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LOCAL IRREGULARITY CONJECTURE
FOR 2-MULTIGRAPHS VERSUS CACTI
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Abstract. A multigraph is locally irregular if the degrees of the end-vertices of every
multiedge are distinct. The locally irregular coloring is an edge coloring of a multigraph
G such that every color induces a locally irregular submultigraph of G. A locally
irregular colorable multigraph G is any multigraph which admits a locally irregular
coloring. We denote by lir(G) the locally irregular chromatic index of a multigraph G,
which is the smallest number of colors required in the locally irregular coloring of
the locally irregular colorable multigraph G. In case of graphs the definitions are
similar. The Local Irregularity Conjecture for 2-multigraphs claims that for every
connected graph G, which is not isomorphic to K2, multigraph 2G obtained from G by
doubling each edge satisfies lir(2G) ≤ 2. We show this conjecture for cacti. This class
of graphs is important for the Local Irregularity Conjecture for 2-multigraphs and
the Local Irregularity Conjecture which claims that every locally irregular colorable
graph G satisfies lir(G) ≤ 3. At the beginning it has been observed that all not locally
irregular colorable graphs are cacti. Recently it has been proved that there is only one
cactus which requires 4 colors for a locally irregular coloring and therefore the Local
Irregularity Conjecture was disproved.
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1. INTRODUCTION

All graphs and multigraphs considered in this paper are finite. The main interest of
this paper are edge colorings of a multigraph. Let G = (V, E) be a graph. We say that
a graph is locally irregular if the degrees of the two end-vertices of every edge are
distinct. A locally irregular coloring of a graph G is an edge coloring of G such that
every color induces a locally irregular subgraph of G. We denote by lir(G) the locally
irregular chromatic index of a graph G which is the smallest number k such that there
exists a locally irregular coloring of G with k colors. This problem is closely related to
the well known 1-2-3 Conjecture proposed by Karoński, Łuczak and Thomason in [6].
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Note that not every graph has a locally irregular coloring. We define the family T
recursively in the following way:
– the triangle K3 belongs to T,
– if G is a graph from T, then any graph G′ obtained from G by identifying a vertex

v ∈ V (G) of degree 2, which belongs to a triangle in G, with an end vertex of
a path of even length or with an end vertex of a path of odd length such that the
other end vertex of that path is identified with a vertex of a new triangle.

The family T′ consists of the family T, all odd length paths and all odd length cycles.
In [2] Baudon, Bensmail, Przybyło and Woźniak proved that only the graphs from the
family T′ are not locally irregular colorable (do not admit locally irregular coloring).
They also proposed the Local Irregularity Conjecture which says that every connected
graph G /∈ T′ satisfies lir(G) ≤ 3.

However, Sedlar and Škrekovski in [12] showed that the bow-tie graph B which
is presented in Figure 1 does not have locally irregular coloring with three colors.
They also proved in [11] that every locally irregular colorable cactus G ̸= B satisfies
lir(G) ≤ 3. By a cactus we mean a graph in which no two cycles intersect in more
than one vertex.

Fig. 1. The bow-tie graph B and its locally irregular coloring with four colors

Furthermore, they proposed the following new version of the Local Irregularity
Conjecture.
Conjecture 1.1 ([11]). Every connected graph G /∈ T′ except for the bow-tie graph B
satisfies lir(G) ≤ 3.

This conjecture was proved for some graph classes for example trees [1],
graphs with minimum degree at least 1010 [10], r-regular graphs where
r ≥ 107 [2], decomposable split graphs [7] and decomposable claw-free graphs with
maximum degree 3 [8]. For planar graphs it is known that lir(G) ≤ 15 [3]. For general
connected graphs Bensmail, Merker and Thomassen [4] proved that lir(G) ≤ 328
if G /∈ T′. Later the constant upper bound was lowered to lir(G) ≤ 220 by Lužar,
Przybyło and Soták [9].

Before we present the Local Irregularity Conjecture for 2-multigraphs we present
more definitions. By 2-multigraph, denoted by 2G, we mean the multigraph obtained
from a graph G by doubling each edge. We call an edge multiplicity the number of single
edges forming a multiedge e in a multigraph G, and we denote it by µG(e). Multigraph
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H is a submultigraph of a multigraph G if H is a subgraph of G and for each multiedge
e of H, µH(e) ≤ µG(e) holds. Analogically, multigraph H is an induced submultigraph
of G if H is an induced subgraph of G and for each multiedge e of H, µH(e) = µG(e)
holds. We denote by d̂(v) degree of the vertex v in a multigraph (the number of single
edges incident with the vertex v). The locally irregular coloring of a multigraph G is an
edge coloring of G such that every color induces a locally irregular submultigraph of G.
We say that multigraphs Ĝ1 and Ĝ2 create a decomposition of a multigraph Ĝ if for
each edge e of G, µĜ1

(e) + µĜ2
(e) = µĜ(e) holds. We say that a multigraph is locally

irregular colorable if it satisfies the locally irregular coloring. By the locally irregular
chromatic index of a locally irregular colorable multigraph G, denoted by lir(G), we
mean the smallest number of colors required in a locally irregular coloring of G. We
will say that a multiedge is colored red-blue if one element of the multiedge is red
and the second is blue. We proposed in [5] the following conjecture for 2-multigraphs.
Conjecture 1.2 (Local Irregularity Conjecture for 2-multigraphs [5]). For every
connected graph G which is not isomorphic to K2 we have lir(2G) ≤ 2.

We also proved that for general connected graphs lir(2G) ≤ 76 if G is not isomorphic
to K2. Moreover, we proved the following theorem concerning the above conjecture.
Theorem 1.3 ([5]). The Local Irregularity Conjecture for 2-multigraphs holds for:
paths, cycles, wheels Wn, complete graphs Kn, for n ≥ 3, bipartite graphs and complete
k-partite graphs, for k ≥ 3.

Now, we recall the locally irregular coloring of multipaths and multicycles from the
proof of above theorem given by us in [5] which will be useful throughout the proof of
our main result. We will denote by Pn a path with n vertices.

For a multipath 2Pn of even length we color the first two multiedges blue, the next
two multiedges red, and we repeat this color sequence until the end of the multipath.
We do not consider the multipath of length one. For a longer multipath of odd length
we color the first multiedge blue, the second red-blue, the third red, and then we color
the remaining multiedges in the same way as multipath of even length.

We color multicycles of length from three to seven as in Figure 2. The coloring
of longer multicycle we obtain by replacing two red multiedges with a multipath of
length 4k + 2 colored: the first two multiedges red, the next two multiedges blue, the
subsequent two multiedges red, and so on in the appropriate colored multicycle of
length from four to seven.
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Fig. 2. A locally irregular coloring of the multicycles. The meaning of vertex labels
will be explained in Theorem 2.3
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In this paper we will show that Conjecture 1.2 holds for cacti. The mentioned
results for graphs so far indicate that cacti are important class of graphs for the
problem of locally irregular coloring, because graphs from the family T which is
not locally irregular colorable are cacti and the only known counterexample for the
Local Irregularity Conjecture is also a cactus. This motivated us to check the Local
Irregularity Conjecture for 2-multigraphs for cacti.

2. MAIN RESULT

We need to introduce the notation and important lemma for trees. In the proof of our
main result we will often use locally irregular coloring of rooted multitrees presented
in the proof of this lemma. First, we will denote by T (r) a tree rooted at a vertex r.
By a leaf edge we mean an edge that contain a vertex which is a leaf in a tree T .
A shrub is any tree rooted at a leaf. The only edge in a shrub G incident to the root we
will call the root edge of G. We will call branch rooted at vertex x, denoted by B(x),
the following subgraph in rooted tree T . If x has only one son x′ in T a branch B(x)
includes: edge xx′, edges from x′ to all its sons x1, . . . , xk and if xj has only one
neighbor x′

j which is a leaf in T we also include to the branch B(x) leaf edge xjx′
j for

j = 1, . . . , k. If x has more than one son in T a branch B(x) includes: edges from x to
all its sons x1, . . . , xk and if xj has only one neighbor x′

j which is a leaf in T we also
include to the branch B(x) leaf edge xjx′

j for j = 1, . . . , k.

Remark 2.1. There are only four branches: K2 rooted at an initial vertex, path P4
rooted at an internal vertex, path P4 rooted at an initial vertex and path P5 rooted at
a central vertex, which are not locally irregular.

We will call such branches exceptional. We will use corresponding notation for
2-multigraphs.

Lemma 2.2. For each tree T rooted at the vertex r there exists a decomposition
of 2T into branches generated by a red-blue almost locally irregular coloring in this
sense the only possible conflict may occur between r and one or two of its neighbours.
Moreover, all branches contain at least two multiedges, except for the situation when
T is isomorphic to K2, and all leaf edges are monochromatic in these branches.

Proof. The lemma holds obviously for T = K2. Assume that T ≠ K2. First, we
decompose 2T (r) into branches in the following way. Let 2B(r) be the first branch
from our decomposition. Let xi for i = 1, . . . , p be a leaf in 2B(r), which is not
a leaf in T . The next branches of the decomposition are 2B(x1), . . . ,2 B(xp). We start
coloring from 2B(r), next we color branches with root at a vertex from 2B(r) and so
on. Branch 2B(r) is colored by one color except for the situation when 2B(r) = 2T (r)
and 2B(r) is a multipath 2P4 rooted at one of its ends. In this situation we color root
multiedge blue and the rest of this branch red. With such coloring there is a conflict
between the root r and its son. Note that if 2B(r) is one of the exceptional branches
that is colored one color, there is a conflict between r and one or two of his sons. Let
2B(x) where x ̸= r be a branch from the above decomposition. If 2B(x) is not an
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exceptional branch, we color the whole branch 2B(x) using only one color different
from the color of multiedge from the vertex x to its father. Note that this multiedge is
monochromatic. We can easily see that in such coloring the multiedges to leaves in
branch are still monochromatic.

If 2B(x) is an exceptional branch, we denote by x0 the father of x. Assume that
multiedge x0x is colored red. We use the coloring of exceptional branch 2B(x) presented
in Figure 3.
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Fig. 3. The coloring of branch 2B(x) which is an exception

Note that multiedge x0x has always only one color.

Remark that in the coloring of rooted multitree presented in the proof of above
lemma, the root and its sons are always even where by even vertex we mean
a vertex which has even degrees in both colors and similarly by odd vertex we
mean a vertex which has odd degrees in both colors. Note that all vertices are either
odd or even because in 2-multigraph every vertex has even sum of red and blue degrees.

In multicactus we call cyclic all vertices on multicycles and the remaining vertices
are woody. Now we are ready to prove our main result for cacti.

Theorem 2.3. For every cactus G, the multigraph 2G satisfies lir(2G) ≤ 2.

Proof. We give a construction of locally irregular coloring of 2G. We will use the method
of vertex labeling which will help us to do this. We treat multicactus as a multigraph
obtained from a multicycle by adding to vertices multicycles and multitrees where
by adding or joining a multicycle to a vertex x we mean identifying the vertex x
with one of the vertices on the multicycle, extending locally irregular coloring and
vertex labeling to this multicycle. Similarly, by adding or joining rooted multitree
2T (r) to a vertex x we mean identifying the vertex x with the root of multitree 2T (r),
extending locally irregular coloring to 2T (r), and possibly changing the label of x.

Now we briefly present the outline of our construction. First, we color locally
irregularly the longest multicycle in 2G and label its vertices. (Details and possible
exceptions are described below.)
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Let x be the vertex in the already-colored part to which we want to join still
uncolored elements such as multicycles or multitree.

Next, we select one vertex on the colored multicycle and attach to it all the
multicycles and multitree to be attached to it, and extend both coloring and labeling
of the cyclic vertices to the attached elements. As a reminder, woody vertices do not
get labels. Then we take one by one remaining vertices on this colored multicycle, and
we treat them analogously.

If x is a cyclic vertex, then in general how the attached elements are colored
depends on the label of the vertex x and also on the element we are attaching.

If x is not a cyclic vertex, then it must be a leaf. We proceed as before. Note that
there must be a multicycle among the elements we add, so x will get some label.

All the necessary details of each part of the construction will be given below.

Remark 2.4. It may happen that the vertex x changes its label during this procedure.
In some situations, instead of a multicycle, we are forced to consider a slightly modified
structure, namely the so-called multicycle with spikes (see below). Finally, in some
situations, instead of adding new elements to a fixed vertex, we have to consider two
adjacent vertices simultaneously in the addition process.

Initial part of the locally irregular coloring of 2G. We color in a standard
way, except for the situation described below, the longest multicycle in 2G using the
same method as in the proof of Theorem 1.3. This coloring will be called standard.
During the rest of the proof we will often use this standard coloring of multicycle.
We also label all vertices on this colored multicycle as in Figure 2. We use labels A, B,
S1, S2, S̃2 and S with the following meaning:

– A – an even vertex which has red degree or blue degree greater than two, always
remains labelled A and whose neighbours have labels from the set {B, S2, S}.

– B – an odd vertex which always remains labelled B and whose neighbours have
labels from the set {A, S1}.

– S1 – an even vertex x with: d̂(x) = 4, d̂r(x) = d̂b(x) = 2, two incident multiedges
colored red-blue which gets label A if we join something to it and whose neighbours
are odd.

– S2 – an even vertex x on multicycle of length greater than three with:
d̂(x) = 4, d̂r(x) = d̂b(x) = 2, two incident multiedges colored first blue
second red which gets label B if we join something to it and whose neighbours
have label A.

– S̃2 – even vertex x on 2C3 with: d̂(x) = 4, d̂r(x) = d̂b(x) = 2, two incident
multiedges colored first blue second red which gets label A if we join something to
it and whose neighbours have label S.

– We label by S two odd adjacent vertices. Label S occurs only in a pair of vertices,
and we call such pair a special pair S. The neighbours of this pair are even.

Now we present the idea behind vertex labelling. Let us take, for example, a mul-
ticycle of length divisible by four. On this multicycle in the standard coloring occur
only vertices labelled A and S2. Obviously neighboring vertices on this multicycle have
different red and blue degrees. If we will add further elements, color and label them,
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according to the rules above, then vertices labelled A remain labelled A and vertices
labelled S2 get label B or remain labelled S2 (if we do not add something to them).
Either way, we are sure that for neighboring vertices on the multicycle the degrees in
both colors are different (without having to calculate them exactly).

Unfortunately, not all multicycles have a length divisible by four. Already on
a multicycle 2C6 appears a vertex with the label S1 which should turn into A, if we
add something to this vertex, but this is impossible when we want to add a path of
length two (see below). Note, moreover, that for odd-length multicycles, at least two
neighboring vertices must be of the same parity, which makes their distinguishing not
automatic. These problems make it necessary to consider many cases.

Note that multitree 2P3 rooted at its end creates particular problems. We will call
such multipath a spike. Note that a spike creates particular problems only when an
individual spike is joined to a cyclic vertex x. Therefore, by adding or joining a spike
we always mean adding an individual spike and nothing more. Let us observe that it
cannot be added to the vertex labelled S1 and also to the vertex labelled S̃2. We can
avoid this problem in two ways.

First, trying to change colors in standard coloring of multicycle so that the vertex
to which we add spike has another label. Sometimes it is impossible, for example in
the situation when multicycle 2C3 has a spike added to each vertex. This particular
case is presented in Figure 4.

S S

A

Fig. 4. The coloring of 2C3 with spikes

Secondary, in the situation when the initial multicycle has length 4k + 2 or 4k + 3
for k ≥ 1 and the next part of the construction requires adding a spike (to the vertex
with label S1) we will consider the multicycle with spike instead of multicycle. Note
that in the initial multicycle which has length 4k + 2 or 4k + 3 for k ≥ 1 we have
only one vertex labelled S1. The coloring of this multicycle with spike is presented
in Figure 5. Note that in this figure we presented coloring only for multicycles of
length n = 6 and n = 7, but we can easily extend this coloring for longer multicycles
with spike.

We may assume that in the next part of the construction we will never add a spike
to the vertex labeled S̃2 on 2C3. If it is not true we can easily recolor standard 2C3.
Note that this problem does not apply to the vertex labelled S2.
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Fig. 5. The initial coloring of 2C6 with spike and 2C7 with spike

Remark 2.5. In the next part of the construction new labels for particular pairs of
vertices will appear.

Joining all multitrees and multicycles to vertices on chosen colored
multicycle in 2G. We choose one colored multicycle in 2G. First, we join all multitrees
and multicycles to vertices labeled A, B, S1, S2 and S̃2 on chosen multicycle. Then
we consider pair of vertices labelled S or with another labels which appear later.

Let G̃ be already colored part of the multigraph 2G. This means in particular that
each cyclic vertex in G̃ has its own label. Let x be a cyclic vertex in G̃. We describe
how to add subsequent elements to x. The method of coloring and labelling them
depends mostly on the label of x. We establish a rule that if we start joining elements
to x we join all of them and in the remaining part of the construction we shall not
add anything to x. We assume that multicycles which we join are colored standardly
and labelled as in Figure 2.

Joining to the vertex labelled A. Recall that we do not change the parity and
the label of the vertex labelled A. Therefore, adding multicycles is very simple in this
case. By a dominating color at a vertex x we mean color in which the vertex x has
greater degree. We join to the vertex x labelled A all multicycles:

– 2C3 using their vertices labelled S̃2,
– 2C4k and 2C4k+1 using their vertices labelled A so that we increase the degree of

x at dominating color,
– 2C4k+2 and 2C4k+3 using their vertices labelled S1.

After joining multicycles, we join rooted multitree. So we join a rooted multitree which
is not a multishrub to the vertex x labelled A starting from multiedges incident to its
root colored with the dominating color at x using Lemma 2.2. If the rooted multitree
joined to the vertex x labelled A is isomorphic to 2K2 or 2P3 we color it with the
dominating color at x. Moreover, if the rooted multitree joined to the vertex x labelled
A is isomorphic to 2P5 we color it: the multiedge xr′ with the dominating color at x,
the second multiedge with the other color, the third multiedge red-blue and the last
multiedge with the dominating color at x. If the rooted multitree joined to the vertex
x labelled A is a multishrub and is not isomorphic to 2K2, 2P3 or 2P5, we color its
root multiedge xr′ with the dominating color at x and the rest of this multishrub
rooted at the vertex r′ we color starting from the different color then we used for xr′
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from Lemma 2.2. If d̂(r′) = 6 in 2G and we have pendant multipath 2P3 from the
vertex r′, we recolor this multipath red-blue. More precisely we recolor each multiedge
of this multipath using both colors red and blue.

Joining to the vertex labelled B. Recall that a vertex labelled B is odd and
remains odd (with label B). Therefore, adding multitrees is very simple in this case
because from Lemma 2.2 we always have d̂(x) ̸= d̂(r′) for each r′ which is a neighbour
of x in added multitree. When we add each multicycle, we identify a vertex y on this
multicycle with the vertex x. We need to make sure that neighbours of y on the
multicycle are even. For multicycle 2C4k or 2C4k+1 we use standard coloring of
a multicycle and the vertex y with label S2. For multicycle 2C4k+2 or 2C4k+3 except
for 2C3 we denote by y the vertex with label B and greater degree at dominating color
at x. Multiedges incident to a vertex labelled S1 of a joined multicycle are recolored in
a dominating color at y. Thus, the vertex x remains odd. For a multicycle 2C3 we use
standard coloring of a multicycle and the vertex y with label S̃2. Then we recolor red
multiedge colored red-blue in the standard coloring of joined 2C3. Then we label the
neighbors of y on 2C3 by T. Using bold we would like to stress the fact that given pair
of vertices appears first time. These two adjacent vertices on 2C3 create new special
pair T where by a special pair T we mean a pair of even adjacent vertices on 2C3 which
has neighbour labelled B and the form: multiedge colored red, first vertex from pair T ,
multiedge colored red, second vertex from pair T and multiedge colored blue (see
Figure 8).

Joining to the vertex labelled S1 or S̃2. We will never join a spike to the
vertex labelled S1 or S̃2. Note that if we had to join a spike to the vertex labelled S1
or S̃2 then instead of the standard coloring and labeling for the multicycle we would
use coloring and labeling for the multicycle with spike. We join all multicycles to
the vertex x labelled S1 or S̃2 using the same method as when we join to the vertex
labelled A. Then we join multitree to the vertex x using the method of joining to the
vertex labelled A. Recall that after joining all the elements the vertex x gets label A.

Joining to the vertex labelled S2. Recall that in this case we have to change
the parity and label of the vertex x. If we add multicycles then we use first added
multicycle to change parity of the vertex x, and then we add remaining elements using
the same method as when we add to the vertex labelled B. Now we describe how to
add first multicycle. Let y be the vertex labelled B on 2C4k+2 or 2C4k+3 except for 2C3
such that its neighbour y1 is labelled S1. We join this multicycle to x using the vertex
y. If we have a spike at vertex y1, we replace this multicycle by a multicycle with spike.
The coloring of this multicycle with spike is presented in Figure 6.

A multicycle 2C4k or 2C4k+1 in the standard coloring either has no odd vertex or
has an odd vertex with an odd neighbour. Therefore, this coloring cannot be used in
this case. Thus, before we join multicycle 2C4k to the vertex x labelled S2 we recolor
two multiedges incident to one of the vertices labelled A with red-blue. Thus, this
vertex y1 gets label S1 and its neighbours get label B. Then we join this recolored
multicycle 2C4k to the vertex x using similar method as when we join 2C4k+2 or 2C4k+3
to the vertex labelled S2. Note that we do not have any pair of adjacent vertices with
the same label on joined multicycle 2C4k.
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Before we join multicycle 2C4k+1 except for 2C5 to x, we recolor two multiedges
incident to one of the vertices labelled A which has no neighbour from the special pair
S red-blue. Thus, this vertex y1 gets label S1 and its neighbours get label B. Then
we join this recolored multicycle 2C4k+1 to x using the same method as when we join
2C4k to the vertex labelled S2.

S2 → B

A

S2

A

A

S2 → B

A

. . .

A

y
y1 y

y1

Fig. 6. The coloring of a multicycle 2C4k+2 or 2C4k+3 with spike joined to the vertex
labelled S2 (left) and 2C4k or 2C4k+1 with spike joined to the vertex labelled S2 (right)

The coloring of multicycle 2C5, 2C5 with spike and 2C3 joined to the vertex labelled
S2 is presented in Figure 7. Note that we used first time labels S′ and T′. Labels S′

and T ′ appear only in pairs, on adjacent vertices. We call them, respectively, the special
pair S′ and T ′.

S2 → B S2 → B

A

S′ S′ S S

A
A

S1

S2 → B

T ′ T ′

y

y1 y1

y

1.

Fig. 7. The coloring of multicycle 2C5, 2C5 with spike and 2C3 joined
to the vertex labelled S2 on multicycle

We use the label S′ in two situations:

1. for both vertices from a pair of adjacent vertices on 2C5 which would become the
special pair S if we joined something to both vertices from this pair, because now
this pair has: two neighbours labelled A, S1 and the form: multiedge colored blue,
first vertex from pair S′, multiedge colored red, second vertex from pair S′ and
multiedge colored red-blue (or symmetrically, by symmetrical coloring we mean
swapping all colors);

2. for both vertices from a pair of adjacent vertices on 2C3 which would become the
special pair S if we joined something to both vertices from this pair, because now
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this pair has: neighbour labelled A and the form as in the first situation; the second
situation appears later.

We use the label T ′ for both vertices from a pair of adjacent vertices on 2C3 which
would become the special pair T if we joined something to both vertices from this
pair, because now it has one neighbor labelled B and the form:

1. multiedge colored red, first vertex from pair T ′, multiedge colored red, second vertex
from pair T ′ and multiedge colored red-blue (or symmetrically),

2. multiedge colored red, first vertex from pair T ′, multiedge colored blue, second
vertex from pair T ′ and multiedge colored red-blue (or symmetrically). This form
appears later (see Figure 8).

We always use presented coloring of 2C5 with spike when we join 2C5 to the vertex
labelled S2 and at least one of the neighbours of y on joined 2C5 has a spike, because
we would like to avoid potential problems with special pair S′.

Now, we introduce the method of joining only the multitree 2T rooted at r to the
vertex x labelled S2. We consider two cases. Assume that red is the dominating color
at the vertex x.
Case 1. d̂(r) = 2 in 2T . We color root multiedge rx′ red-blue. If d̂(x′) > 4, we color
multitree rooted at vertex x′ using Lemma 2.2 so that blue is the dominating color at
the vertex x′. If d̂(x′) = 4, we color multiedge x′x1 red-blue and then we color multitree
rooted at the vertex x1 using Lemma 2.2 so that blue is the dominating color at the
vertex x1.
Case 2. d̂(r) > 2 in 2T . We treat this rooted multitree as the set of multishrubs with
common root. We choose one of those multishrubs and color it in the same way as in
the first case. Then we color the remaining part of multitree using the same method
as when we join it to the vertex labelled B so that red is the dominating color at x.

Now, we present in details method of joining elements to pairs of vertices labelled
S, T , T ′ and S′ on the multicycle. Note that in any colored multicycle there is at
most one pair of vertices labelled S or S′ or T or T ′. When we consider each of these
pairs, we join at the same time all multitrees and all multicycles to both vertices
creating this pair. Recall that pair of vertices labelled T or T ′ will appear only on the
multicycle 2C3. In Figure 8 we recall the form of each pair, but it may happen that we
will have pairs with symmetrical coloring, and then we treat those pairs analogously.

x2x1 x2x1 x2x1x2x1

T T ′ S′S

x2x1

T ′

1. 2.

B B B

Fig. 8. The form of pair vertices labelled S, T , T ′ and S′
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Note that in each pair of vertices both vertices creating this pair have the same label
and this label create the name of pair.

Pair S. We consider two cases.
Case 1. We join only one multicycle 2C3 or 2C4k or 2C4k+1 to the special pair S. When
we join 2C3 we use one of the following colorings presented in Figure 9. Note that we
create the special pair T ′ in the second form on this multicycle 2C3.

When we join multicycle 2C4k or 2C4k+1 to the vertex x1 we first recolor multiedge
x1x2 blue, and then we join this multicycle using the method of joining to the vertex
labelled S2. When we join multicycle 2C4k or 2C4k+1 to the vertex x2 we first recolor
multiedge x1x2 red, and then we join this multicycle using the method of joining to
the vertex labelled S2.

x1 x2 x1 x2

T ′ T ′
T ′ T ′

2. 2.

Fig. 9. Colorings of multicycle 2C3 joined to the special pair S

Case 2. Otherwise, we join rooted multitree and all kinds of multicycles to the vertex x1
using the method of joining to the vertex labelled B so that blue is the dominating color
at x1. Then we join rooted multitree and all kinds of multicycles to the vertex x2 using
the method of joining to the vertex labelled B so that red is the dominating color at x2.
Note that red multiedges at x1 come from multicycles 2C4k, 2C4k+1 and 2C3, similarly,
blue multiedges at the vertex x2 come from multicycles 2C4k, 2C4k+1 and 2C3.

Obviously, we can have conflict between vertices x1 and x2. First, we consider
conflict when one vertex from pair S suppose x1 admits d̂(x1) = 4. It means that
d̂b(x1) = d̂b(x2) = 3. Therefore, it suffices that we recolor symmetrically one of the
multicycles 2C4k+3, 2C4k+2 or rooted multitree joined to the vertex x2 to solve this
conflict. If we have similar conflict and x2 admits d̂(x2) = 4 we solve it analogously.
Assume that d̂(x1) > 4, d̂(x2) > 4 and we have conflict between x1 and x2. Thus, we
have definitely joined at least two multicycles from the set of all multicycles 2C4k+1,
2C4k and 2C3 to the vertex x1 or x2. To solve this conflict we recolor using the coloring
from the method of joining to the vertex labelled S2 and so that we increase the degree
in the dominating color exactly two multicycles from the set of all multicycles 2C4k+1,
2C4k and 2C3 joined to one vertex from pair S. Thus, we always solve this conflict,
because using above procedure we increase the degree in the dominating color by two
and decrease the degree in the other color by two in one vertex from pair S. Thus, we
are done with special pair S.

Remark 2.6. During the procedure of adding multicycles, described above, new
labels were assigned to the special pairs T , T ′ and S′. Therefore, below we have to
describe how to add further elements to these pairs.



Local irregularity conjecture for 2-multigraphs versus cacti 61

The pair S′, appearing only on the 2C5 and 2C3 multicycles, is unique in this sense,
we should start the process of adding elements to these multicycles from this pair to
avoid potential problems with neighbors of pair S′ on 2C5.

Pair T. When we join to only one vertex from the special pair T we choose the
vertex x1, and we use the method of joining to the vertex labeled A. When we join
2K2 to one vertex and something to the second vertex from par T we join blue 2K2 to
x2 and remaining elements to x1 using the method of joining to the vertex labeled A.
The particular coloring of special pair T with added a spike to each vertex from this
pair is presented in Figure 10.

TT

Fig. 10. The particular coloring of special pair T with spikes

We consider the situation when we will join something (except for a spike) to one
vertex from pair T and a spike to the second vertex from pair T . We join a spike
colored red to the vertex x1, and then we join elements to the vertex x2 starting from
multicycles and then possibly multitree using the same method as when we join to the
vertex labelled A and so that blue is the dominating color at x2. If we have a conflict
(d̂r(x1) = d̂r(x2) = 6), we recolor a spike joined to the vertex x1 blue.

In the remaining situation we join starting from multicycles then we join multitrees
to vertices x1 and x2 using the same method as when we join to the vertex labelled A
so that red is the dominating color at x1 and blue at x2. If we have conflict between x1
and x2 without recoloring, we move all joins from x1 to x2 and from x2 to x1. Thus,
we are done with special pair T .

Pair T’. First, we present the general method of joining multitree 2T rooted at r
to the vertex x2. We consider two cases.
Case 1. d̂(r) = 2 in 2T . We color the root multiedge rx′ red-blue. Then we color the
multitree rooted at the vertex x′ using Lemma 2.2.
Case 2. d̂(r) ≥ 4 in 2T . We treat the multitree rooted at r as a set of multishrubs with
common root. We choose one multishrub rooted at r and color it in the same way as
in Case 1. Then we join the remaining part of 2T to the vertex x2 using the method
of joining to the vertex labelled A starting from the root multiedge in the dominating
color at x2 if d̂(r) = 4 in 2T and starting from the other color of multiedges incident
to r in the remaining part of 2T if d̂(r) > 4 in 2T .

Now, we present in detail method of joining elements to the special pair T ′ in the
first form. When we join to only one vertex from pair T ′, we choose the vertex x1, and
we use the method of joining to the vertex labelled A.

When we join only a multitree to each vertex from special pair T ′, we join the first
multitree to x1 using the same method as when we join to the vertex labelled A and
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the second multitree to the vertex x2 using the general method of joining multitree
rooted at r to the vertex x2 so that blue is the dominating color at x2 if we join
multitree with root of degree equal at least six. If we join multitree with root of degree
equal to two and multitree with root of degree equal to four we join multitree with
root of degree equal to two to the vertex x2 and multitree with root of degree equal to
four to the vertex x1 to avoid conflict.

In the remaining case we first join exactly one multicycle to the vertex x2 using
the coloring presented in Figure 11.

2C3
2C4

2C5
2C6

2C7

A
A A

A A

S′ S′

B

A

S2
B

A

S

S

S2

A

S2

A

B S

S

A S2

A

B

Fig. 11. The coloring of multicycle joined at first to the vertex x2 from special pair T ′

The coloring of longer multicycle we obtain by replacing two red multiedges with
a multipath of length 4k + 2 colored: the first two multiedges red, the next two
multiedges blue, the subsequent two multiedges red, and so on in the appropriate
colored multicycle of length from four to seven. Then we continue joining multicycles
and possibly multitree to the vertex x2 using the same method as when we join to the
vertex labelled A so that blue is the dominating color at x2. Next, we join elements
to the vertex x1 using the same method as when we join to the vertex labelled A so
that red is the dominating color at x1. At the end if we have conflict between vertices
x1 and x2, namely d̂r(x1) = d̂r(x2), we recolor symmetrically (we swap color of all
multiedges) joined at first multicycle to the vertex x2.

Now, we present the method of joining elements to the special pair T ′ in the second
form. When we join to only one vertex from pair T ′, we choose the vertex x2 and
consider two situations. In the first situation we join only multitree using the general
method of joining multitree to the vertex x2. In the second situation when we join
multicycle or multicycles and possibly multitree we use the method of joining to the
vertex x2 form special pair T ′ in the first form. When we join something to both
vertices from special pair T ′ in the second form we start with recoloring multiedge
x1x2 red. Thus, pair T ′ get the first form, and we use the above method of joining to
pair T ′ in the first form. Thus, we are done with special pair T ′.

Pair S’. This pair occurs only on multicycle 2C3 and 2C5. Additionally, if the pair
S′ occurs on a multicycle 2C5 joined to the colored part of multicactus at vertex x,
then neighbors of the vertex x on 2C5 have no spike and the distance between x and
x1 is the same as the distance between x and x2. By the above properties of special
pair S′ and the fact that we start considering a colored 2C5 which contain a pair S′

with this pair we can choose where we join (to x1 or to x2) the first and the second
part of elements to this special pair S′.
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When we join to only one vertex from special pair S′, we choose vertex x2, and we
use the method of joining to the vertex labelled B, so that red is the dominating color
at x2. Then we can also join rooted multitree to the vertex x1 using the same method
as when we join to the vertex labelled S2 so that blue is the dominating color at x1.

We consider other case when we join at least one multicycle to each vertex from
special pair S′. First, we join all from the first part of joins to this pair S′ to the vertex
x2 using the method of joining to the vertex labelled B, so that red is the dominating
color at x2. Then we join exactly one multicycle to x1 using the method of joining to
the vertex labelled S2, so that d̂r(x1) = 3 and d̂b(x2) = 5. Next, we join multicycles
and possibly multitree to the vertex x1 using the same method as when we join to the
vertex labelled B so that blue is the dominating color at x1. At the end if we have
conflict between vertices x1 and x2, namely d̂r(x1) = d̂r(x2), we recolor symmetrically
joined at first multicycle to the vertex x1. Thus, we are done with special pair S′.

Joining multicycles and additional multitree to a leaf in the colored part
of 2G. Note that we never join only a single multitree to a leaf in 2G. We denote by x
chosen leaf in colored part of 2G and by x0 the only neighbour of x in colored part of
2G. We present the method of joining the longest multicycle to the leaf. After joining
this multicycle vertex x gets label A or B and has different parity than x0. Therefore,
we can easily join remaining elements to x. We will consider four main cases in view
of the color of multiedge xx0 and parity of x0 degrees in both colors.

Case 1. Multiedge xx0 is monochromatic, without loss of generality red, and x0 is even.
First, we describe the method of joining 2C3 to the vertex x. When we join 2C3 and
something else to x we use the first coloring of 2C3 presented in Figure 12. Note that
if we join also the only multitree to x we should tend to make blue the dominating
color at x to avoid potential conflict. In other case when we join only 2C3 to x we use
the second coloring of 2C3 presented in Figure 12.

x0

x

1.

B

T ′ T ′

x0

x

2.

B

T ′ T ′

Fig. 12. Colorings of multicycle 2C3 joined to the vertex x in Case 1

We join multicycle of length greater than three to the vertex x using the method
of joining to the vertex labelled S2. Thus, in all this case the vertex x with joined
multicycle has label B.
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Case 2. Multiedge xx0 is monochromatic, without loss of generality red, and x0 is odd.
We join multicycle to the vertex x using the method of joining to the vertex labelled
A so that red is the dominating color at x. Thus, the vertex x with joined multicycle
has label A.
Case 3. Multiedge xx0 is colored red-blue and x0 is even. We join multicycle to
the vertex x using the method of joining to the vertex labelled B so that red is the
dominating color at x. Thus, the vertex x with joined multicycle has label B.
Case 4. Multiedge xx0 is colored red-blue and x0 is odd. We join a multicycle to the
vertex x using the coloring presented in Figure 13.

2C3
2C4

2C5
2C6

2C7

x0

x0

x0

x0 x0

x

x x
x x

A

A A
A A

S′ S′

B

A

S2

B S

SA

S2

A

S2

A

B
S

S

A S2

A

B

Fig. 13. The coloring of multicycle joined to the vertex x in Case 4

The coloring of longer multicycle we obtain by replacing two red multiedges with
a multipath of length 4k + 2 colored: the first two multiedges red, the next two
multiedges blue, the subsequent two multiedges red, and so on in the appropriate
colored multicycle of length from four to seven. Thus, the vertex x with joined
multicycle has label A. So we are done.

As an immediate consequence of the above theorem and Theorem 1.3 we get the
following result.

Corollary 2.7. The Local Irregularity Conjecture for 2-multigraphs holds for graphs
from the family T′.
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