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Abstract. Let £ > 1 be an integer, and let D be a finite and simple digraph with
vertex set V(D). A weak signed Roman k-dominating function (WSRkDF) on a digraph
D is a function f: V(D) — {1, 1,2} satisfying the condition that >° n—(, f(z) > k
for each v € V(D), where N~ [v] consists of v and all vertices of D from which arcs
go into v. The weight of a WSRKDF f is w(f) = ZvEV(D) f(v). The weak signed

Roman k-domination number 7 (D) is the minimum weight of a WSRkDF on D.
In this paper we initiate the study of the weak signed Roman k-domination number of
digraphs, and we present different bounds on 'y’qj)s r(D). In addition, we determine the
weak signed Roman k-domination number of some classes of digraphs. Some of our
results are extensions of well-known properties of the weak signed Roman domination
number v,5r(D) = 1 z(D) and the signed Roman k-domination number ¥, (D).

Keywords: digraph, weak signed Roman k-dominating function, weak signed Ro-
man k-domination number, signed Roman k-dominating function, signed Roman
k-domination number.
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1. TERMINOLOGY AND INTRODUCTION

In this paper we continue the study of signed Roman dominating functions in graphs
and digraphs (see for example the survey article [2]). Let k > 1 be an integer, G
a simple graph with vertex set V(G), and N[v] = Ng[v] the closed neighborhood of
the vertex v. A weak signed Roman k-dominating function (WSRKDF) on a graph
G is defined in [10] as a function f: V(G) — {—1,1,2} such that }_ .y, f(z) 2 k
for every v € V(G). A weak signed Roman k-dominating function f on a graph G
is called a signed Roman k-dominating function (SRKDF) on G if every vertex u for
which f(u) = —1 is adjacent to a vertex v for which f(v) =2 (see [6]). The weight of
a WSRKDF or an SRKDF f on a graph G is w(f) = Zve\/(G) f(v). The weak signed
Roman k-domination number 4% p(G) or signed Roman k-domination number v*p(Q)
of G is the minimum weight of a WSRkKDF or an SRkDF on G, respectively. The
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special case vsr(G) = 7i5(G) was investigated by Ahangar, Henning, Léwenstein,
Zhao and Samodivkin [1].

Let now D be a finite and simple digraph with vertex set V(D) and arc set A(D).
The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the
size of the digraph D, respectively. The sets N} (v) = N*(v) = {z|(v,2) € A(D)}
and Nj(v) = N~ (v) = {z|(z,v) € A(D)} are called the out-neighborhood and
in-neighborhood of the vertex v. Likewise, Njj[v] = N*[v] = N*(v) U {v} and
Np[v] = N~[v] = N~ (v) U {v}. We write d},(v) = d*(v) = |[NT(v)| for the out-degree
of a vertex v and dj(v) = d~(v) = [N~ (v)| for its in-degree. The minimum and mawi-
mum in-degree are 6~ = 6~ (D) and A~ = A7 (D) and the minimum and mazimum
out-degree are 6t = 0T(D) and AT = AT(D). If X C V(D), then D[X] is the
subdigraph induced by X. For an arc (z,y) € A(D), the vertex y is an out-neighbor of
x and x is an in-neighbor of y, and we also say that x dominates y or y is dominated by
z. For a real-valued function f: V(D) — R, the weight of f is w(f) =3, cy(p) f(0),
and for § C V(D), we define f(S) = 3 g f(v), so w(f) = f(V(D)). Consult [4]
and [5] for notation and terminology which are not defined here.

For an integer p > 1, we define a set S C V(D) to be a p-dominating set of D if
for all v € S, v is dominated by p vertices in S. The p-domination number ~,(D) of
a digraph D is the minimum cardinality of a p-dominating set of D.

A weak signed Roman k-dominating function (abbreviated WSRKDF) on D is
defined as a function f: V(D) — {—1,1,2} such that f(N"[v]) =3 ey f(2) = K
for every v € V(D). A weak signed Roman k-dominating function f on D is called
a signed Roman k-dominating function on D if every vertex u for which f(u) = —1 has
an in-neighbor v for which f(v) = 2 (see [8]). The weight of a WSRKDF or an SRKDF f
onadigraph D is w(f) = >, cy(p) f(v). The weak signed Roman k-domination number

vk .r(D) or signed Roman k-domination number v*5(D) of D is the minimum weight of
a WSRKDF or an SRKDF on D, respectively. A 7% _,(D)-function or a v¥,(D)-function
is a weak signed Roman k-dominating function or a signed Roman k-dominating
function on D of weight v* (D) or v%4(D), respectively. For a WSRKDF or an
SRKDF f on D, let V; = Vi(f) = {v € V(D) : f(v) = i}. A weak signed Roman
k-dominating function or a signed Roman k-dominating function f: V(D) — {-1,1,2}
can be represented by the ordered partition (V_1, V1, Va) of V(D). The special cases
k = 1 were introduced and investigated by Sheikholeslami and Volkmann [7] and
Volkmann [11].

The weak signed Roman k-domination number exists when 6~ > £ — 1. The
definitions lead to 7 (D) < 4*5(D). Therefore each lower bound on v* (D) is also
a lower bound on v¥,(D).

Our purpose in this work is to initiate the study of the weak signed Roman
k-domination number in digraphs. We present basic properties and sharp bounds
on v* (D). In particular we show that many lower bounds on v*5(D) are also valid for
vk (D). In addition, we determine the weak signed Roman k-domination number of
some classes of digraphs. Some of our results are extensions of known properties
of the signed Roman domination number vsz(D) = v!5(D) by Sheikholeslami and

[
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Volkmann [7] and the signed Roman k-domination number v¥5(G) of graphs G, given
by Henning and Volkmann in [6].

The associated digraph D(G) of a graph G is the digraph obtained from G when
each edge e of GG is replaced by two oppositely oriented arcs with the same ends as e.

Since ND(G)[ v] = Nglv] for each vertex v € V(G) = V(D(G)), the following useful

observation is valid.

Observation 1.1. If D(G) is the associated digraph of a graph G, then we have
Ysr(D(G)) = Vs (G).

Let K,, and K be the complete graph and complete digraph of order n, respectively.
In [9] and [10], the author determines the weak signed Roman k-domination number
of complete graphs K,, for n >k > 1.

Proposition 1.2 ([9,10)). Ifn >k > 1, then v 1 (K,) = k.

Using Observation 1.1 and Proposition 1.2, we obtain the weak signed Roman
k-domination number of complete digraphs.

Corollary 1.3. Ifn >k > 1, then v& ,(K}) = k.

Proposition 1.4 ([10]). Let k > 1 be an integer, and let K, ,, be the complete bipartite
graph of order 2p. If p > k + 3, then v o(K,,) =2k +2. If k+1 <p < k +2, then
Ve R(Kpp) =p+k—1.Ifk > 2, then v* p(Ky.r) = 2k and yysr(K11) = 1. If k > 2,
then Pylvj;sR(kal,kfﬁ =2k — 2.

Using Observation 1.1 and Proposition 1.4 , we obtain the weak signed Roman
k-domination number of complete bipartite digraphs K, ,.

Corollary 1.5. If p > k + 3, then'ywsR(K* )=2k+2. Ifk+1<p<k+2, then
'ywsR(K* Y=p+k—1.Ifk > 2, then vwsR(K,j,k) =2k and 'ywSR(Kf’l) =1.Ifk>2,
then 'szR(KZ—l,k—1) =2k — 2.

2. PRELIMINARY RESULTS

In this section we present basic properties of the weak signed Roman k-dominating
functions and the weak signed Roman k-domination numbers of digraphs.

Lemma 2.1. If f = (V_1,V1,V2) is a WSREKDF on a digraph D of order n and
minimum in-degree 6~ (D) > % — 1, then

(a) [Voal+ Vi +[Va| = n,
(b) w(f) = Wil +2[Va| = [V_4,
(¢) ViuWs isa [%W -dominating set of D.

Proof. Since (a) and (b) are immediate, we only prove (c). If |V_q1] = 0, then
ViUV = V(D) is a [2!]-dominating set of D. Let now [V_1| > 1, and let v € V_4
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an arbitrary vertex. Assume that v has j in-neighbors in V; and ¢ in-neighbors in V5.
The condition f(N~[v]) > k leads to j +2¢ —1 > k and so ¢ > % This implies

ktl-g _k+i+1_k+1

. S
e 2 = 2

Therefore v has at least j+q > [%] in-neighbors in V3 U V4. Since v was an arbitrary

vertex in V_1, we deduce that V3 U V5 is a (’“'{W—dominating set of D. O

Corollary 2.2. If D is a digraph of order n and minimum in-degree 6~ (D) > g -1,
then vk (D) > 2941y (D) —n.

Proof. Let f = (V_1,V1,Va) be a v%_(D)-function. Then it follows from Lemma 2.1
that

Tosr(D) = Vil +2[Va| = V1| = 2|Vi| 4 3[Va| — n
>2[ViUVs| —n > QVf%T(D) —n.
L]

The digraph without arcs and the digraph ¢K5 show that Corollary 2.2 is sharp

for k =1 and k = 2. For the case A= (D) > %, we can improve Corollary 2.2 slightly.

Theorem 2.3. If D is a digraph of order n with 6~ (D) > % — 1 and A=(D) > £,
then

YD) = min {2y, (D) +2 =, 2%(D) + 1 =1, 2y441(D) —n }
Proof. Let f = (V_1,V1,Va) be a 4% _p(D)-function. If |Va| > 2, then it follows from
Lemma 2.1 that
vk (D) =2|Vi| +3|Va| —n =2[Vi U Va| + [Vo| —n > 29e01(D) +2—n.

If V3] = 1 and v € V_; is an arbitrary vertex, then we deduce from the condi-
tion f(N~[v]) > k that v has at least k in-neighbors in V; U V5. Hence V3 U V5 is
a k-dominating set and thus

Yusr(D) = 2AViUVa| +[Va] = n > 2%(D) + 1= n.
Let now |Va| = 0. If |[V_1| = 0, then Vi = V(D) and therefore vX (D) = |V4| = n.
If v is a vertex with d~(v) = A~ (D), then the condition A~ (D) > £ implies that
V(D) \ {v} is a [£$*]-dominating set of D. Thus, Vg (D) <n—1, and we obtain
Ak RD)=n=2(n—-1)+2—-n> 2'}/(%](D)+2—n.

Finally, let |Va| =0 and |V_;| > 1. If v € V_; is an arbitrary vertex, then we deduce
from the condition f(N~[v]) > k that v has at least k 4+ 1 in-neighbors in V;. Hence
V1 is a (k + 1)-dominating set and thus

Yosr(D) = 2[Vi| =1 > 2941(D) = n,

and the proof is complete. O
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The proof of the next proposition is identically with the proof of Proposition 7
in [8] and is therefore omitted.

Proposition 2.4. Assume that f = (V_1,V1,Va) is a WSREDF on a digraph D of
order n with 6~ (D) > £ — 1. If AY(D) = AT and 67(D) = 6, then

(i) AT +2-k)|[Va|+ (AT +1-K)[Vi| > (67 +k+1)[V_l,
(i) (2AT 46T +3)[Va| + (AT +6T +2)[V1]| > (6 + k + 1)n,
(ifi) (AT +07 +2)w(f) > (07 — A* +2k)n + (67 — AM)|Va),
(iv) w(f) > (6F —2A% + 2k — 1)n/(2AT + 61 + 3) + |V4.

3. BOUNDS ON THE WEAK SIGNED ROMAN k-DOMINATION NUMBER

We start with a general upper bound, and we characterize all extremal digraphs.

Theorem 3.1. Let D be a digraph of order n with 6~ (D) > [E] — 1. Then
vk r(D) < 2n with equality if and only if k is even, 6~ (D) = & — 1, and each vertex
of D is of minimum in-degree or has an out-neighbor of minimum in-degree.

Proof. Define the function g : V(D) — {—1,1,2} by g(x) = 2 for each vertex x € V(D).
Since 6~(D) > [%£] — 1, the function g is a WSRKDF on D of weight 2n and thus
’Yﬁ)sR(D) < 2n.

Now let k be even, 6~ (D) = g —1, and assume that each vertex of D is of minimum
in-degree or has an out-neighbor of minimum in-degree. Let f be a 'yfzs r(D)-function,
and let « € V(D) be an arbitrary vertex. If d~(z) = & — 1, then f(N~[z]) > k implies
f(z) = 2. If z is not of minimum in-degree, then = has an out-neighbor w of minimum
in-degree. Now the condition f(N~[w]) > k leads to f(x) = 2. Thus f is of weight 2n,
and we obtain * (D) = 2n in this case.

Conversely, assume that v (D) = 2n. If k = 2p + 1 is odd, then 6= (D) > p.
Define the function h : V(D) — {—1,1,2} by h(w) =1 for an arbitrary vertex w and
h(z) = 2 for each vertex € V(D) \ {w}. Then

Z f )>1+2(D)>1+2p=k

TEN—

for each v € V(D). Thus the function h is a WSRKDF on D of weight 2n — 1,
a contradiction to the assumption v* (D) = 2n.

Let now k be even and assume that there exists a vertex w such that d=(w) > %
and d~(z) > % for each out-neighbor of w. Define the function hy : V(D) — {-1,1,2}
by hi(w) =1 and hq(z) = 2 for each vertex z € V(D) \ {w}. Then hqy(N~[v]) > k+1
for each vertex v € N~ [w] and hy (N~ [z]) > k for each vertex ¢ N~ [w]. Hence the
function hy is a WSRKDF on D of weight 2n — 1, and we obtain the contradiction
vk r(D) < 2n — 1. This completes the proof. O

The proof of Theorem 3.1 also leads to the next result.
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Theorem 3.2. Let D be a digraph of order n with 6~ (D) > [£]—1. Then v (D) < 2n
with equality if and only if k is even, 6~ (D) = g — 1, and each vertex of D is of
minimum in-degree or has an out-neighbor of minimum in-degree.

Proposition 3.3. If D is a digraph of order n with minimum in-degree 6~ >k — 1,
then v}y g(D) < 7Eg(D) < n.

Proof. Define the function f: V(D) — {—1,1,2} by f(x) = 1 for each vertex z € V(D).
Since §~ > k — 1, the function f is an SRKDF on D of weight n and thus * (D) <
vEa (D) < n. O

A digraph D is r-regular if ATY(D) = A= (D) = §*(D) = §~(D) = r. As an
application of Proposition 2.4 (iii), we obtain a lower bound on the weak signed Roman
k-domination number for r-regular digraphs.

Corollary 3.4. If D is an r-reqular digraph of order n with r > £ — 1, then

V(D) > Ak (D) > kn/(r+1). i

The special case k = 1 of Corollary 3.4 can be found in [11]. Using Corollary 3.4
and Observation 1.1, we obtain the next known result.

Corollary 3.5 ([10]). If G is an r-regular graph of order n with r > % — 1, then
Yasr(G) = kn/(r+1).

Example 3.6. If H is a (k — 1)-regular digraph of order n, then it follows from
Corollary 3.4 that v55(H) > v* . o(H) > n and so v5(H) = v¥ .z(H) = n, according
to Proposition 3.3.

Example 3.6 demonstrates that Proposition 3.3 and Corollary 3.4 are both sharp.
If £ > 2, then Corollary 1.5 implies that 'yff)SR(K,’;’k) = 2k. This is a further example
showing the sharpness of Proposition 3.3.

Theorem 3.7. If D is a digraph of order n with 6~ (D) > % — 1, then

Yosr(D) > k+1+ A~ (D) —n.

Proof. Let w € V(D) be a vertex of maximum in-degree, and let f be
a 'yl’f]SR(D)—function. Then the definitions imply

YosnD)= D fla Z f Y. fw
z€V (D) zEN— er(D)—N*[w]

Skt Y f(x)Zk—(n—(A*(D)H))

z€V(D)—N~ [w]
=k+14+A7(D)—n,

and the proof of the desired lower bound is complete. O

If n > k > 1, then it follows from Corollary 1.3 that v*_,(K}) = k. Therefore,
the bound given in Theorem 3.7 is sharp.
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A digraph D is out-regular or r-out-regular if AT (D) = §*(D) = r. If D is not
out-regular, then the next lower bound on the weak signed Roman k-domination
number holds.

Corollary 3.8. Let D be a digraph of order m, minimum in-degree 6~ > g -1,

minimum out-degree 51 and mazimum out-degree AT. If 6T < AT, then
26F + 3k — 2AT
k
D)> | ——m——+—
f}/’UJSR( )— ( 2A++(5++3 >
Proof. Multiplying both sides of the inequality in Proposition 2.4 (iv) by A* — §*
and adding the resulting inequality to the inequality in Proposition 2.4 (iii), we obtain
the desired lower bound. O

Corollary 3.9 ([8]). Let D be a digraph of order n, minimum in-degree 6~ > % -1,
minimum out-degree 6 and mazimum out-degree AV, If 6T < AT, then
20" + 3k — 2AT
k
D> ————
’YSR( )( 2A++5++3 )

Since the bound given in Corollary 3.9 is sharp (see [8]), the bound given in
Corollary 3.8 is sharp too.

Since AT(D(GQ)) = A(G) and 67 (D(G)) = 6(G), Corollary 3.8 and Observation 1.1
lead to the next known result.

o . k
Corollary 3.10 ([6,10]). Let G be a graph of order n, minimum degree § > 5 — 1

and mazimum degree A. If § < A, then
20 + 3k — 2A
(62 18nl6) > (a5 )

2A+6+3
The special case k = 1 of Corollary 3.10 can be found in [1,9].

The complement D of a digraph D is the digraph with vertex set V(D) such that
for any two distinct vertices u and v the arc uv belongs to D if and only if uv does
not belong to D. Using Corollary 3.5 one can prove the following Nordhaus—Gaddum
type inequality analogously to Theorem 17 in [8].

Theorem 3.11. If D is an r-reqular digraph of order n such that r > % —1 and
nfrflzgfl, then

4kn

k k
D) + D) > .
’szR( ) ,szR( ) = 1

If n is even, then % (D) +~* (D) > %ﬁ;l).

Example 3.12. Let k > 1 be an integer, and let H and H be (k — 1)-regular digraphs

of order n = 2k — 1. In view of Example 3.6, we have ¥ o (H) + ¥ .p(H) = 2n. This

leads to m
H H)=2n= .
’szR( ) + IszR( ) n n4+ 1

Example 3.12 shows that the Nordhaus-Gaddum bound in Theorem 3.11 is sharp.
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4. SPECIAL FAMILIES OF DIGRAPHS

Example 4.1. If k > 1 and n > % are integers, then 7%, (K}) = k.

Proof. If n > k, then Corollary 1.3 leads to the desired result. Let now k > n > 2.
Corollary 3.5 implies 7% _p(K?) > k. For the converse inequality, let the function
[ V(K}) — {—1,1,2} assign to k — n vertices the value 2 and to the remaining
2n — k vertices the value 1. Then f is a WSRKDF on K of weight w(f) = k and so
Ywsr(K;) < k. This leads to 4% - (K}) = k also in this case. O

Let C,, be an oriented cycle of order n. In [7] and [11
YwsrR(Cn) = % when n is even and vsr(Crn) = Yuwsr(Cr
we determine v¥ 5 (C,,) and v¥5(C,,) for 2 < k < 4.

Theorems 3.1 and 3.2 immediately lead to v, (C),) =
according to Example 3.6, we have v25(C,,) = 72 ,z(Cy)

| it was shown that vsr(C,) =
) = 243 when n is odd. Now

R(Cn) = 2n. In addition,

4
Yws

Example 4.2. For n > 2, we have v3 _(Cp) = v3,(Cy,) = [32].

Proof. Corollary 3.5 implies 725 (Cy,) > 73 z(Cy) > [22]. For the converse inequality
we distinguish two cases.

Case 1. Assume that n = 2t is even for an integer ¢t > 1. Let Co; = vguy ... V2r_10p.
Define f: V(Ca) — {—1,1,2} by f(ve;) =1 and f(va;41) =2 for 0 <i < ¢— 1. Then
f(N~[v]) =3 for each 0 < j < 2t — 1, and therefore f is an SR3DF on Cy; of weight
w(f) = 3t. Thus 72 . z(Crn) < ¥35(C,) < 3t. Consequently, v2 -(Cp) = v35(Cp) =
3t = [32] in this case.

Case 2. Assume now that n = 2t + 1 is odd for an integer ¢t > 1. Let Co 41 =
VoU1 - .. V2. Define f: V(Cq) — {—1,1,2} by f(va) =1, f(vgip1) =2 for 0 <4 <
t —1 and f(vs:) = 2. Then f(N~[v;]) > 3 for each 0 < j < 2¢, and therefore f is
an SR3DF on Cayyq of weight w(f) = 3t + 2. Thus 72 5(Cp) < ¥35(Cp) < 3t + 2.
Consequently, v »(Cy) = 735 (Cr) = 3t +2 = [22] in the second case. O

A digraph is comnnected if its underlying graph is connected. A rooted tree is
a connected digraph with a vertex r of in-degree 0, called the root, such that every
vertex different from the root has in-degree 1.

Proposition 4.3. If T is a rooted tree of ordern > 1, then 2 o(T) = v25(T) = n+1.

Proof. Let f be a 2, (T)-function, and let r be the root of T'. Since d~(r) = 0 and
d=(z) =1tfor x € V(T)\ {r}, we note that f(r) =2 and f(z) > 1 for z € V(T)\ {r}.
Thus v25(T) > 72 ,zr(T) > n+1. On the other hand, the function g : V/(T') — {—1,1,2}
defined by g(r) = 2 and f(z) =1 for x € V(T) \ {r}, is an SR2DF on T of weight
w(g) = n+1. Hence v2  1(T) < v25(T) < n+land thusv2 5(T) = v25(T) = n+1. O

Corollary 4.4. If P, is an oriented path of order n > 1, then v 5(P,) = v2g(P,) =
n+1.
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5. FURTHER LOWER BOUNDS

Let S; be an orientation of the star K, such that the center w has out-degree
n — 1. In addition, let S5 consists of S7 together with an arc vw for an arbitrary leaf v
of Kl,n—l .

Theorem 5.1. Let D be a digraph of order n > 2. Then vyusr(D) > 3 — n, with
equality if and only if D € {S1,S2}.

Proof. If A=(D) > 1, then Theorem 3.7 implies 7,,sg (D) > 3 —n. Clearly, this remains
valid for A= (D) = 0, and the lower bound is proved.

If D € {51,552}, then define g : V(D) — {—1,1,2} by g(w) = 2 and g(z) = —1 for
x € V(D) \ {w}. Then g is a weak signed Roman dominating function on D of weight
3 —n and thus y,sr(D) =3 — n.

Assume now that v, sg(D) =3 —n, and let f be a y,sr(D)-function. This implies
that D has exactly one vertex w with f(w) = 2 and n— 1 vertices y1, y2, - . ., Yn—1 such
that f(y;) = —1 for 1 < i < n— 1. By the definition, w dominates y; for 1 <7 <mn — 1.
If there exists an arc y;y; for i # j, then f(N~[y;]) <0, a contradiction. If y; and y;
dominate w for i # j, then f(N~[w]) <0, a contradiction. Thus, D € {57, S2}, and
the proof is complete. O

Theorem 5.2. Let D be a digraph of order n > 2. Then v2 (D) > 4 — n, with
equality if and only if D = K3.

Proof. If A=(D) =0, then 72 (D) = 2n > 4 —n. If A=(D) > 1, then Theorem 3.7
implies vysr(D) > 4 — n, and the lower bound is proved. If D = K3, then it follows
from Example 4.1 that v2, (D) =2=4 —n.

Assume now that v2 (D) =4 —n, and let f be a 72, (D)-function. This implies
that D has exactly two vertices u and v with f(u) = f(v) = 1 and n — 2 vertices
Z1,%2,...,Tn_o such that f(z;) = —1 for 1 < i < n — 2. It follows that n = 2,
u dominates v and v dominates v and thus D = K3. O

Theorem 5.3. Let k > 3 be an integer, and let D be a digraph of order n with
57 (D) > [5] — 1. Then

(D)2 kot 5] <

with equality if and only if D = K*

N

1
Proof. Since A=(D) > ¢6~(D) > [%] — 1, it follows from Theorem 3.7 that

’YSJSR(D)Zk+1+A7(D)7nZk+1+ ’7];—‘ “1l-n=Fk+ ’7];3—‘ —n,

and the desired lower bound is proved. If D = K FE P then Example 4.1 shows that
2

Veor(D) =k =k+ Fﬂ - Fﬂ .
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Conversely, assume that 7% (D) = k+ [£] —n, and let f be v¥_,(D)-function. If
A~ (D) > [%7, then Theorem 3.7 implies 7% (D) > k+ [£] + 1 — n, a contradiction.
Thus, A=(D) = 6~ (D) = [£] — 1. If there exists a vertex w with f(w) = —1, then we
obtain the contradiction

E<f(N"[w]) < —1+2A7(D) = —1+2 qﬂ 1) <k-2.

So f(z) > 1 for each x € V(D). Next we distinguish two cases.

Case 1. Assume that k is even. If there exixsts a vertex w with f(w) = 1, then we
arrive at the contradiction

ka(N[w])§1+2A(D)1+2<§1> =k—1

Therefore f(z) = 2 for all x € V(D). We deduce that w(f) = 2n =k + £ —n and thus

n = £, Consequently, D = K*,. in this case.

PR

i
Case 2. Assume that k is odd. If there exists a vertex w with f(w) =1, then w has
k—1

exactly 5= in-neighbors of weight 2. Suppose that D has t > 0 further vertices of

weight 1 and s > 0 further vertices of weight 2. Then n =1 + % + s+t and hence
n=2s+2t+k+1. (5.1)

On the other hand we observe that w(f) =2n — (t + 1) = k + £ — n and thus
6n = 3k + 2t + 3. (5.2)

Combining (5.1) and (5.2), we find that 6s + 4t = 0 and therefore s = ¢ = 0. It follows

that n = % and so D = KFET
2

Finally, assume that f(z) = 2 for each « € V(D). Then w(f) =2n =k + &L —n,

and we obtain the contradiction 6n = 3k + 1. O

Let {u,v,x1,22,...,2,—2} be the vertex set of the digraph B of order n > 2
such that v and v dominate x; for 1 < i < n — 2. In addition, let By = B U {vu},
BQ = Bl U {U’U}, Bg = Bl U {xlu}, B4 = BQ U {I1U}7 B5 = BQ @] {:clv,:zrlu} and
B6 = B2 U {:Elu,:cgv}.

Theorem 5.4. Let D be a digraph of order n > 2. If D ¢ {S1,S2}, then
Ywsr(D) > 4 — n, with equality if and only if

De {BvBlaBQaB37B4aB5aB6}'
Proof. Theorem 5.1 implies v, sg(D) > 4 —n. If
D e {BaBl7BQaB3aB47B57BG}7

then define the function g : V(D) — {—1,1,2} by g(u) = g(v) = 1 and g(z;) = —1 for
1 <i<n—2 Then g is a weak signed Roman dominating function on D of weight
4 —n and thus v,sr(D) =4 — n.
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Assume now that v,sg(D) = 4 —n, and let f be a v,,sg(D)-function. This implies
that D has exactly two vertices u and v with f(u) = f(v) = 1 and n — 2 vertices
X1,%9, ..., Tn_g such that f(x;) = —1 for 1 <i < n — 2. By the definition, » and v
dominate z; for 1 < i < n—2. If there exists an arc z;x; for ¢ # j, then f(N~[z;]) <0,
a contradiction. If z; and z; dominate uw or v for ¢ # j, then f(N [u]) < 0 or
F(N~[v]) <0, a contradiction. If z; dominates u, then v dominates u and D = Bs or
D = By. If 1 dominates u and v, then v dominates u and u dominates v and D = Bs.
If 1 dominates v and xo dominates v, the D = Bg. Finally, if there is no arc from z;
to {u,v}, then D € {B, By, B2}. O

Let {u,v,x1,x2,...,2,_2} be the vertex set of the digraph L of order n > 2
such that u and v dominate x; for 1 < ¢ < n — 2 and u dominates v. In addition,
let Ly = LU{vu}, Ls = Ly U{zju}, Ls = LU {zyv}, Ly = L1 U{z1u,z1v}, and
Ls = Ly U{zyu,xov}. Using Theorem 5.2 instead of Theorem 5.1, one can prove the
next result analogously to Theorem 5.4.

Theorem 5.5. Let D be a digraph of order n > 3. Then VZSR(D) > 5 —mn, with
equality if and only if D € {L, Ly, Lo, L3, L4, L5 }.
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