2)+\frac{2}{\delta} p_{2}
$$

where p_{i} is the number of paths of order i in \mathcal{P}^{\prime}.
Proof. Put $p_{4}^{\prime}=\left|\mathcal{R}_{4}^{1}\right|$ and $p_{4}^{\prime \prime}=\left|\mathcal{R}_{4}^{2}\right|$. Let $\varepsilon(X, W)$ be the number of edges between X and W. Let w be any vertex of W. Observe that for $w \in \operatorname{Int}\left(\mathcal{R}_{5}\right)$, w has at most $\Delta-2$ neighbors in X. For $w \in \operatorname{Int}\left(\mathcal{R}_{4}^{1}\right)$, then w has at least one neighbor which does not belong to X and so, w has at most $\Delta-1$ neighbors in X. By Claim 3.3, if $w \in \operatorname{Int}\left(\mathcal{R}_{4}^{2}\right)$, then w has exactly two neighbors in X. If $w \in W \cap \operatorname{Int}\left(\mathcal{R}_{3}\right)$ then w has at most Δ neighbors in X. By Claims 3.1 and 3.2 , for each $i \geq 6, W \cap \operatorname{Int}\left(\mathcal{R}_{i}\right)=\emptyset$ and $X \cap \operatorname{End}\left(\mathcal{R}_{i}\right)=\emptyset$. It follows that

$$
\varepsilon(X, W) \leq p_{3} \Delta+p_{4}^{\prime}(\Delta-1)+4 p_{4}^{\prime \prime}+p_{5}(\Delta-2)
$$

On the other hand, by Claim 3.4,

$$
\begin{aligned}
\varepsilon(X, W) \geq & \sum_{x \in \operatorname{End}\left(\mathcal{R}_{1}\right)} d(x)+\sum_{x \in \operatorname{End}\left(\mathcal{R}_{2}\right)}(d(x)-1) \\
& +\sum_{x \in \operatorname{End}\left(\mathcal{R}_{3}\right) \cap X} d(x) \\
& +\sum_{x_{1}, x_{2} \in \operatorname{End}\left(\mathcal{R}_{4}^{1}\right) \cap X}\left(d\left(x_{1}\right)+d\left(x_{2}\right)-1\right) \\
& +\sum_{x_{1}, x_{2} \in \operatorname{End}\left(\mathcal{R}_{4}^{2}\right) \cap X}\left(d\left(x_{1}\right)+d\left(x_{2}\right)\right) \\
& +\sum_{x \in \operatorname{End}\left(\mathcal{R}_{5}\right) \cap X}(d(x)-1) .
\end{aligned}
$$

As for each $x \in X$ we have $\delta \leq d(x)$, it follows that

$$
\begin{aligned}
& p_{1} \delta+2 p_{2}(\delta-1)+2 p_{3} \delta+p_{4}^{\prime}(2 \delta-1)+p_{4}^{\prime \prime} 2 \delta+2 p_{5}(\delta-1) \\
& \leq p_{3} \Delta+p_{4}^{\prime}(\Delta-1)+4 p_{4}^{\prime \prime}+p_{5}(\Delta-2) .
\end{aligned}
$$

As $k \geq 2$ and $\delta \geq 2$, then $\Delta \geq 4$ and we replace $4 p_{4}^{\prime \prime}$ by $\Delta p_{4}^{\prime \prime}$ in the last inequality. Then

$$
\begin{aligned}
& p_{1} \delta+2 p_{2}(\delta-1)+2 p_{3} \delta+p_{4}^{\prime}(2 \delta-1)+p_{4}^{\prime \prime} 2 \delta+2 p_{5}(\delta-1) \\
& \leq p_{3} \Delta+p_{4}^{\prime}(\Delta-1)+p_{4}^{\prime \prime} \Delta+p_{5}(\Delta-2)
\end{aligned}
$$

As $p_{4}=p_{4}^{\prime}+p_{4}^{\prime \prime}$, we get

$$
p_{1} \delta+2 p_{2}(\delta-1) \leq p_{3}(\Delta-2 \delta)+p_{4}(\Delta-2 \delta)+p_{5}(\Delta-2 \delta) .
$$

Since $\Delta=k \delta$, then

$$
p_{1}+2 p_{2} \leq\left(p_{3}+p_{4}+p_{5}\right)(k-2)+\frac{2}{\delta} p_{2} .
$$

This completes the proof of Claim 3.5.
(2) Calculation of the bound of $\left|\mathcal{P}^{\prime}\right|=p$.

By Claim 3.5, there exists $r \leq k-2$, such that

$$
\begin{equation*}
p_{1}+2 p_{2}=r\left(p_{3}+p_{4}+p_{5}\right)+\frac{2}{\delta} p_{2} . \tag{3.1}
\end{equation*}
$$

Let us call n_{1} the order of $V\left(\mathcal{P}^{\prime}\right)$. Recall that \mathcal{P}^{\prime} is the set of paths with end vertices in $X, p=\left|\mathcal{P}^{\prime}\right|$ and p_{i} is the number of paths of order i in \mathcal{P}^{\prime}. By Claims 3.1 and 3.2,
\mathcal{P}^{\prime} contains no path of order at least 6 . It follows that

$$
p=p_{1}+p_{2}+p_{3}+p_{4}+p_{5}
$$

and

$$
n_{1}=p_{1}+2 p_{2}+3 p_{3}+4 p_{4}+5 p_{5} .
$$

Using equality (3.1), we obtain

$$
p=(r+1)\left(p_{3}+p_{4}+p_{5}\right)+\left(\frac{2}{\delta}-1\right) p_{2} .
$$

As $\delta \geq 2$, we get $p \leq(r+1)\left(p_{3}+p_{4}+p_{5}\right)$. Again by equality (3.1), we have

$$
n_{1}=(r+3) p_{3}+(r+4) p_{4}+(r+5) p_{5}+\frac{2}{\delta} p_{2}
$$

This yields

$$
n_{1} \geq(r+3)\left(p_{3}+p_{4}+p_{5}\right) .
$$

Since $r \leq(k-2)$, we get the inequality $p \leq \frac{k-1}{k+1} n_{1}$.
(3) The bound of $\mu(G)$.

Let $G_{2}=G-V\left(\mathcal{P}^{\prime}\right)$. Let $n_{2}=n-n_{1}$. Clearly $\mu(G) \leq p+\mu\left(G_{2}\right)$. We know that $p \leq \frac{k-1}{k+1} n_{1}$. Recall that each path of \mathcal{P}_{0} contained in G_{2} has order at least 3 . It follows that $\mu\left(G_{2}\right) \leq \frac{n_{2}}{3}$. Since $k \geq 2$, we have $\frac{1}{3} \leq \frac{k-1}{k+1}$ and so $\mu\left(G_{2}\right) \leq \frac{k-1}{k+1} n_{2}$. Thus, $\mu(G) \leq \frac{k-1}{k+1} n$. This finishes the proof of the theorem.

Acknowledgements

The authors are grateful to the anonymous referee whose careful reading gave them the opportunity to improve the quality of the paper.

REFERENCES

[1] M. Chen, J. Li, L. Wang, L. Zhang, On partitioning simple bipartite graphs in vertex-disjoint paths, Southeast Asian Bull. Math. 31 (2007), no. 2, 225-230.
[2] H. Enomoto, K. Ota, Partitions of a graph into paths with prescribed endvertices and lengths, J. Graph Theory 34 (2000), no. 2, 163-169.
[3] V. Gruslys, S. Letzter, Cycle partitions of regular graphs, arXiv:1808.00851.
[4] J. Han, On vertex-disjoint paths in regular graphs, Electron. J. Combin. 25 (2018), no. 2, \#P2.12.
[5] M. Kouider, Neighborhood and covering vertices by cycles, Combinatorica 20 (2000), no. 2, 219-226.
[6] M. Kouider, Covering vertices by cycles, J. Graph Theory 18 (1994), no. 8, 757-776.
[7] M. Kouider, Z. Lonc, Covering cycles and k-term degree sums, Combinatorica 16 (1996), 407-412.
[8] J. Li, G. Steiner, Partitioning a bipartite graph into vertex-disjoint paths, Ars Combin. 81 (2006), 161-173.
[9] Ch. Lu, Q. Zhou, Path covering number and L(2, 1)-labeling number of graphs, Discrete Appl. Math. 161 (2013), 2062-2074.
[10] C. Magnant, D.M. Martin, A note on the path cover number of regular graphs, Australas. J. Combin. 43 (2009), 211-217.
[11] C. Magnant, H. Wang, Path partition of almost regular graphs, Australas. J. Combin. 64 (2016), 334-340.
[12] P. Manuel, Revisiting path-type covering and partitioning problems, (2018), hal-01849313.
[13] O. Ore, Arc coverings of graphs, Ann. Mat. Pura Appl. 55 (1961), no. 4, 315-321.
[14] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996), no. 3, 277-295.
[15] G. Yu, Covering 2-connected 3-regular graphs by disjoint paths, J. Graph Theory 18 (2018), no. 3, 385-401.

Mekkia Kouider (corresponding author) km@lri.fr

University Paris Sud
France
Mohamed Zamime
zamimemohamed@yahoo.com
University Yahia Fares of Medea
Department of Technology
Mathematics Laboratory and its Applications
Medea, Algeria
Received: January 17, 2023.
Revised: June 24, 2023.
Accepted: July 7, 2023.

