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ON THE PATH PARTITION OF GRAPHS
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Abstract. Let G be a graph of order n. The maximum and minimum degree of G
are denoted by ∆ and δ, respectively. The path partition number µ(G) of a graph G is
the minimum number of paths needed to partition the vertices of G. Magnant, Wang
and Yuan conjectured that

µ(G) ≤ max
{

n

δ + 1 ,
(∆ − δ) n

(∆ + δ)

}
.

In this work, we give a positive answer to this conjecture, for ∆ ≥ 2δ.
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1. INTRODUCTION

Throughout the paper, all graphs are finite, simple and undirected. Let G be a graph
with vertex-set V (G) and edge-set E(G). We denote by n the order of G. The
neighborhood of a vertex v ∈ V is N (v) = {u ∈ V : uv ∈ E}. The degree of v, denoted
by d(v), is the size of its neighborhood. The minimum degree of the graph G is
denoted by δ(G), and the maximum degree by ∆(G).

Let A and B be two subsets of V (G). Let ε(A, B) be the number of edges with
one end vertex in the set A the other one in the set B.

In this work, we deal with the partition problem. The cover problem and the
partition problem constitute a large and important class of well studied problems in
the fields of graph theory. A cycle cover of a graph (resp. a path cover) is a set C of
cycles (resp. paths) of the graph such that each vertex belongs to at least one cycle
(resp. one path) of C. Many results on these concepts, have been given in the literature.
For example, Kouider [5,6], and Kouider and Lonc [7] studied the problem of covering
a graph by a minimum number of cycles. More details and references can be found in
the survey of Manuel [12].

Among the many variations of the partition problem, we mention the path partition
that has been studied intensively for about sixty years. A family P of paths is called
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a path partition of a graph G if its members cover the vertices of the graph and are
vertex disjoint. Its cardinality |P| is the number of paths of P. The path partition
number of G is

µ(G) = min{|P| : P is a path partition of G}.

The concept of path partition number was introduced by Ore [13] in 1961. Several
works have been done in this topic. See for example [1, 2, 4, 8, 9].

In 1996, Reed proved in [14] the following result.

Theorem 1.1 ([14]). Let G be a connected cubic graph on n vertices. Then

µ(G) ≤
⌈n

9

⌉
.

Furthermore, for 2-connected graphs, a better bound is established by Yu [15].

Theorem 1.2. Let G be a 2-connected cubic graph on n vertices. Then

µ(G) ≤
⌈ n

10

⌉
.

For regular graphs, in 2009, Magnant and Martin [10] conjectured the following.

Conjecture 1.3 ([10]). Let G be a d-regular graph on n vertices. Then

µ(G) ≤ n

d + 1 .

They verified this last conjecture for the case d ≤ 5 (see [10]). In 2018, Han obtained
an asymptotic answer.

Theorem 1.4 ([4]). For every c, 0 < c < 1 and α > 0, there exists n0 such that if
n ≥ n0, d ≥ cn and G is a d-regular graph on n vertices, then n/(d + 1) vertex-disjoint
paths cover all vertices of G except αn.

Gruskys and Letzter [3] improved this result by allowing to take α = 0.
In 2016, Magnant, Wang and Yuan [11] extended Conjecture 1.3 to general graphs

as follows.

Conjecture 1.5 ([11]). Let G be a graph on n vertices. Then

µ(G) ≤ max
{

n

δ + 1 ,
(∆ − δ) n

(∆ + δ)

}
.

If true, the last conjecture would be sharp. For δ + 2 ≤ ∆, the bound is achieved by
the collection of disjoint copies of Kδ,∆. For δ = ∆, it is achieved by the collection of
disjoint copies of complete graphs Kδ+1. This conjecture is proved in [11] for the case
δ = 1 and δ = 2.

In this work, we prove Conjecture 1.5 for all graphs with maximum degree ∆ at
least 2δ.
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Theorem 1.6. Let G be a graph of order n of minimum degree δ, (δ ≥ 2), and
maximum degree ∆ with ∆ ≥ 2δ. Then

µ(G) ≤ (∆ − δ) n

(∆ + δ) .

We remark that n
δ+1 ≤ (∆−δ)n

(∆+δ) if and only if δ + 2 ≤ ∆. So for δ ≥ 2 and ∆ ≥ 2δ,
the inequality of the theorem is equivalent to

µ(G) ≤ max
{

n

δ + 1 ,
(∆ − δ) n

(∆ + δ)

}

which is the inequality of Conjecture 1.5.

2. PRELIMINARIES

Let us introduce the following notations and definitions. Let P be a minimum path
partition of V (G). So, |P| = µ(G). Let pi be the number of paths of order i ∈ {1, 2}
in P.

We may suppose that p1 + p2 ≠ 0, otherwise we have µ(G) ≤ n
3 . As ∆ ≥ 2δ, we get

µ(G) ≤ (∆−δ)n
(∆+δ) and the problem is resolved.

Let V1 be the set of isolated vertices of P and V2 be the set of end ver-
tices of the isolated edges of P. We denote by R any path in P, and we
write R = R[a, b] = [a, . . . , b] if a and b are the end vertices of R. We set
End(R) = {a, b}. Let Int (R) be the set of internal vertices of R. Let A ⊆ P. We
denote by Int(A) (resp. End(A)) the set of internal (resp. end) vertices of the paths
of A. For i fixed, we denote by Ri any path of order i. We set Ri the set of paths of
order i. By abcd or [a, b, c, d] we denote a path with 4 vertices. For i odd, i ≥ 3, let us
set Ci =

⋃
R∈Ri

c (R), where c(R) denotes the central vertex of the path R.

Example 2.1. Let us illustrate the above notations relative to a partition in Figure 1.
We consider

R1 = {x1} , R2 = {[x2, x3] , [x4, x5] , [x6, x7]} ,

R3 = {[x8, . . . , x9]} ,

R4 = {[x10, . . . , x11] , [x12, . . . , x13]} ,

R5 = {[x14, . . . , x15] , [x16, . . . , x17] , [x18, . . . , x19] , [x20, . . . , x21]} ,

End(R3) = {x8, x9} , End(R4) = {x10, x11, x12, x13} ,

End(R5) = {x14, x15, x16, x17, x18, x19, x20, x21} ,

C3 = {w1} , C5 = {w5, w6, w7, w8} .
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x1 x2 x3 x4 x5 x6 x7

x8 w1 x9 x10 w2 x11 x12 w3 w4 x13 x14 w5 x15

x16 w6 x17 x18 w7 x19

x20 w8 x21

Fig. 1. Illustration of the definitions

For x ∈ End(R), Next(x) is the set of non path neighbors (neighbors of x outside
its own path R) and Next(X ′) =

⋃
x∈X′ Next(x) with X ′ ⊂ End(P). Now using

Next(V1 ∪ V2), we define a subset X of End(P), and we denote Next(X) by W . Let
X1 = V1 ∪ V2, W1 = Next(x1) and for t ≥ 1, Xt being defined, let

Xt+1 = Xt ∪


 ⋃

Next(Xt)∩Int(R)̸=∅,R∈R
End(R)


 .

Let s ≥ 1 the first integer such that Xs = Xs+1. Let us set X = Xs,
W = Next(x) and for t ∈ {1, . . . , s}, let Wt+1 = Next (Xt+1) \ Next (Xt). Then
W =

⋃i=s
i=1 Wi. Here is an example of that construction.

Example 2.2. For the partition in Figure 1, we have

X1 = {x1, x2, . . . , x7},

X2 = X1 ∪ {x8, x9, . . . , x15},

X3 = X2 ∪ {x16, x17, x18, x19},

X4 = X3 ∪ {x20, x21} = X,

W1 = {w1, w2, . . . , w5}, W2 = {w6, w7}, W3 = {w8},

W = {w1, w2, . . . , w8}.

Let X0 = ∅. Pick wr ∈ Wr for some r. By definition of wr, there exists a sequence

α(wr) = x1w1, x2w2, . . . , xrwr,

where for each t ∈ {1, . . . , r}, xt ∈ Xt − Xt−1, wt ∈ Wt and xtwt is an
edge joining two paths of the partition. In addition, for each t ∈ {1, . . . , r − 1},
wt and xt+1 are in the same path of the partition.
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The sequence α(wr) has a good order if the vertex wr belongs to a path R with
end vertices, say xr+1 and x′

r+1, in Xr+1 − Xr. The vertex wr is then said to be of
good order. Using a sequence α(wr) with good order, we can define two new partitions
as follows.

For each i ∈ {1, . . . , r + 1}, we orient the paths of P such that each xi is the
terminal extremity. We denote by w+

t and w−
t the successor and the predecessor of wt,

respectively.
(1) P1(wr) is obtained from P by deleting the edges wtw

+
t , 1 ≤ t ≤ r and adding

the edges xtwt for 1 ≤ t ≤ r;
(2) P2(wr) is obtained from P by deleting the edges wtw

+
t , 1 ≤ t ≤ r − 1 and the

edge wrw−
r and adding the edges xtwt for 1 ≤ t ≤ r.

If we consider the sets of edges of these partitions we note that

E(P2) = (E(P1) − wrw−
r ) ∪ wrw+

r .

Furthermore, |P2| = |P1| = µ(G).
For example, the sequence α(w2) in the graph of Figure 2, defines two partitions.

We have

P1(w2) =
{

x′
1x1w1w−

1 , w+
1 x2w2w−

2 x′
3, x3w+

2 , x′
4w−

3 w3w+
3 x4

}

and

P2(w2) =
{

x′
1x1w1w−

1 , w+
1 x2w2w+

2 x3, w−
2 x′

3, x′
4w−

3 w3w+
3 x4

}
.

x′
1

x1

w−
1

w1 w+
1

x2

x3 w+
2

w2 w−
2 x′

3

x′
4 w−

3
w3 w+

3
x4

Fig. 2. Graph with µ(G) = 4

We denote by Ri[x′, x] any path of order i oriented from x′ to x. So x′ is the initial
end of Ri and x is its terminal end.

Observation 2.3. If w ∈ Wt, then for some i, w belongs to some path Ri[x′, x]. The
path Ri1 [w+, x] is in P1(w) and the path Ri2 [x′, w−] is in P2(w). Note that the subpath
Ri1 [w+, x] (resp. Ri2 [x′, w−]) is of order i1 (resp. i2) such that i1 + i2 + 1 = i.
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3. PROOF OF THEOREM 1.6

We choose a minimum path-partition P0 such that:

(1) p1 is minimum,
(2) if (1) is satisfied, then p2 is minimum.

Let P ′ be the set of paths with end vertices in X. Let p = |P ′|. Let pi be the
number of paths of order i in P ′.

Let us outline the sketch of the proof.
In view to bound µ(G) we want to bound p1 and p2. We consider the set X

generated by V1 ∪ V2, and therefore the two sets W = Next(X) and ε(X, W ). Note
that the cardinality of X is 2p − p1, The proof of our theorem is done through the
following steps. We want to bound in two manners the number of edges ε(X, W ). The
upper bound will use W and ∆, the lower bound will use X and δ.

In the first part of the proof, we show some claims relative to the set W and one
relative to the lower bound of ε(x, W ) for x ∈ X.

In the second part of the proof, we calculate the bounds of ε(X, W ). We get finally
an upper bound for p1 + 2p2 in function of p, δ and ∆, and, then an upper bound
for µ(G).

3.1. CLAIMS

Claim 3.1.

(1) For each v ∈ V1, N(v) ⊂ C3.
(2) For each a ∈ V2, N(a) ⊂ C3 ∪ Int(R4) ∪ C5.

So,
{

|N(a) ∩ R| ≤ 1, for every path R of order 3 or 5,

|N(a) ∩ R| ≤ 2, for every path R of order 4.

Proof. (1) Let v be a vertex of V1. By the minimality of P0, v is not adjacent to an
end vertex of another path in P0. Let w be a neighbor of v in a path oriented from
x′ to x. We have two partitions. In P0, we replace the path v and the path Ri [x′, x]
either by the pair of paths vRi1 [w, x], Ri2 [x′, w−] or by the pair of paths Ri′

1
[x′, w] v,

Ri′
2

[w+, x]. By the minimality of p1, w is both predecessor of x and successor of x′.
So the order of Ri [x′, x] is 3, and w is the center of Ri [x′, x]. Thus, N(v) ⊂ C3.

(2) Let w be a neighbor of a in Ri [x′, x]. As precedently, we get two partitions and
by definition of P0, each of Ri [x′, w−] and Ri [w+, x] should be of order at most two.
So N(a) ⊂ C3 ∪ C5 ∪ Int (R4), completing the proof of Claim 3.1.

Claim 3.2. Let Wa be the set of vertices of good order in W . Then:

(1) Wa ⊂ C3 ∪ Int (R4) ∪ C5,
(2) W = Wa.
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Proof. (1) Suppose that there exists w ∈ Wa such that w is in the path Ri [x′, x].
By Observation 2.3, we have i − 1 = i1 + i2. If i1 ≥ 3 (resp. i2 ≥ 3), then P1 (w) (resp.
P2 (w)) contains p1 − 1 paths of order 1 or p1 paths of order 1 and p2 − 1 paths of
order 2. A contradiction with the definition of P0. Thus, Wa ⊂ C3 ∪ Int (R4) ∪ C5.

(2) Suppose that W ̸= Wa. In Wb − Wa there exists necessarily a vertex w = wr

with sequence α (w) = x1w1, x2w2, . . . , xrwr with xt ∈ Xt − Xt−1 and xr is an end
vertex of some path R = [x′

r, . . . , xr]. By the definition of w, the vertex w belongs to
a path R′ = [x′

j , . . . , xj ] with xj ∈ Xj , j ≤ r. By the definition of Xj , the path R′

contains one element of Wa, say wa. By the definition of Wa, wa is adjacent to a vertex
x′′ of Xj−1, end vertex of a path R′′. Since Wa ⊂ C3 ∪ Int (R4) ∪ C5, then |R′| = 4
or 5 and w = w−

a or w = w+
a . The end vertex xr ∈ Xr and the end vertex x′′ ∈

Xj−1 are adjacent respectively to w and wa, successive vertices of the same path R′.
We get a partition with p − 1 paths. We replace the three paths R, R′ and R′′

by the two paths composed by R ∪ R′ ∪ R′′ ∪ {xrw, x′′wa} − {wwa} (see Figure 3),
a contradiction with the minimality of P0. Thus, Wb = ∅ and so, W = Wa. This
completes the proof of Claim 3.2.

x′
r xr

x′
j

xj

x′
j−1 x′′

w wa

R R′′

R′

Fig. 3. Paths R, R′, R′′

Claim 3.3. For each path R of order 4 in P0, we have |W ∩ V (R)| ≤ 2. Furthermore,
if |W ∩ V (R)| = 2, then there is a unique x ∈ X such that W ∩ V (R) ̸= ∅ and thus
ε(X, R) = 4.

Proof. By the minimality of P0 for each path R ∈ R4, we have |W ∩ V (R)| ≤ 2. Now,
assume that there exists a path R ∈ R4 such that W ∩ V (R) = {w1, w2} where
wi ∈ Next (xi), i = 1, 2. By taking off the edge w1w2 and adding the edges x1w1 and
x2w2 we obtain a partition with p − 1 paths, a contradiction. So x1 = x2. Let R′(x1)
be the path of extremity x1 in the partition. We may suppose R = [x′

0, w1, w2, x0].
If x0 is neighbor of w1, then we replace the two paths R and R′(x1) by the path
R′(x1) ∪ [w2, x0, w1, x′

0]. We get a partition with p − 1 paths, a contradiction. So,
there is no edge x0w1. Similarly, there is no edge x′

0w2. It follows that ε(X, R) = 4,
completing the proof of Claim 3.3.

For i ∈ {1, 2}, let Ri
4 be the set of paths of order 4, which contain exactly

i elements of W .
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For the lower bound we shall need the following claim.

Claim 3.4.

(1) If x ∈ X ∩ V (R1 ∪ R3), then x has d(x) neighbors in W .
(2) If x1, x2 ∈ X ∩ V (R4), then the set {x1, x2} has d(x1) + d(x2) − 1 neighbors in W

if x1, x2 belong to V
(
R1

4
)
, and it has d(x1) + d(x2) neighbors if x1, x2 belong to

V
(
R2

4
)
.

(3) If x ∈ X ∩ V (R2 ∪ R5), then x has d(x) − 1 neighbors in W .

Proof. (1) If x ∈ V1, then by Claim 3.1, N(x) ⊂ W . If x ∈ X ∩ V (R3), then
let R = xyx′. By the minimality of µ, x and x′ are not adjacent. It follows that
N(x) ⊂ W .

(2) Let R′ = x1yzx2. By the minimality of p, there is no edge x1x2.
First assume that W ∩R′ = {y}. By definition of W , y is neighbor of an end vertex,

say x of path R = [x′, . . . , x]. If x1z ∈ E(G), then we replace the two paths R and R′

by exactly one path x2zx1yx . . . x′, a contradiction with the minimality of the path
partition. It follows that N(x1) ⊂ W . Note that (N(x2) − {z}) ⊂ W .

Now assume that W ∩ V (R′) = {y, z}, then N(x1) ⊂ W and N(x2) ⊂ W .
(3) Clearly if x ∈ V2, then x has d(x) − 1 neighbors in W . Let R′′ = x1yztx2.

By Claim 3.2, we have W ∩ V (R′′) = {z}. It follows that N(x1) − {y} ⊂ W and
N(x2) − {t} ⊂ W , completing the proof of Claim 3.4.

Now we bound first |P ′| then µ(G).

3.2. CALCULATIONS OF THE BOUNDS

(1) The bound of p1 + 2p2.
Let k = ∆

δ . We shall prove the following inequality.

Claim 3.5.

p1 + 2p2 ≤ (p3 + p4 + p5)(k − 2) + 2
δ

p2,

where pi is the number of paths of order i in P ′.

Proof. Put p′
4 =

∣∣R1
4
∣∣ and p′′

4 =
∣∣R2

4
∣∣. Let ε(X, W ) be the number of edges between

X and W . Let w be any vertex of W . Observe that for w ∈ Int (R5), w has at most
∆ − 2 neighbors in X. For w ∈ Int

(
R1

4
)
, then w has at least one neighbor which

does not belong to X and so, w has at most ∆ − 1 neighbors in X. By Claim 3.3, if
w ∈ Int

(
R2

4
)
, then w has exactly two neighbors in X. If w ∈ W ∩ Int(R3) then w has

at most ∆ neighbors in X. By Claims 3.1 and 3.2, for each i ≥ 6, W ∩ Int (Ri) = ∅
and X ∩ End (Ri) = ∅. It follows that

ε(X, W ) ≤ p3∆ + p′
4 (∆ − 1) + 4p′′

4 + p5(∆ − 2).
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On the other hand, by Claim 3.4,

ε(X, W ) ≥
∑

x∈End(R1)

d(x) +
∑

x∈End(R2)

(d(x) − 1)

+
∑

x∈End(R3)∩X

d(x)

+
∑

x1,x2∈End(R1
4)∩X

(d(x1) + d(x2) − 1)

+
∑

x1,x2∈End(R2
4)∩X

(d(x1) + d(x2))

+
∑

x∈End(R5)∩X

(d(x) − 1).

As for each x ∈ X we have δ ≤ d(x), it follows that

p1δ + 2p2(δ − 1) + 2p3δ + p′
4(2δ − 1) + p′′

42δ + 2p5(δ − 1)
≤ p3∆ + p′

4 (∆ − 1) + 4p′′
4 + p5(∆ − 2).

As k ≥ 2 and δ ≥ 2, then ∆ ≥ 4 and we replace 4p′′
4 by ∆p′′

4 in the last inequality.
Then

p1δ + 2p2(δ − 1) + 2p3δ + p′
4(2δ − 1) + p′′

4 2δ + 2p5(δ − 1)
≤ p3∆ + p′

4(∆ − 1) + p′′
4∆ + p5(∆ − 2).

As p4 = p′
4 + p′′

4 , we get

p1δ + 2p2(δ − 1) ≤ p3 (∆ − 2δ) + p4 (∆ − 2δ) + p5 (∆ − 2δ) .

Since ∆ = kδ, then

p1 + 2p2 ≤ (p3 + p4 + p5)(k − 2) + 2
δ

p2.

This completes the proof of Claim 3.5.

(2) Calculation of the bound of |P ′| = p.
By Claim 3.5, there exists r ≤ k − 2, such that

p1 + 2p2 = r (p3 + p4 + p5) + 2
δ

p2 . (3.1)

Let us call n1 the order of V (P ′). Recall that P ′ is the set of paths with end vertices
in X, p = |P ′| and pi is the number of paths of order i in P ′. By Claims 3.1 and 3.2,
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P ′ contains no path of order at least 6. It follows that

p = p1 + p2 + p3 + p4 + p5

and
n1 = p1 + 2p2 + 3p3 + 4p4 + 5p5 .

Using equality (3.1), we obtain

p = (r + 1) (p3 + p4 + p5) +
(

2
δ

− 1
)

p2 .

As δ ≥ 2, we get p ≤ (r + 1) (p3 + p4 + p5). Again by equality (3.1), we have

n1 = (r + 3)p3 + (r + 4)p4 + (r + 5) p5 + 2
δ

p2 .

This yields
n1 ≥ (r + 3)(p3 + p4 + p5).

Since r ≤ (k − 2), we get the inequality p ≤ k−1
k+1 n1.

(3) The bound of µ(G).
Let G2 = G − V (P ′). Let n2 = n − n1. Clearly µ(G) ≤ p + µ(G2). We know

that p ≤ k−1
k+1 n1. Recall that each path of P0 contained in G2 has order at least 3.

It follows that µ(G2) ≤ n2
3 . Since k ≥ 2, we have 1

3 ≤ k−1
k+1 and so µ(G2) ≤ k−1

k+1 n2.
Thus, µ(G) ≤ k−1

k+1 n. This finishes the proof of the theorem.
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