WEAK SIGNED ROMAN k-DOMINATION IN DIGRAPHS

Lutz Volkmann

Communicated by Dalibor Fronček

Abstract. Let $k \ge 1$ be an integer, and let D be a finite and simple digraph with vertex set V(D). A weak signed Roman k-dominating function (WSRkDF) on a digraph D is a function $f: V(D) \to \{-1, 1, 2\}$ satisfying the condition that $\sum_{x \in N^-[v]} f(x) \ge k$ for each $v \in V(D)$, where $N^-[v]$ consists of v and all vertices of D from which arcs go into v. The weight of a WSRkDF f is $w(f) = \sum_{v \in V(D)} f(v)$. The weak signed Roman k-domination number $\gamma_{wsR}^k(D)$ is the minimum weight of a WSRkDF on D. In this paper we initiate the study of the weak signed Roman k-domination number of digraphs, and we present different bounds on $\gamma_{wsR}^k(D)$. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the weak signed Roman domination number $\gamma_{wsR}^k(D) = \gamma_{wsR}^1(D)$ and the signed Roman k-domination number $\gamma_{sR}^k(D)$.

Keywords: digraph, weak signed Roman k-dominating function, weak signed Roman k-domination number, signed Roman k-dominating function, signed Roman k-domination number.

Mathematics Subject Classification: 05C20, 05C69.

1. TERMINOLOGY AND INTRODUCTION

In this paper we continue the study of signed Roman dominating functions in graphs and digraphs (see for example the survey article [2]). Let $k \geq 1$ be an integer, Ga simple graph with vertex set V(G), and $N[v] = N_G[v]$ the closed neighborhood of the vertex v. A weak signed Roman k-dominating function (WSRkDF) on a graph G is defined in [10] as a function $f: V(G) \to \{-1, 1, 2\}$ such that $\sum_{x \in N_G[v]} f(x) \geq k$ for every $v \in V(G)$. A weak signed Roman k-dominating function f on a graph Gis called a signed Roman k-dominating function (SRkDF) on G if every vertex u for which f(u) = -1 is adjacent to a vertex v for which f(v) = 2 (see [6]). The weight of a WSRkDF or an SRkDF f on a graph G is $w(f) = \sum_{v \in V(G)} f(v)$. The weak signed Roman k-domination number $\gamma_{wsR}^k(G)$ or signed Roman k-domination number $\gamma_{sR}^k(G)$ of G is the minimum weight of a WSRkDF or an SRkDF on G, respectively. The special case $\gamma_{sR}(G) = \gamma_{sR}^1(G)$ was investigated by Ahangar, Henning, Löwenstein, Zhao and Samodivkin [1].

Let now D be a finite and simple digraph with vertex set V(D) and arc set A(D). The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the size of the digraph D, respectively. The sets $N_D^+(v) = N^+(v) = \{x \mid (v, x) \in A(D)\}$ and $N_D^-(v) = N^-(v) = \{x \mid (x, v) \in A(D)\}$ are called the out-neighborhood and in-neighborhood of the vertex v. Likewise, $N_D^+[v] = N^+[v] = N^+(v) \cup \{v\}$ and $N_D^-[v] = N^-(v) \cup \{v\}$. We write $d_D^+(v) = d^+(v) = |N^+(v)|$ for the out-degree of a vertex v and $d_D^-(v) = d^-(v) = |N^-(v)|$ for its in-degree. The minimum and maximum in-degree are $\delta^- = \delta^-(D)$ and $\Delta^- = \Delta^-(D)$ and the minimum and maximum out-degree are $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by X. For an arc $(x, y) \in A(D)$, the vertex y is an out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates y or y is dominated by x. For a real-valued function $f: V(D) \to \mathbf{R}$, the weight of f is $w(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V(D)). Consult [4] and [5] for notation and terminology which are not defined here.

For an integer $p \ge 1$, we define a set $S \subseteq V(D)$ to be a *p*-dominating set of D if for all $v \notin S$, v is dominated by p vertices in S. The *p*-domination number $\gamma_p(D)$ of a digraph D is the minimum cardinality of a *p*-dominating set of D.

A weak signed Roman k-dominating function (abbreviated WSRkDF) on D is defined as a function $f: V(D) \to \{-1, 1, 2\}$ such that $f(N^{-}[v]) = \sum_{x \in N^{-}[v]} f(x) \ge k$ for every $v \in V(D)$. A weak signed Roman k-dominating function f on D is called a signed Roman k-dominating function on D if every vertex u for which f(u) = -1 has an in-neighbor v for which f(v) = 2 (see [8]). The weight of a WSRkDF or an SRkDF f on a digraph D is $w(f) = \sum_{v \in V(D)} f(v)$. The weak signed Roman k-domination number $\gamma_{wsR}^k(D)$ or signed Roman k-domination number $\gamma_{sR}^k(D)$ of D is the minimum weight of a WSRkDF or an SRkDF on D, respectively. A $\gamma_{wsR}^k(D)$ -function or a $\gamma_{sR}^k(D)$ -function is a weak signed Roman k-dominating function or a signed Roman k-dominating function on D of weight $\gamma_{wsR}^k(D)$ or $\gamma_{sR}^k(D)$, respectively. For a WSRkDF or an SRkDF f on D, let $V_i = V_i(f) = \{v \in V(D) : f(v) = i\}$. A weak signed Roman k-dominating function or a signed Roman k-dominating function $f: V(D) \to \{-1,1,2\}$ can be represented by the ordered partition (V_{-1}, V_1, V_2) of V(D). The special cases k = 1 were introduced and investigated by Sheikholeslami and Volkmann [7] and Volkmann [11].

The weak signed Roman k-domination number exists when $\delta^- \geq \frac{k}{2} - 1$. The definitions lead to $\gamma_{wsR}^k(D) \leq \gamma_{sR}^k(D)$. Therefore each lower bound on $\gamma_{wsR}^k(D)$ is also a lower bound on $\gamma_{sR}^k(D)$.

Our purpose in this work is to initiate the study of the weak signed Roman k-domination number in digraphs. We present basic properties and sharp bounds on $\gamma_{wsR}^k(D)$. In particular we show that many lower bounds on $\gamma_{sR}^k(D)$ are also valid for $\gamma_{wsR}^k(D)$. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed Roman domination number $\gamma_{sR}(D) = \gamma_{sR}^1(D)$ by Sheikholeslami and

Volkmann [7] and the signed Roman k-domination number $\gamma_{sR}^k(G)$ of graphs G, given by Henning and Volkmann in [6].

The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}[v] = N_{G}[v]$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 1.1. If D(G) is the associated digraph of a graph G, then we have $\gamma_{wsR}^k(D(G)) = \gamma_{wsR}^k(G)$.

Let K_n and K_n^* be the complete graph and complete digraph of order n, respectively. In [9] and [10], the author determines the weak signed Roman k-domination number of complete graphs K_n for $n \ge k \ge 1$.

Proposition 1.2 ([9,10]). If $n \ge k \ge 1$, then $\gamma_{wsR}^k(K_n) = k$.

Using Observation 1.1 and Proposition 1.2, we obtain the weak signed Roman k-domination number of complete digraphs.

Corollary 1.3. If $n \ge k \ge 1$, then $\gamma_{wsR}^k(K_n^*) = k$.

Proposition 1.4 ([10]). Let $k \geq 1$ be an integer, and let $K_{p,p}$ be the complete bipartite graph of order 2p. If $p \geq k+3$, then $\gamma_{wsR}^k(K_{p,p}) = 2k+2$. If $k+1 \leq p \leq k+2$, then $\gamma_{wsR}^k(K_{p,p}) = p+k-1$. If $k \geq 2$, then $\gamma_{wsR}^k(K_{k,k}) = 2k$ and $\gamma_{wsR}(K_{1,1}) = 1$. If $k \geq 2$, then $\gamma_{wsR}^k(K_{k-1,k-1}) = 2k-2$.

Using Observation 1.1 and Proposition 1.4, we obtain the weak signed Roman k-domination number of complete bipartite digraphs $K_{p,p}^*$.

Corollary 1.5. If $p \ge k+3$, then $\gamma_{wsR}^k(K_{p,p}^*) = 2k+2$. If $k+1 \le p \le k+2$, then $\gamma_{wsR}^k(K_{p,p}^*) = p+k-1$. If $k \ge 2$, then $\gamma_{wsR}^k(K_{k,k}^*) = 2k$ and $\gamma_{wsR}(K_{1,1}^*) = 1$. If $k \ge 2$, then $\gamma_{wsR}^k(K_{k-1,k-1}^*) = 2k-2$.

2. PRELIMINARY RESULTS

In this section we present basic properties of the weak signed Roman k-dominating functions and the weak signed Roman k-domination numbers of digraphs.

Lemma 2.1. If $f = (V_{-1}, V_1, V_2)$ is a WSRkDF on a digraph D of order n and minimum in-degree $\delta^-(D) \geq \frac{k}{2} - 1$, then

(a) $|V_{-1}| + |V_1| + |V_2| = n$, (b) $\omega(f) = |V_1| + 2|V_2| - |V_{-1}|$, (c) $V_1 \cup V_2$ is a $\lceil \frac{k+1}{2} \rceil$ -dominating set of D.

Proof. Since (a) and (b) are immediate, we only prove (c). If $|V_{-1}| = 0$, then $V_1 \cup V_2 = V(D)$ is a $\lceil \frac{k+1}{2} \rceil$ -dominating set of D. Let now $|V_{-1}| \ge 1$, and let $v \in V_{-1}$

an arbitrary vertex. Assume that v has j in-neighbors in V_1 and q in-neighbors in V_2 . The condition $f(N^{-}[v]) \ge k$ leads to $j + 2q - 1 \ge k$ and so $q \ge \frac{k+1-j}{2}$. This implies

$$j+q \ge j+\frac{k+1-j}{2} = \frac{k+j+1}{2} \ge \frac{k+1}{2}.$$

Therefore v has at least $j+q \ge \lceil \frac{k+1}{2} \rceil$ in-neighbors in $V_1 \cup V_2$. Since v was an arbitrary vertex in V_{-1} , we deduce that $V_1 \cup V_2$ is a $\lceil \frac{k+1}{2} \rceil$ -dominating set of D.

Corollary 2.2. If D is a digraph of order n and minimum in-degree $\delta^{-}(D) \geq \frac{k}{2} - 1$, then $\gamma_{wsR}^{k}(D) \geq 2\gamma_{\lceil \frac{k+1}{2} \rceil}(D) - n$.

Proof. Let $f = (V_{-1}, V_1, V_2)$ be a $\gamma_{wsR}^k(D)$ -function. Then it follows from Lemma 2.1 that

$$\gamma_{wsR}^{k}(D) = |V_{1}| + 2|V_{2}| - |V_{-1}| = 2|V_{1}| + 3|V_{2}| - n$$
$$\geq 2|V_{1} \cup V_{2}| - n \geq 2\gamma_{\lceil \frac{k+1}{2} \rceil}(D) - n.$$

The digraph without arcs and the digraph qK_2^* show that Corollary 2.2 is sharp for k = 1 and k = 2. For the case $\Delta^-(D) \ge \frac{k+1}{2}$, we can improve Corollary 2.2 slightly. **Theorem 2.3.** If D is a digraph of order n with $\delta^-(D) \ge \frac{k}{2} - 1$ and $\Delta^-(D) \ge \frac{k+1}{2}$, then

$$\gamma_{wsR}^k(D) \ge \min\left\{2\gamma_{\lceil \frac{k+1}{2}\rceil}(D) + 2 - n, \, 2\gamma_k(D) + 1 - n, \, 2\gamma_{k+1}(D) - n\right\}.$$

Proof. Let $f = (V_{-1}, V_1, V_2)$ be a $\gamma_{wsR}^k(D)$ -function. If $|V_2| \ge 2$, then it follows from Lemma 2.1 that

$$\gamma_{wsR}^{k}(D) = 2|V_1| + 3|V_2| - n = 2|V_1 \cup V_2| + |V_2| - n \ge 2\gamma_{\lceil \frac{k+1}{2} \rceil}(D) + 2 - n.$$

If $|V_2| = 1$ and $v \in V_{-1}$ is an arbitrary vertex, then we deduce from the condition $f(N^{-}[v]) \ge k$ that v has at least k in-neighbors in $V_1 \cup V_2$. Hence $V_1 \cup V_2$ is a k-dominating set and thus

$$\gamma_{wsR}^k(D) = 2|V_1 \cup V_2| + |V_2| - n \ge 2\gamma_k(D) + 1 - n.$$

Let now $|V_2| = 0$. If $|V_{-1}| = 0$, then $V_1 = V(D)$ and therefore $\gamma_{wsR}^k(D) = |V_1| = n$. If v is a vertex with $d^-(v) = \Delta^-(D)$, then the condition $\Delta^-(D) \ge \frac{k+1}{2}$ implies that $V(D) \setminus \{v\}$ is a $\lceil \frac{k+1}{2} \rceil$ -dominating set of D. Thus, $\gamma_{\lceil \frac{k+1}{2} \rceil}(D) \le n-1$, and we obtain

$$\gamma^k_{wsR}(D) = n = 2(n-1) + 2 - n \ge 2\gamma_{\lceil \frac{k+1}{2} \rceil}(D) + 2 - n.$$

Finally, let $|V_2| = 0$ and $|V_{-1}| \ge 1$. If $v \in V_{-1}$ is an arbitrary vertex, then we deduce from the condition $f(N^{-}[v]) \ge k$ that v has at least k + 1 in-neighbors in V_1 . Hence V_1 is a (k + 1)-dominating set and thus

$$\gamma_{wsR}^k(D) = 2|V_1| - n \ge 2\gamma_{k+1}(D) - n,$$

and the proof is complete.

The proof of the next proposition is identically with the proof of Proposition 7 in [8] and is therefore omitted.

Proposition 2.4. Assume that $f = (V_{-1}, V_1, V_2)$ is a WSRkDF on a digraph D of order n with $\delta^-(D) \ge \frac{k}{2} - 1$. If $\Delta^+(D) = \Delta^+$ and $\delta^+(D) = \delta^+$, then

 $\begin{array}{ll} (\mathrm{i}) & (2\Delta^+ + 2 - k)|V_2| + (\Delta^+ + 1 - k)|V_1| \geq (\delta^+ + k + 1)|V_{-1}|,\\ (\mathrm{i}) & (2\Delta^+ + \delta^+ + 3)|V_2| + (\Delta^+ + \delta^+ + 2)|V_1| \geq (\delta^+ + k + 1)n,\\ (\mathrm{ii}) & (\Delta^+ + \delta^+ + 2)\omega(f) \geq (\delta^+ - \Delta^+ + 2k)n + (\delta^+ - \Delta^+)|V_2|,\\ (\mathrm{i}v) & \omega(f) \geq (\delta^+ - 2\Delta^+ + 2k - 1)n/(2\Delta^+ + \delta^+ + 3) + |V_2|. \end{array}$

3. BOUNDS ON THE WEAK SIGNED ROMAN k-DOMINATION NUMBER

We start with a general upper bound, and we characterize all extremal digraphs.

Theorem 3.1. Let D be a digraph of order n with $\delta^{-}(D) \geq \lceil \frac{k}{2} \rceil - 1$. Then $\gamma_{wsR}^{k}(D) \leq 2n$ with equality if and only if k is even, $\delta^{-}(D) = \frac{k}{2} - 1$, and each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree.

Proof. Define the function $g: V(D) \to \{-1, 1, 2\}$ by g(x) = 2 for each vertex $x \in V(D)$. Since $\delta^{-}(D) \geq \lceil \frac{k}{2} \rceil - 1$, the function g is a WSRkDF on D of weight 2n and thus $\gamma_{wsR}^k(D) \leq 2n$.

Now let k be even, $\delta^{-}(D) = \frac{k}{2} - 1$, and assume that each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree. Let f be a $\gamma_{wsR}^k(D)$ -function, and let $x \in V(D)$ be an arbitrary vertex. If $d^{-}(x) = \frac{k}{2} - 1$, then $f(N^{-}[x]) \ge k$ implies f(x) = 2. If x is not of minimum in-degree, then x has an out-neighbor w of minimum in-degree. Now the condition $f(N^{-}[w]) \ge k$ leads to f(x) = 2. Thus f is of weight 2n, and we obtain $\gamma_{wsR}^k(D) = 2n$ in this case.

Conversely, assume that $\gamma_{wsR}^k(D) = 2n$. If k = 2p + 1 is odd, then $\delta^-(D) \ge p$. Define the function $h: V(D) \to \{-1, 1, 2\}$ by h(w) = 1 for an arbitrary vertex w and h(x) = 2 for each vertex $x \in V(D) \setminus \{w\}$. Then

$$h(N^{-}[v]) = \sum_{x \in N^{-}[v]} f(x) \ge 1 + 2\delta^{-}(D) \ge 1 + 2p = k$$

for each $v \in V(D)$. Thus the function h is a WSRkDF on D of weight 2n - 1, a contradiction to the assumption $\gamma_{wsR}^k(D) = 2n$.

Let now k be even and assume that there exists a vertex w such that $d^-(w) \ge \frac{k}{2}$ and $d^-(x) \ge \frac{k}{2}$ for each out-neighbor of w. Define the function $h_1: V(D) \to \{-1, 1, 2\}$ by $h_1(w) = 1$ and $h_1(x) = 2$ for each vertex $x \in V(D) \setminus \{w\}$. Then $h_1(N^-[v]) \ge k + 1$ for each vertex $v \in N^-[w]$ and $h_1(N^-[x]) \ge k$ for each vertex $x \notin N^-[w]$. Hence the function h_1 is a WSRkDF on D of weight 2n - 1, and we obtain the contradiction $\gamma_{wsR}^k(D) \le 2n - 1$. This completes the proof.

The proof of Theorem 3.1 also leads to the next result.

Theorem 3.2. Let D be a digraph of order n with $\delta^{-}(D) \geq \lceil \frac{k}{2} \rceil - 1$. Then $\gamma_{sR}^{k}(D) \leq 2n$ with equality if and only if k is even, $\delta^{-}(D) = \frac{k}{2} - 1$, and each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree.

Proposition 3.3. If D is a digraph of order n with minimum in-degree $\delta^- \ge k-1$, then $\gamma_{wsR}^k(D) \le \gamma_{sR}^k(D) \le n$.

Proof. Define the function $f: V(D) \to \{-1, 1, 2\}$ by f(x) = 1 for each vertex $x \in V(D)$. Since $\delta^- \ge k - 1$, the function f is an SRkDF on D of weight n and thus $\gamma_{wsR}^k(D) \le \gamma_{sR}^k(D) \le n$. \Box

A digraph D is *r*-regular if $\Delta^+(D) = \Delta^-(D) = \delta^+(D) = \delta^-(D) = r$. As an application of Proposition 2.4 (iii), we obtain a lower bound on the weak signed Roman k-domination number for *r*-regular digraphs.

Corollary 3.4. If D is an r-regular digraph of order n with $r \geq \frac{k}{2} - 1$, then $\gamma_{sR}^k(D) \geq \gamma_{wsR}^k(D) \geq kn/(r+1)$.

The special case k = 1 of Corollary 3.4 can be found in [11]. Using Corollary 3.4 and Observation 1.1, we obtain the next known result.

Corollary 3.5 ([10]). If G is an r-regular graph of order n with $r \ge \frac{k}{2} - 1$, then $\gamma_{wsR}^k(G) \ge kn/(r+1)$.

Example 3.6. If *H* is a (k-1)-regular digraph of order *n*, then it follows from Corollary 3.4 that $\gamma_{sR}^k(H) \ge \gamma_{wsR}^k(H) \ge n$ and so $\gamma_{sR}^k(H) = \gamma_{wsR}^k(H) = n$, according to Proposition 3.3.

Example 3.6 demonstrates that Proposition 3.3 and Corollary 3.4 are both sharp. If $k \geq 2$, then Corollary 1.5 implies that $\gamma_{wsR}^k(K_{k,k}^*) = 2k$. This is a further example showing the sharpness of Proposition 3.3.

Theorem 3.7. If D is a digraph of order n with $\delta^{-}(D) \geq \frac{k}{2} - 1$, then

$$\gamma_{wsR}^k(D) \ge k + 1 + \Delta^-(D) - n.$$

Proof. Let $w \in V(D)$ be a vertex of maximum in-degree, and let f be a $\gamma_{wsR}^k(D)$ -function. Then the definitions imply

$$\begin{split} \gamma_{wsR}^k(D) &= \sum_{x \in V(D)} f(x) = \sum_{x \in N^-[w]} f(x) + \sum_{x \in V(D) - N^-[w]} f(x) \\ &\geq k + \sum_{x \in V(D) - N^-[w]} f(x) \geq k - (n - (\Delta^-(D) + 1)) \\ &= k + 1 + \Delta^-(D) - n, \end{split}$$

and the proof of the desired lower bound is complete.

If $n \ge k \ge 1$, then it follows from Corollary 1.3 that $\gamma_{wsR}^k(K_n^*) = k$. Therefore, the bound given in Theorem 3.7 is sharp.

A digraph D is *out-regular* or *r*-*out-regular* if $\Delta^+(D) = \delta^+(D) = r$. If D is not out-regular, then the next lower bound on the weak signed Roman k-domination number holds.

Corollary 3.8. Let D be a digraph of order n, minimum in-degree $\delta^- \geq \frac{k}{2} - 1$, minimum out-degree δ^+ and maximum out-degree Δ^+ . If $\delta^+ < \Delta^+$, then

$$\gamma_{wsR}^k(D) \ge \left(\frac{2\delta^+ + 3k - 2\Delta^+}{2\Delta^+ + \delta^+ + 3}\right)n.$$

Proof. Multiplying both sides of the inequality in Proposition 2.4 (iv) by $\Delta^+ - \delta^+$ and adding the resulting inequality to the inequality in Proposition 2.4 (iii), we obtain the desired lower bound.

Corollary 3.9 ([8]). Let D be a digraph of order n, minimum in-degree $\delta^- \geq \frac{k}{2} - 1$, minimum out-degree δ^+ and maximum out-degree Δ^+ . If $\delta^+ < \Delta^+$, then

$$\gamma_{sR}^k(D) \ge \left(\frac{2\delta^+ + 3k - 2\Delta^+}{2\Delta^+ + \delta^+ + 3}\right)n.$$

Since the bound given in Corollary 3.9 is sharp (see [8]), the bound given in Corollary 3.8 is sharp too.

Since $\Delta^+(D(G)) = \Delta(G)$ and $\delta^+(D(G)) = \delta(G)$, Corollary 3.8 and Observation 1.1 lead to the next known result.

Corollary 3.10 ([6,10]). Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2} - 1$ and maximum degree Δ . If $\delta < \Delta$, then

$$\gamma_{sR}^k(G) \ge \gamma_{wsR}^k(G) \ge \left(\frac{2\delta + 3k - 2\Delta}{2\Delta + \delta + 3}\right)n.$$

The special case k = 1 of Corollary 3.10 can be found in [1,9].

The complement \overline{D} of a digraph D is the digraph with vertex set V(D) such that for any two distinct vertices u and v the arc uv belongs to \overline{D} if and only if uv does not belong to D. Using Corollary 3.5 one can prove the following Nordhaus–Gaddum type inequality analogously to Theorem 17 in [8].

Theorem 3.11. If D is an r-regular digraph of order n such that $r \ge \frac{k}{2} - 1$ and $n - r - 1 \ge \frac{k}{2} - 1$, then

$$\gamma_{wsR}^k(D) + \gamma_{wsR}^k(\overline{D}) \ge \frac{4kn}{n+1}$$

If n is even, then $\gamma_{wsR}^k(D) + \gamma_{wsR}^k(\overline{D}) \geq \frac{4k(n+1)}{n+2}$.

Example 3.12. Let $k \ge 1$ be an integer, and let H and \overline{H} be (k-1)-regular digraphs of order n = 2k - 1. In view of Example 3.6, we have $\gamma_{wsR}^k(H) + \gamma_{wsR}^k(\overline{H}) = 2n$. This leads to

$$\gamma_{wsR}^k(H) + \gamma_{wsR}^k(\overline{H}) = 2n = \frac{4kn}{n+1}$$

Example 3.12 shows that the Nordhaus-Gaddum bound in Theorem 3.11 is sharp.

4. SPECIAL FAMILIES OF DIGRAPHS

Example 4.1. If $k \ge 1$ and $n \ge \frac{k}{2}$ are integers, then $\gamma_{wsR}^k(K_n^*) = k$.

Proof. If $n \ge k$, then Corollary 1.3 leads to the desired result. Let now $k > n \ge \frac{n}{2}$. Corollary 3.5 implies $\gamma_{wsR}^k(K_n^*) \ge k$. For the converse inequality, let the function $f: V(K_n^*) \to \{-1, 1, 2\}$ assign to k - n vertices the value 2 and to the remaining 2n - k vertices the value 1. Then f is a WSRkDF on K_n^* of weight $\omega(f) = k$ and so $\gamma_{wsR}(K_n^*) \le k$. This leads to $\gamma_{wsR}^k(K_n^*) = k$ also in this case. \Box

Let C_n be an oriented cycle of order n. In [7] and [11] it was shown that $\gamma_{sR}(C_n) = \gamma_{wsR}(C_n) = \frac{n}{2}$ when n is even and $\gamma_{sR}(C_n) = \gamma_{wsR}(C_n) = \frac{n+3}{2}$ when n is odd. Now we determine $\gamma_{wsR}^k(C_n)$ and $\gamma_{sR}^k(C_n)$ for $2 \le k \le 4$.

we determine $\gamma_{wsR}^k(C_n)$ and $\gamma_{sR}^k(C_n)$ for $2 \le k \le 4$. Theorems 3.1 and 3.2 immediately lead to $\gamma_{sR}^4(C_n) = \gamma_{wsR}^4(C_n) = 2n$. In addition, according to Example 3.6, we have $\gamma_{sR}^2(C_n) = \gamma_{wsR}^2(C_n) = n$.

Example 4.2. For $n \ge 2$, we have $\gamma^3_{wsR}(C_n) = \gamma^3_{sR}(C_n) = \lceil \frac{3n}{2} \rceil$.

Proof. Corollary 3.5 implies $\gamma_{sR}^3(C_n) \ge \gamma_{wsR}^3(C_n) \ge \lceil \frac{3n}{2} \rceil$. For the converse inequality we distinguish two cases.

Case 1. Assume that n = 2t is even for an integer $t \ge 1$. Let $C_{2t} = v_0v_1 \dots v_{2t-1}v_0$. Define $f: V(C_{2t}) \to \{-1, 1, 2\}$ by $f(v_{2i}) = 1$ and $f(v_{2i+1}) = 2$ for $0 \le i \le t-1$. Then $f(N^-[v_j]) = 3$ for each $0 \le j \le 2t - 1$, and therefore f is an SR3DF on C_{2t} of weight $\omega(f) = 3t$. Thus $\gamma^3_{wsR}(C_n) \le \gamma^3_{sR}(C_n) \le 3t$. Consequently, $\gamma^3_{wsR}(C_n) = \gamma^3_{sR}(C_n) = 3t = \lceil \frac{3n}{2} \rceil$ in this case.

Case 2. Assume now that n = 2t + 1 is odd for an integer $t \ge 1$. Let $C_{2t+1} = v_0v_1 \dots v_{2t}v_0$. Define $f: V(C_{2t}) \to \{-1, 1, 2\}$ by $f(v_{2i}) = 1$, $f(v_{2i+1}) = 2$ for $0 \le i \le t - 1$ and $f(v_{2t}) = 2$. Then $f(N^-[v_j]) \ge 3$ for each $0 \le j \le 2t$, and therefore f is an SR3DF on C_{2t+1} of weight $\omega(f) = 3t + 2$. Thus $\gamma^3_{wsR}(C_n) \le \gamma^3_{sR}(C_n) \le 3t + 2$. Consequently, $\gamma^3_{wsR}(C_n) = \gamma^3_{sR}(C_n) = 3t + 2 = \lceil \frac{3n}{2} \rceil$ in the second case. \Box

A digraph is *connected* if its underlying graph is connected. A *rooted tree* is a connected digraph with a vertex r of in-degree 0, called the *root*, such that every vertex different from the root has in-degree 1.

Proposition 4.3. If T is a rooted tree of order $n \ge 1$, then $\gamma_{wsR}^2(T) = \gamma_{sR}^2(T) = n+1$.

Proof. Let f be a $\gamma_{wsR}^2(T)$ -function, and let r be the root of T. Since $d^-(r) = 0$ and $d^-(x) = 1$ for $x \in V(T) \setminus \{r\}$, we note that f(r) = 2 and $f(x) \ge 1$ for $x \in V(T) \setminus \{r\}$. Thus $\gamma_{sR}^2(T) \ge \gamma_{wsR}^2(T) \ge n+1$. On the other hand, the function $g: V(T) \to \{-1, 1, 2\}$ defined by g(r) = 2 and f(x) = 1 for $x \in V(T) \setminus \{r\}$, is an SR2DF on T of weight $\omega(g) = n+1$. Hence $\gamma_{wsR}^2(T) \le \gamma_{sR}^2(T) \le n+1$ and thus $\gamma_{wsR}^2(T) = \gamma_{sR}^2(T) = n+1$. \Box

Corollary 4.4. If P_n is an oriented path of order $n \ge 1$, then $\gamma^2_{wsR}(P_n) = \gamma^2_{sR}(P_n) = n+1$.

5. FURTHER LOWER BOUNDS

Let S_1 be an orientation of the star $K_{1,n-1}$ such that the center w has out-degree n-1. In addition, let S_2 consists of S_1 together with an arc vw for an arbitrary leaf v of $K_{1,n-1}$.

Theorem 5.1. Let D be a digraph of order $n \ge 2$. Then $\gamma_{wsR}(D) \ge 3 - n$, with equality if and only if $D \in \{S_1, S_2\}$.

Proof. If $\Delta^{-}(D) \geq 1$, then Theorem 3.7 implies $\gamma_{wsR}(D) \geq 3-n$. Clearly, this remains valid for $\Delta^{-}(D) = 0$, and the lower bound is proved.

If $D \in \{S_1, S_2\}$, then define $g: V(D) \to \{-1, 1, 2\}$ by g(w) = 2 and g(x) = -1 for $x \in V(D) \setminus \{w\}$. Then g is a weak signed Roman dominating function on D of weight 3 - n and thus $\gamma_{wsR}(D) = 3 - n$.

Assume now that $\gamma_{wsR}(D) = 3 - n$, and let f be a $\gamma_{wsR}(D)$ -function. This implies that D has exactly one vertex w with f(w) = 2 and n-1 vertices $y_1, y_2, \ldots, y_{n-1}$ such that $f(y_i) = -1$ for $1 \le i \le n-1$. By the definition, w dominates y_i for $1 \le i \le n-1$. If there exists an arc $y_i y_j$ for $i \ne j$, then $f(N^-[y_j]) \le 0$, a contradiction. If y_i and y_j dominate w for $i \ne j$, then $f(N^-[w]) \le 0$, a contradiction. Thus, $D \in \{S_1, S_2\}$, and the proof is complete.

Theorem 5.2. Let D be a digraph of order $n \ge 2$. Then $\gamma^2_{wsR}(D) \ge 4 - n$, with equality if and only if $D = K_2^*$.

Proof. If $\Delta^{-}(D) = 0$, then $\gamma^{2}_{wsR}(D) = 2n > 4 - n$. If $\Delta^{-}(D) \ge 1$, then Theorem 3.7 implies $\gamma_{wsR}(D) \ge 4 - n$, and the lower bound is proved. If $D = K_{2}^{*}$, then it follows from Example 4.1 that $\gamma^{2}_{swR}(D) = 2 = 4 - n$.

Assume now that $\gamma^2_{wsR}(D) = 4 - n$, and let f be a $\gamma^2_{wsR}(D)$ -function. This implies that D has exactly two vertices u and v with f(u) = f(v) = 1 and n - 2 vertices $x_1, x_2, \ldots, x_{n-2}$ such that $f(x_i) = -1$ for $1 \le i \le n-2$. It follows that n = 2, u dominates v and v dominates u and thus $D = K_2^*$.

Theorem 5.3. Let $k \geq 3$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq \lfloor \frac{k}{2} \rfloor - 1$. Then

$$\gamma_{wsR}^k(D) \ge k + \left\lceil \frac{k}{2} \right\rceil - n,$$

with equality if and only if $D = K^*_{\lceil \frac{k}{2} \rceil}$.

Proof. Since $\Delta^{-}(D) \geq \delta^{-}(D) \geq \lfloor \frac{k}{2} \rfloor - 1$, it follows from Theorem 3.7 that

$$\gamma_{wsR}^k(D) \ge k + 1 + \Delta^-(D) - n \ge k + 1 + \left\lceil \frac{k}{2} \right\rceil - 1 - n = k + \left\lceil \frac{k}{2} \right\rceil - n,$$

and the desired lower bound is proved. If $D = K_{\lceil \frac{k}{2} \rceil}^*$, then Example 4.1 shows that

$$\gamma_{swR}^k(D) = k = k + \left\lceil \frac{k}{2} \right\rceil - \left\lceil \frac{k}{2} \right\rceil.$$

Conversely, assume that $\gamma_{wsR}^k(D) = k + \lceil \frac{k}{2} \rceil - n$, and let f be $\gamma_{wsR}^k(D)$ -function. If $\Delta^-(D) \ge \lceil \frac{k}{2} \rceil$, then Theorem 3.7 implies $\gamma_{wsR}^k(D) \ge k + \lceil \frac{k}{2} \rceil + 1 - n$, a contradiction. Thus, $\Delta^-(D) = \delta^-(D) = \lceil \frac{k}{2} \rceil - 1$. If there exists a vertex w with f(w) = -1, then we obtain the contradiction

$$k \le f(N^{-}[w]) \le -1 + 2\Delta^{-}(D) = -1 + 2\left(\left\lceil \frac{k}{2} \right\rceil - 1\right) \le k - 2$$

So $f(x) \ge 1$ for each $x \in V(D)$. Next we distinguish two cases.

Case 1. Assume that k is even. If there exists a vertex w with f(w) = 1, then we arrive at the contradiction

$$k \le f(N^{-}[w]) \le 1 + 2\Delta^{-}(D) = 1 + 2\left(\frac{k}{2} - 1\right) = k - 1.$$

Therefore f(x) = 2 for all $x \in V(D)$. We deduce that $\omega(f) = 2n = k + \frac{k}{2} - n$ and thus $n = \frac{k}{2}$. Consequently, $D = K_{\lceil \frac{k}{2} \rceil}^*$ in this case.

Case 2. Assume that k is odd. If there exists a vertex w with f(w) = 1, then w has exactly $\frac{k-1}{2}$ in-neighbors of weight 2. Suppose that D has $t \ge 0$ further vertices of weight 1 and $s \ge 0$ further vertices of weight 2. Then $n = 1 + \frac{k-1}{2} + s + t$ and hence

$$2n = 2s + 2t + k + 1. \tag{5.1}$$

On the other hand we observe that $\omega(f) = 2n - (t+1) = k + \frac{k+1}{2} - n$ and thus

$$6n = 3k + 2t + 3. \tag{5.2}$$

Combining (5.1) and (5.2), we find that 6s + 4t = 0 and therefore s = t = 0. It follows that $n = \frac{k+1}{2}$ and so $D = K^*_{\lceil \frac{k}{2} \rceil}$.

Finally, assume that f(x) = 2 for each $x \in V(D)$. Then $\omega(f) = 2n = k + \frac{k+1}{2} - n$, and we obtain the contradiction 6n = 3k + 1.

Let $\{u, v, x_1, x_2, \ldots, x_{n-2}\}$ be the vertex set of the digraph *B* of order $n \geq 2$ such that *u* and *v* dominate x_i for $1 \leq i \leq n-2$. In addition, let $B_1 = B \cup \{vu\}$, $B_2 = B_1 \cup \{uv\}, B_3 = B_1 \cup \{x_1u\}, B_4 = B_2 \cup \{x_1u\}, B_5 = B_2 \cup \{x_1v, x_1u\}$ and $B_6 = B_2 \cup \{x_1u, x_2v\}.$

Theorem 5.4. Let D be a digraph of order $n \ge 2$. If $D \notin \{S_1, S_2\}$, then $\gamma_{wsR}(D) \ge 4 - n$, with equality if and only if

$$D \in \{B, B_1, B_2, B_3, B_4, B_5, B_6\}.$$

Proof. Theorem 5.1 implies $\gamma_{wsR}(D) \ge 4 - n$. If

$$D \in \{B, B_1, B_2, B_3, B_4, B_5, B_6\},\$$

then define the function $g: V(D) \to \{-1, 1, 2\}$ by g(u) = g(v) = 1 and $g(x_i) = -1$ for $1 \le i \le n-2$. Then g is a weak signed Roman dominating function on D of weight 4-n and thus $\gamma_{wsR}(D) = 4-n$.

Assume now that $\gamma_{wsR}(D) = 4 - n$, and let f be a $\gamma_{wsR}(D)$ -function. This implies that D has exactly two vertices u and v with f(u) = f(v) = 1 and n - 2 vertices $x_1, x_2, \ldots, x_{n-2}$ such that $f(x_i) = -1$ for $1 \le i \le n-2$. By the definition, u and vdominate x_i for $1 \le i \le n-2$. If there exists an arc $x_i x_j$ for $i \ne j$, then $f(N^-[x_j]) \le 0$, a contradiction. If x_i and x_j dominate u or v for $i \ne j$, then $f(N^-[u]) \le 0$ or $f(N^-[v]) \le 0$, a contradiction. If x_1 dominates u, then v dominates u and $D = B_3$ or $D = B_4$. If x_1 dominates u and v, then v dominates u and u dominates v and $D = B_5$. If x_1 dominates u and x_2 dominates v, the $D = B_6$. Finally, if there is no arc from x_i to $\{u, v\}$, then $D \in \{B, B_1, B_2\}$.

Let $\{u, v, x_1, x_2, \ldots, x_{n-2}\}$ be the vertex set of the digraph L of order $n \geq 2$ such that u and v dominate x_i for $1 \leq i \leq n-2$ and u dominates v. In addition, let $L_1 = L \cup \{vu\}, L_2 = L_1 \cup \{x_1u\}, L_3 = L \cup \{x_1v\}, L_4 = L_1 \cup \{x_1u, x_1v\}$, and $L_5 = L_1 \cup \{x_1u, x_2v\}$. Using Theorem 5.2 instead of Theorem 5.1, one can prove the next result analogously to Theorem 5.4.

Theorem 5.5. Let D be a digraph of order $n \ge 3$. Then $\gamma_{wsR}^2(D) \ge 5 - n$, with equality if and only if $D \in \{L, L_1, L_2, L_3, L_4, L_5\}$.

REFERENCES

- H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), no. 2, 241–255.
- [2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, A survey on Roman parameters in directed graph, J. Combin. Math. Combin. Comput. 115 (2020), 141–171.
- [3] G. Hao, X. Chen, L. Volkmann, Bounds on the signed Roman k-domination number of a digraph, Discuss. Math. Graph Theory 39 (2019), 67–79.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
- [6] M.A. Henning, L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016), 175–190.
- [7] S.M. Sheikholeslami, L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), no. 3, 456–467.
- [8] L. Volkmann, Signed Roman k-domination in digraphs, Graphs Combin. 32 (2016), 1217–1227.
- [9] L. Volkmann, Weak signed Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 2, 111–123.
- [10] L. Volkmann, Weak signed Roman k-domination in graphs, Commun. Comb. Optim. 6 (2021), no. 1, 1–15.
- [11] L. Volkmann, Weak signed Roman domination in digraphs, Tamkang J. Math. 52 (2021), no. 4, 497–508.

Lutz Volkmann volkm@math2.rwth-aachen.de

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany

Received: August 18, 2022. Revised: August 22, 2023. Accepted: August 23, 2023.