WEAK SIGNED ROMAN k-DOMINATION IN DIGRAPHS

Lutz Volkmann

Communicated by Dalibor Fronček

Abstract

Let $k \geq 1$ be an integer, and let D be a finite and simple digraph with vertex set $V(D)$. A weak signed Roman k-dominating function (WSRkDF) on a digraph D is a function $f: V(D) \rightarrow\{-1,1,2\}$ satisfying the condition that $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v. The weight of a WSRkDF f is $w(f)=\sum_{v \in V(D)} f(v)$. The weak signed Roman k-domination number $\gamma_{w s R}^{k}(D)$ is the minimum weight of a WSRkDF on D. In this paper we initiate the study of the weak signed Roman k-domination number of digraphs, and we present different bounds on $\gamma_{w s R}^{k}(D)$. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the weak signed Roman domination number $\gamma_{w s R}(D)=\gamma_{w s R}^{1}(D)$ and the signed Roman k-domination number $\gamma_{s R}^{k}(D)$.

Keywords: digraph, weak signed Roman k-dominating function, weak signed Roman k-domination number, signed Roman k-dominating function, signed Roman k-domination number.

Mathematics Subject Classification: 05C20, 05C69.

1. TERMINOLOGY AND INTRODUCTION

In this paper we continue the study of signed Roman dominating functions in graphs and digraphs (see for example the survey article [2]). Let $k \geq 1$ be an integer, G a simple graph with vertex set $V(G)$, and $N[v]=N_{G}[v]$ the closed neighborhood of the vertex v. A weak signed Roman k-dominating function (WSRkDF) on a graph G is defined in [10] as a function $f: V(G) \rightarrow\{-1,1,2\}$ such that $\sum_{x \in N_{G}[v]} f(x) \geq k$ for every $v \in V(G)$. A weak signed Roman k-dominating function f on a graph G is called a signed Roman k-dominating function (SRkDF) on G if every vertex u for which $f(u)=-1$ is adjacent to a vertex v for which $f(v)=2$ (see [6]). The weight of a WSRkDF or an SRkDF f on a graph G is $w(f)=\sum_{v \in V(G)} f(v)$. The weak signed Roman k-domination number $\gamma_{w s R}^{k}(G)$ or signed Roman k-domination number $\gamma_{s R}^{k}(G)$ of G is the minimum weight of a WSRkDF or an SRkDF on G, respectively. The
special case $\gamma_{s R}(G)=\gamma_{s R}^{1}(G)$ was investigated by Ahangar, Henning, Löwenstein, Zhao and Samodivkin [1].

Let now D be a finite and simple digraph with vertex set $V(D)$ and arc set $A(D)$. The integers $n=n(D)=|V(D)|$ and $m=m(D)=|A(D)|$ are the order and the size of the digraph D, respectively. The sets $N_{D}^{+}(v)=N^{+}(v)=\{x \mid(v, x) \in A(D)\}$ and $N_{D}^{-}(v)=N^{-}(v)=\{x \mid(x, v) \in A(D)\}$ are called the out-neighborhood and in-neighborhood of the vertex v. Likewise, $N_{D}^{+}[v]=N^{+}[v]=N^{+}(v) \cup\{v\}$ and $N_{D}^{-}[v]=N^{-}[v]=N^{-}(v) \cup\{v\}$. We write $d_{D}^{+}(v)=d^{+}(v)=\left|N^{+}(v)\right|$ for the out-degree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)=\left|N^{-}(v)\right|$ for its in-degree. The minimum and maximum in-degree are $\delta^{-}=\delta^{-}(D)$ and $\Delta^{-}=\Delta^{-}(D)$ and the minimum and maximum out-degree are $\delta^{+}=\delta^{+}(D)$ and $\Delta^{+}=\Delta^{+}(D)$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. For an $\operatorname{arc}(x, y) \in A(D)$, the vertex y is an out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates y or y is dominated by x. For a real-valued function $f: V(D) \rightarrow \mathbf{R}$, the weight of f is $w(f)=\sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V(D))$. Consult [4] and [5] for notation and terminology which are not defined here.

For an integer $p \geq 1$, we define a set $S \subseteq V(D)$ to be a p-dominating set of D if for all $v \notin S, v$ is dominated by p vertices in S. The p-domination number $\gamma_{p}(D)$ of a digraph D is the minimum cardinality of a p-dominating set of D.

A weak signed Roman k-dominating function (abbreviated WSRkDF) on D is defined as a function $f: V(D) \rightarrow\{-1,1,2\}$ such that $f\left(N^{-}[v]\right)=\sum_{x \in N^{-}[v]} f(x) \geq k$ for every $v \in V(D)$. A weak signed Roman k-dominating function f on D is called a signed Roman k-dominating function on D if every vertex u for which $f(u)=-1$ has an in-neighbor v for which $f(v)=2$ (see [8]). The weight of a WSRkDF or an SRkDF f on a digraph D is $w(f)=\sum_{v \in V(D)} f(v)$. The weak signed Roman k-domination number $\gamma_{w s R}^{k}(D)$ or signed Roman k-domination number $\gamma_{s R}^{k}(D)$ of D is the minimum weight of a WSRkDF or an SRkDF on D, respectively. A $\gamma_{w s R}^{k}(D)$-function or a $\gamma_{s R}^{k}(D)$-function is a weak signed Roman k-dominating function or a signed Roman k-dominating function on D of weight $\gamma_{w s R}^{k}(D)$ or $\gamma_{s R}^{k}(D)$, respectively. For a WSRkDF or an SRkDF f on D, let $V_{i}=V_{i}(f)=\{v \in V(D): f(v)=i\}$. A weak signed Roman k-dominating function or a signed Roman k-dominating function $f: V(D) \rightarrow\{-1,1,2\}$ can be represented by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(D)$. The special cases $k=1$ were introduced and investigated by Sheikholeslami and Volkmann [7] and Volkmann [11].

The weak signed Roman k-domination number exists when $\delta^{-} \geq \frac{k}{2}-1$. The definitions lead to $\gamma_{w s R}^{k}(D) \leq \gamma_{s R}^{k}(D)$. Therefore each lower bound on $\gamma_{w s R}^{k}(D)$ is also a lower bound on $\gamma_{s R}^{k}(D)$.

Our purpose in this work is to initiate the study of the weak signed Roman k-domination number in digraphs. We present basic properties and sharp bounds on $\gamma_{w s R}^{k}(D)$. In particular we show that many lower bounds on $\gamma_{s R}^{k}(D)$ are also valid for $\gamma_{w s R}^{k}(D)$. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed Roman domination number $\gamma_{s R}(D)=\gamma_{s R}^{1}(D)$ by Sheikholeslami and

Volkmann [7] and the signed Roman k-domination number $\gamma_{s R}^{k}(G)$ of graphs G, given by Henning and Volkmann in [6].

The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}[v]=N_{G}[v]$ for each vertex $v \in V(G)=V(D(G))$, the following useful observation is valid.

Observation 1.1. If $D(G)$ is the associated digraph of a graph G, then we have $\gamma_{w s R}^{k}(D(G))=\gamma_{w s R}^{k}(G)$.

Let K_{n} and K_{n}^{*} be the complete graph and complete digraph of order n, respectively. In [9] and [10], the author determines the weak signed Roman k-domination number of complete graphs K_{n} for $n \geq k \geq 1$.

Proposition 1.2 ([9, 10]). If $n \geq k \geq 1$, then $\gamma_{w s R}^{k}\left(K_{n}\right)=k$.
Using Observation 1.1 and Proposition 1.2, we obtain the weak signed Roman k-domination number of complete digraphs.

Corollary 1.3. If $n \geq k \geq 1$, then $\gamma_{w s R}^{k}\left(K_{n}^{*}\right)=k$.
Proposition 1.4 ([10]). Let $k \geq 1$ be an integer, and let $K_{p, p}$ be the complete bipartite graph of order $2 p$. If $p \geq k+3$, then $\gamma_{w s R}^{k}\left(K_{p, p}\right)=2 k+2$. If $k+1 \leq p \leq k+2$, then $\gamma_{w s R}^{k}\left(K_{p, p}\right)=p+k-1$. If $k \geq 2$, then $\gamma_{w s R}^{k}\left(K_{k, k}\right)=2 k$ and $\gamma_{w s R}\left(K_{1,1}\right)=1$. If $k \geq 2$, then $\gamma_{w s R}^{k}\left(K_{k-1, k-1}\right)=2 k-2$.

Using Observation 1.1 and Proposition 1.4 , we obtain the weak signed Roman k-domination number of complete bipartite digraphs $K_{p, p}^{*}$.

Corollary 1.5. If $p \geq k+3$, then $\gamma_{w s R}^{k}\left(K_{p, p}^{*}\right)=2 k+2$. If $k+1 \leq p \leq k+2$, then $\gamma_{w s R}^{k}\left(K_{p, p}^{*}\right)=p+k-1$. If $k \geq 2$, then $\gamma_{w s R}^{k}\left(K_{k, k}^{*}\right)=2 k$ and $\gamma_{w s R}\left(K_{1,1}^{*}\right)=1$. If $k \geq 2$, then $\gamma_{w s R}^{k}\left(K_{k-1, k-1}^{*}\right)=2 k-2$.

2. PRELIMINARY RESULTS

In this section we present basic properties of the weak signed Roman k-dominating functions and the weak signed Roman k-domination numbers of digraphs.

Lemma 2.1. If $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a WSRkDF on a digraph D of order n and minimum in-degree $\delta^{-}(D) \geq \frac{k}{2}-1$, then
(a) $\left|V_{-1}\right|+\left|V_{1}\right|+\left|V_{2}\right|=n$,
(b) $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|-\left|V_{-1}\right|$,
(c) $V_{1} \cup V_{2}$ is a $\left\lceil\frac{k+1}{2}\right\rceil$-dominating set of D.

Proof. Since (a) and (b) are immediate, we only prove (c). If $\left|V_{-1}\right|=0$, then $V_{1} \cup V_{2}=V(D)$ is a $\left\lceil\frac{k+1}{2}\right\rceil$-dominating set of D. Let now $\left|V_{-1}\right| \geq 1$, and let $v \in V_{-1}$
an arbitrary vertex. Assume that v has j in-neighbors in V_{1} and q in-neighbors in V_{2}. The condition $f\left(N^{-}[v]\right) \geq k$ leads to $j+2 q-1 \geq k$ and so $q \geq \frac{k+1-j}{2}$. This implies

$$
j+q \geq j+\frac{k+1-j}{2}=\frac{k+j+1}{2} \geq \frac{k+1}{2}
$$

Therefore v has at least $j+q \geq\left\lceil\frac{k+1}{2}\right\rceil$ in-neighbors in $V_{1} \cup V_{2}$. Since v was an arbitrary vertex in V_{-1}, we deduce that $V_{1} \cup V_{2}$ is a $\left\lceil\frac{k+1}{2}\right\rceil$-dominating set of D.
Corollary 2.2. If D is a digraph of order n and minimum in-degree $\delta^{-}(D) \geq \frac{k}{2}-1$, then $\gamma_{w s R}^{k}(D) \geq 2 \gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D)-n$.
Proof. Let $f=\left(V_{-1}, V_{1}, V_{2}\right)$ be a $\gamma_{w s R}^{k}(D)$-function. Then it follows from Lemma 2.1 that

$$
\begin{aligned}
\gamma_{w s R}^{k}(D) & =\left|V_{1}\right|+2\left|V_{2}\right|-\left|V_{-1}\right|=2\left|V_{1}\right|+3\left|V_{2}\right|-n \\
& \geq 2\left|V_{1} \cup V_{2}\right|-n \geq 2 \gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D)-n
\end{aligned}
$$

The digraph without arcs and the digraph $q K_{2}^{*}$ show that Corollary 2.2 is sharp for $k=1$ and $k=2$. For the case $\Delta^{-}(D) \geq \frac{k+1}{2}$, we can improve Corollary 2.2 slightly.
Theorem 2.3. If D is a digraph of order n with $\delta^{-}(D) \geq \frac{k}{2}-1$ and $\Delta^{-}(D) \geq \frac{k+1}{2}$, then

$$
\gamma_{w s R}^{k}(D) \geq \min \left\{2 \gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D)+2-n, 2 \gamma_{k}(D)+1-n, 2 \gamma_{k+1}(D)-n\right\}
$$

Proof. Let $f=\left(V_{-1}, V_{1}, V_{2}\right)$ be a $\gamma_{w s R}^{k}(D)$-function. If $\left|V_{2}\right| \geq 2$, then it follows from Lemma 2.1 that

$$
\gamma_{w s R}^{k}(D)=2\left|V_{1}\right|+3\left|V_{2}\right|-n=2\left|V_{1} \cup V_{2}\right|+\left|V_{2}\right|-n \geq 2 \gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D)+2-n .
$$

If $\left|V_{2}\right|=1$ and $v \in V_{-1}$ is an arbitrary vertex, then we deduce from the condition $f\left(N^{-}[v]\right) \geq k$ that v has at least k in-neighbors in $V_{1} \cup V_{2}$. Hence $V_{1} \cup V_{2}$ is a k-dominating set and thus

$$
\gamma_{w s R}^{k}(D)=2\left|V_{1} \cup V_{2}\right|+\left|V_{2}\right|-n \geq 2 \gamma_{k}(D)+1-n
$$

Let now $\left|V_{2}\right|=0$. If $\left|V_{-1}\right|=0$, then $V_{1}=V(D)$ and therefore $\gamma_{w s R}^{k}(D)=\left|V_{1}\right|=n$. If v is a vertex with $d^{-}(v)=\Delta^{-}(D)$, then the condition $\Delta^{-}(D) \geq \frac{k+1}{2}$ implies that $V(D) \backslash\{v\}$ is a $\left\lceil\frac{k+1}{2}\right\rceil$-dominating set of D. Thus, $\gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D) \leq n-1$, and we obtain

$$
\gamma_{w s R}^{k}(D)=n=2(n-1)+2-n \geq 2 \gamma_{\left\lceil\frac{k+1}{2}\right\rceil}(D)+2-n
$$

Finally, let $\left|V_{2}\right|=0$ and $\left|V_{-1}\right| \geq 1$. If $v \in V_{-1}$ is an arbitrary vertex, then we deduce from the condition $f\left(N^{-}[v]\right) \geq k$ that v has at least $k+1$ in-neighbors in V_{1}. Hence V_{1} is a $(k+1)$-dominating set and thus

$$
\gamma_{w s R}^{k}(D)=2\left|V_{1}\right|-n \geq 2 \gamma_{k+1}(D)-n
$$

and the proof is complete.

The proof of the next proposition is identically with the proof of Proposition 7 in [8] and is therefore omitted.

Proposition 2.4. Assume that $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is a WSRkDF on a digraph D of order n with $\delta^{-}(D) \geq \frac{k}{2}-1$. If $\Delta^{+}(D)=\Delta^{+}$and $\delta^{+}(D)=\delta^{+}$, then
(i) $\left(2 \Delta^{+}+2-k\right)\left|V_{2}\right|+\left(\Delta^{+}+1-k\right)\left|V_{1}\right| \geq\left(\delta^{+}+k+1\right)\left|V_{-1}\right|$,
(ii) $\left(2 \Delta^{+}+\delta^{+}+3\right)\left|V_{2}\right|+\left(\Delta^{+}+\delta^{+}+2\right)\left|V_{1}\right| \geq\left(\delta^{+}+k+1\right) n$,
(iii) $\left(\Delta^{+}+\delta^{+}+2\right) \omega(f) \geq\left(\delta^{+}-\Delta^{+}+2 k\right) n+\left(\delta^{+}-\Delta^{+}\right)\left|V_{2}\right|$,
(iv) $\omega(f) \geq\left(\delta^{+}-2 \Delta^{+}+2 k-1\right) n /\left(2 \Delta^{+}+\delta^{+}+3\right)+\left|V_{2}\right|$.

3. BOUNDS ON THE WEAK SIGNED ROMAN k-DOMINATION NUMBER

We start with a general upper bound, and we characterize all extremal digraphs.
Theorem 3.1. Let D be a digraph of order n with $\delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil-1$. Then $\gamma_{w s R}^{k}(D) \leq 2 n$ with equality if and only if k is even, $\delta^{-}(D)=\frac{k}{2}-1$, and each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree.

Proof. Define the function $g: V(D) \rightarrow\{-1,1,2\}$ by $g(x)=2$ for each vertex $x \in V(D)$. Since $\delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil-1$, the function g is a WSRkDF on D of weight $2 n$ and thus $\gamma_{w s R}^{k}(D) \leq 2 n$.

Now let k be even, $\delta^{-}(D)=\frac{k}{2}-1$, and assume that each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree. Let f be a $\gamma_{w s R}^{k}(D)$-function, and let $x \in V(D)$ be an arbitrary vertex. If $d^{-}(x)=\frac{k}{2}-1$, then $f\left(N^{-}[x]\right) \geq k$ implies $f(x)=2$. If x is not of minimum in-degree, then x has an out-neighbor w of minimum in-degree. Now the condition $f\left(N^{-}[w]\right) \geq k$ leads to $f(x)=2$. Thus f is of weight $2 n$, and we obtain $\gamma_{w s R}^{k}(D)=2 n$ in this case.

Conversely, assume that $\gamma_{w s R}^{k}(D)=2 n$. If $k=2 p+1$ is odd, then $\delta^{-}(D) \geq p$. Define the function $h: V(D) \rightarrow\{-1,1,2\}$ by $h(w)=1$ for an arbitrary vertex w and $h(x)=2$ for each vertex $x \in V(D) \backslash\{w\}$. Then

$$
h\left(N^{-}[v]\right)=\sum_{x \in N^{-}[v]} f(x) \geq 1+2 \delta^{-}(D) \geq 1+2 p=k
$$

for each $v \in V(D)$. Thus the function h is a WSRkDF on D of weight $2 n-1$, a contradiction to the assumption $\gamma_{w s R}^{k}(D)=2 n$.

Let now k be even and assume that there exists a vertex w such that $d^{-}(w) \geq \frac{k}{2}$ and $d^{-}(x) \geq \frac{k}{2}$ for each out-neighbor of w. Define the function $h_{1}: V(D) \rightarrow\{-1,1,2\}$ by $h_{1}(w)=1$ and $h_{1}(x)=2$ for each vertex $x \in V(D) \backslash\{w\}$. Then $h_{1}\left(N^{-}[v]\right) \geq k+1$ for each vertex $v \in N^{-}[w]$ and $h_{1}\left(N^{-}[x]\right) \geq k$ for each vertex $x \notin N^{-}[w]$. Hence the function h_{1} is a WSRkDF on D of weight $2 n-1$, and we obtain the contradiction $\gamma_{w s R}^{k}(D) \leq 2 n-1$. This completes the proof.

The proof of Theorem 3.1 also leads to the next result.

Theorem 3.2. Let D be a digraph of order n with $\delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil-1$. Then $\gamma_{s R}^{k}(D) \leq 2 n$ with equality if and only if k is even, $\delta^{-}(D)=\frac{k}{2}-1$, and each vertex of D is of minimum in-degree or has an out-neighbor of minimum in-degree.
Proposition 3.3. If D is a digraph of order n with minimum in-degree $\delta^{-} \geq k-1$, then $\gamma_{w s R}^{k}(D) \leq \gamma_{s R}^{k}(D) \leq n$.
Proof. Define the function $f: V(D) \rightarrow\{-1,1,2\}$ by $f(x)=1$ for each vertex $x \in V(D)$. Since $\delta^{-} \geq k-1$, the function f is an SRkDF on D of weight n and thus $\gamma_{w s R}^{k}(D) \leq$ $\gamma_{s R}^{k}(D) \leq n$.

A digraph D is r-regular if $\Delta^{+}(D)=\Delta^{-}(D)=\delta^{+}(D)=\delta^{-}(D)=r$. As an application of Proposition 2.4 (iii), we obtain a lower bound on the weak signed Roman k-domination number for r-regular digraphs.
Corollary 3.4. If D is an r-regular digraph of order n with $r \geq \frac{k}{2}-1$, then $\gamma_{s R}^{k}(D) \geq \gamma_{w s R}^{k}(D) \geq k n /(r+1)$.

The special case $k=1$ of Corollary 3.4 can be found in [11]. Using Corollary 3.4 and Observation 1.1, we obtain the next known result.
Corollary 3.5 ([10]). If G is an r-regular graph of order n with $r \geq \frac{k}{2}-1$, then $\gamma_{w s R}^{k}(G) \geq k n /(r+1)$.
Example 3.6. If H is a $(k-1)$-regular digraph of order n, then it follows from Corollary 3.4 that $\gamma_{s R}^{k}(H) \geq \gamma_{w s R}^{k}(H) \geq n$ and so $\gamma_{s R}^{k}(H)=\gamma_{w s R}^{k}(H)=n$, according to Proposition 3.3.

Example 3.6 demonstrates that Proposition 3.3 and Corollary 3.4 are both sharp. If $k \geq 2$, then Corollary 1.5 implies that $\gamma_{w s R}^{k}\left(K_{k, k}^{*}\right)=2 k$. This is a further example showing the sharpness of Proposition 3.3.
Theorem 3.7. If D is a digraph of order n with $\delta^{-}(D) \geq \frac{k}{2}-1$, then

$$
\gamma_{w s R}^{k}(D) \geq k+1+\Delta^{-}(D)-n
$$

Proof. Let $w \in V(D)$ be a vertex of maximum in-degree, and let f be a $\gamma_{w s R}^{k}(D)$-function. Then the definitions imply

$$
\begin{aligned}
\gamma_{w s R}^{k}(D) & =\sum_{x \in V(D)} f(x)=\sum_{x \in N^{-}[w]} f(x)+\sum_{x \in V(D)-N^{-}[w]} f(x) \\
& \geq k+\sum_{x \in V(D)-N^{-}[w]} f(x) \geq k-\left(n-\left(\Delta^{-}(D)+1\right)\right) \\
& =k+1+\Delta^{-}(D)-n
\end{aligned}
$$

and the proof of the desired lower bound is complete.
If $n \geq k \geq 1$, then it follows from Corollary 1.3 that $\gamma_{w s R}^{k}\left(K_{n}^{*}\right)=k$. Therefore, the bound given in Theorem 3.7 is sharp.

A digraph D is out-regular or r-out-regular if $\Delta^{+}(D)=\delta^{+}(D)=r$. If D is not out-regular, then the next lower bound on the weak signed Roman k-domination number holds.
Corollary 3.8. Let D be a digraph of order n, minimum in-degree $\delta^{-} \geq \frac{k}{2}-1$, minimum out-degree δ^{+}and maximum out-degree Δ^{+}. If $\delta^{+}<\Delta^{+}$, then

$$
\gamma_{w s R}^{k}(D) \geq\left(\frac{2 \delta^{+}+3 k-2 \Delta^{+}}{2 \Delta^{+}+\delta^{+}+3}\right) n
$$

Proof. Multiplying both sides of the inequality in Proposition 2.4 (iv) by $\Delta^{+}-\delta^{+}$ and adding the resulting inequality to the inequality in Proposition 2.4 (iii), we obtain the desired lower bound.

Corollary 3.9 ([8]). Let D be a digraph of order n, minimum in-degree $\delta^{-} \geq \frac{k}{2}-1$, minimum out-degree δ^{+}and maximum out-degree Δ^{+}. If $\delta^{+}<\Delta^{+}$, then

$$
\gamma_{s R}^{k}(D) \geq\left(\frac{2 \delta^{+}+3 k-2 \Delta^{+}}{2 \Delta^{+}+\delta^{+}+3}\right) n
$$

Since the bound given in Corollary 3.9 is sharp (see [8]), the bound given in Corollary 3.8 is sharp too.

Since $\Delta^{+}(D(G))=\Delta(G)$ and $\delta^{+}(D(G))=\delta(G)$, Corollary 3.8 and Observation 1.1 lead to the next known result.
Corollary 3.10 ($[6,10]$). Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2}-1$ and maximum degree Δ. If $\delta<\Delta$, then

$$
\gamma_{s R}^{k}(G) \geq \gamma_{w s R}^{k}(G) \geq\left(\frac{2 \delta+3 k-2 \Delta}{2 \Delta+\delta+3}\right) n
$$

The special case $k=1$ of Corollary 3.10 can be found in $[1,9]$.
The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ such that for any two distinct vertices u and v the arc $u v$ belongs to \bar{D} if and only if $u v$ does not belong to D. Using Corollary 3.5 one can prove the following Nordhaus-Gaddum type inequality analogously to Theorem 17 in [8].
Theorem 3.11. If D is an r-regular digraph of order n such that $r \geq \frac{k}{2}-1$ and $n-r-1 \geq \frac{k}{2}-1$, then

$$
\gamma_{w s R}^{k}(D)+\gamma_{w s R}^{k}(\bar{D}) \geq \frac{4 k n}{n+1}
$$

If n is even, then $\gamma_{w s R}^{k}(D)+\gamma_{w s R}^{k}(\bar{D}) \geq \frac{4 k(n+1)}{n+2}$.
Example 3.12. Let $k \geq 1$ be an integer, and let H and \bar{H} be $(k-1)$-regular digraphs of order $n=2 k-1$. In view of Example 3.6, we have $\gamma_{w s R}^{k}(H)+\gamma_{w s R}^{k}(\bar{H})=2 n$. This leads to

$$
\gamma_{w s R}^{k}(H)+\gamma_{w s R}^{k}(\bar{H})=2 n=\frac{4 k n}{n+1} .
$$

Example 3.12 shows that the Nordhaus-Gaddum bound in Theorem 3.11 is sharp.

4. SPECIAL FAMILIES OF DIGRAPHS

Example 4.1. If $k \geq 1$ and $n \geq \frac{k}{2}$ are integers, then $\gamma_{w s R}^{k}\left(K_{n}^{*}\right)=k$.
Proof. If $n \geq k$, then Corollary 1.3 leads to the desired result. Let now $k>n \geq \frac{n}{2}$. Corollary 3.5 implies $\gamma_{w s R}^{k}\left(K_{n}^{*}\right) \geq k$. For the converse inequality, let the function $f: V\left(K_{n}^{*}\right) \rightarrow\{-1,1,2\}$ assign to $k-n$ vertices the value 2 and to the remaining $2 n-k$ vertices the value 1 . Then f is a WSRkDF on K_{n}^{*} of weight $\omega(f)=k$ and so $\gamma_{w s R}\left(K_{n}^{*}\right) \leq k$. This leads to $\gamma_{w s R}^{k}\left(K_{n}^{*}\right)=k$ also in this case.

Let C_{n} be an oriented cycle of order n. In [7] and [11] it was shown that $\gamma_{s R}\left(C_{n}\right)=$ $\gamma_{w s R}\left(C_{n}\right)=\frac{n}{2}$ when n is even and $\gamma_{s R}\left(C_{n}\right)=\gamma_{w s R}\left(C_{n}\right)=\frac{n+3}{2}$ when n is odd. Now we determine $\gamma_{w s R}^{k}\left(C_{n}\right)$ and $\gamma_{s R}^{k}\left(C_{n}\right)$ for $2 \leq k \leq 4$.

Theorems 3.1 and 3.2 immediately lead to $\gamma_{s R}^{4}\left(C_{n}\right)=\gamma_{w s R}^{4}\left(C_{n}\right)=2 n$. In addition, according to Example 3.6, we have $\gamma_{s R}^{2}\left(C_{n}\right)=\gamma_{w s R}^{2}\left(C_{n}\right)=n$.

Example 4.2. For $n \geq 2$, we have $\gamma_{w s R}^{3}\left(C_{n}\right)=\gamma_{s R}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$.
Proof. Corollary 3.5 implies $\gamma_{s R}^{3}\left(C_{n}\right) \geq \gamma_{w s R}^{3}\left(C_{n}\right) \geq\left\lceil\frac{3 n}{2}\right\rceil$. For the converse inequality we distinguish two cases.
Case 1. Assume that $n=2 t$ is even for an integer $t \geq 1$. Let $C_{2 t}=v_{0} v_{1} \ldots v_{2 t-1} v_{0}$. Define $f: V\left(C_{2 t}\right) \rightarrow\{-1,1,2\}$ by $f\left(v_{2 i}\right)=1$ and $f\left(v_{2 i+1}\right)=2$ for $0 \leq i \leq t-1$. Then $f\left(N^{-}\left[v_{j}\right]\right)=3$ for each $0 \leq j \leq 2 t-1$, and therefore f is an SR3DF on $C_{2 t}$ of weight $\omega(f)=3 t$. Thus $\gamma_{w s R}^{3}\left(C_{n}\right) \leq \gamma_{s R}^{3}\left(C_{n}\right) \leq 3 t$. Consequently, $\gamma_{w s R}^{3}\left(C_{n}\right)=\gamma_{s R}^{3}\left(C_{n}\right)=$ $3 t=\left\lceil\frac{3 n}{2}\right\rceil$ in this case.
Case 2. Assume now that $n=2 t+1$ is odd for an integer $t \geq 1$. Let $C_{2 t+1}=$ $v_{0} v_{1} \ldots v_{2 t} v_{0}$. Define $f: V\left(C_{2 t}\right) \rightarrow\{-1,1,2\}$ by $f\left(v_{2 i}\right)=1, f\left(v_{2 i+1}\right)=2$ for $0 \leq i \leq$ $t-1$ and $f\left(v_{2 t}\right)=2$. Then $f\left(N^{-}\left[v_{j}\right]\right) \geq 3$ for each $0 \leq j \leq 2 t$, and therefore f is an SR3DF on $C_{2 t+1}$ of weight $\omega(f)=3 t+2$. Thus $\gamma_{w s R}^{3}\left(C_{n}\right) \leq \gamma_{s R}^{3}\left(C_{n}\right) \leq 3 t+2$. Consequently, $\gamma_{w s R}^{3}\left(C_{n}\right)=\gamma_{s R}^{3}\left(C_{n}\right)=3 t+2=\left\lceil\frac{3 n}{2}\right\rceil$ in the second case.

A digraph is connected if its underlying graph is connected. A rooted tree is a connected digraph with a vertex r of in-degree 0 , called the root, such that every vertex different from the root has in-degree 1.

Proposition 4.3. If T is a rooted tree of order $n \geq 1$, then $\gamma_{w s R}^{2}(T)=\gamma_{s R}^{2}(T)=n+1$.
Proof. Let f be a $\gamma_{w s R}^{2}(T)$-function, and let r be the root of T. Since $d^{-}(r)=0$ and $d^{-}(x)=1$ for $x \in V(T) \backslash\{r\}$, we note that $f(r)=2$ and $f(x) \geq 1$ for $x \in V(T) \backslash\{r\}$. Thus $\gamma_{s R}^{2}(T) \geq \gamma_{w s R}^{2}(T) \geq n+1$. On the other hand, the function $g: V(T) \rightarrow\{-1,1,2\}$ defined by $g(r)=2$ and $f(x)=1$ for $x \in V(T) \backslash\{r\}$, is an SR2DF on T of weight $\omega(g)=n+1$. Hence $\gamma_{w s R}^{2}(T) \leq \gamma_{s R}^{2}(T) \leq n+1$ and thus $\gamma_{w s R}^{2}(T)=\gamma_{s R}^{2}(T)=n+1$.

Corollary 4.4. If P_{n} is an oriented path of order $n \geq 1$, then $\gamma_{w s R}^{2}\left(P_{n}\right)=\gamma_{s R}^{2}\left(P_{n}\right)=$ $n+1$.

5. FURTHER LOWER BOUNDS

Let S_{1} be an orientation of the star $K_{1, n-1}$ such that the center w has out-degree $n-1$. In addition, let S_{2} consists of S_{1} together with an arc $v w$ for an arbitrary leaf v of $K_{1, n-1}$.

Theorem 5.1. Let D be a digraph of order $n \geq 2$. Then $\gamma_{w s R}(D) \geq 3-n$, with equality if and only if $D \in\left\{S_{1}, S_{2}\right\}$.

Proof. If $\Delta^{-}(D) \geq 1$, then Theorem 3.7 implies $\gamma_{w s R}(D) \geq 3-n$. Clearly, this remains valid for $\Delta^{-}(D)=0$, and the lower bound is proved.

If $D \in\left\{S_{1}, S_{2}\right\}$, then define $g: V(D) \rightarrow\{-1,1,2\}$ by $g(w)=2$ and $g(x)=-1$ for $x \in V(D) \backslash\{w\}$. Then g is a weak signed Roman dominating function on D of weight $3-n$ and thus $\gamma_{w s R}(D)=3-n$.

Assume now that $\gamma_{w s R}(D)=3-n$, and let f be a $\gamma_{w s R}(D)$-function. This implies that D has exactly one vertex w with $f(w)=2$ and $n-1$ vertices $y_{1}, y_{2}, \ldots, y_{n-1}$ such that $f\left(y_{i}\right)=-1$ for $1 \leq i \leq n-1$. By the definition, w dominates y_{i} for $1 \leq i \leq n-1$. If there exists an arc $y_{i} y_{j}$ for $i \neq j$, then $f\left(N^{-}\left[y_{j}\right]\right) \leq 0$, a contradiction. If y_{i} and y_{j} dominate w for $i \neq j$, then $f\left(N^{-}[w]\right) \leq 0$, a contradiction. Thus, $D \in\left\{S_{1}, S_{2}\right\}$, and the proof is complete.

Theorem 5.2. Let D be a digraph of order $n \geq 2$. Then $\gamma_{w s R}^{2}(D) \geq 4-n$, with equality if and only if $D=K_{2}^{*}$.

Proof. If $\Delta^{-}(D)=0$, then $\gamma_{w s R}^{2}(D)=2 n>4-n$. If $\Delta^{-}(D) \geq 1$, then Theorem 3.7 implies $\gamma_{w s R}(D) \geq 4-n$, and the lower bound is proved. If $D=K_{2}^{*}$, then it follows from Example 4.1 that $\gamma_{s w R}^{2}(D)=2=4-n$.

Assume now that $\gamma_{w s R}^{2}(D)=4-n$, and let f be a $\gamma_{w s R}^{2}(D)$-function. This implies that D has exactly two vertices u and v with $f(u)=f(v)=1$ and $n-2$ vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ such that $f\left(x_{i}\right)=-1$ for $1 \leq i \leq n-2$. It follows that $n=2$, u dominates v and v dominates u and thus $D=K_{2}^{*}$.

Theorem 5.3. Let $k \geq 3$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil-1$. Then

$$
\gamma_{w s R}^{k}(D) \geq k+\left\lceil\frac{k}{2}\right\rceil-n
$$

with equality if and only if $D=K_{\left\lceil\frac{k}{2}\right\rceil}^{*}$.
Proof. Since $\Delta^{-}(D) \geq \delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil-1$, it follows from Theorem 3.7 that

$$
\gamma_{w s R}^{k}(D) \geq k+1+\Delta^{-}(D)-n \geq k+1+\left\lceil\frac{k}{2}\right\rceil-1-n=k+\left\lceil\frac{k}{2}\right\rceil-n
$$

and the desired lower bound is proved. If $D=K_{\left\lceil\frac{k}{2}\right\rceil}^{*}$, then Example 4.1 shows that

$$
\gamma_{s w R}^{k}(D)=k=k+\left\lceil\frac{k}{2}\right\rceil-\left\lceil\frac{k}{2}\right\rceil .
$$

Conversely, assume that $\gamma_{w s R}^{k}(D)=k+\left\lceil\frac{k}{2}\right\rceil-n$, and let f be $\gamma_{w s R}^{k}(D)$-function. If $\Delta^{-}(D) \geq\left\lceil\frac{k}{2}\right\rceil$, then Theorem 3.7 implies $\gamma_{w s R}^{k}(D) \geq k+\left\lceil\frac{k}{2}\right\rceil+1-n$, a contradiction. Thus, $\Delta^{-}(D)=\delta^{-}(D)=\left\lceil\frac{k}{2}\right\rceil-1$. If there exists a vertex w with $f(w)=-1$, then we obtain the contradiction

$$
k \leq f\left(N^{-}[w]\right) \leq-1+2 \Delta^{-}(D)=-1+2\left(\left\lceil\frac{k}{2}\right\rceil-1\right) \leq k-2 .
$$

So $f(x) \geq 1$ for each $x \in V(D)$. Next we distinguish two cases.
Case 1. Assume that k is even. If there exixsts a vertex w with $f(w)=1$, then we arrive at the contradiction

$$
k \leq f\left(N^{-}[w]\right) \leq 1+2 \Delta^{-}(D)=1+2\left(\frac{k}{2}-1\right)=k-1
$$

Therefore $f(x)=2$ for all $x \in V(D)$. We deduce that $\omega(f)=2 n=k+\frac{k}{2}-n$ and thus $n=\frac{k}{2}$. Consequently, $D=K_{\left\lceil\frac{k}{2}\right\rceil}^{*}$ in this case.
Case 2. Assume that k is odd. If there exists a vertex w with $f(w)=1$, then w has exactly $\frac{k-1}{2}$ in-neighbors of weight 2 . Suppose that D has $t \geq 0$ further vertices of weight 1 and $s \geq 0$ further vertices of weight 2 . Then $n=1+\frac{k-1}{2}+s+t$ and hence

$$
\begin{equation*}
2 n=2 s+2 t+k+1 \tag{5.1}
\end{equation*}
$$

On the other hand we observe that $\omega(f)=2 n-(t+1)=k+\frac{k+1}{2}-n$ and thus

$$
\begin{equation*}
6 n=3 k+2 t+3 \tag{5.2}
\end{equation*}
$$

Combining (5.1) and (5.2), we find that $6 s+4 t=0$ and therefore $s=t=0$. It follows that $n=\frac{k+1}{2}$ and so $D=K_{\left\lceil\frac{k}{2}\right\rceil}^{*}$.

Finally, assume that $f(x)=2$ for each $x \in V(D)$. Then $\omega(f)=2 n=k+\frac{k+1}{2}-n$, and we obtain the contradiction $6 n=3 k+1$.

Let $\left\{u, v, x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ be the vertex set of the digraph B of order $n \geq 2$ such that u and v dominate x_{i} for $1 \leq i \leq n-2$. In addition, let $B_{1}=B \cup\{v u\}$, $B_{2}=B_{1} \cup\{u v\}, B_{3}=B_{1} \cup\left\{x_{1} u\right\}, B_{4}=B_{2} \cup\left\{x_{1} u\right\}, B_{5}=B_{2} \cup\left\{x_{1} v, x_{1} u\right\}$ and $B_{6}=B_{2} \cup\left\{x_{1} u, x_{2} v\right\}$.

Theorem 5.4. Let D be a digraph of order $n \geq 2$. If $D \notin\left\{S_{1}, S_{2}\right\}$, then $\gamma_{w s R}(D) \geq 4-n$, with equality if and only if

$$
D \in\left\{B, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\} .
$$

Proof. Theorem 5.1 implies $\gamma_{w s R}(D) \geq 4-n$. If

$$
D \in\left\{B, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}
$$

then define the function $g: V(D) \rightarrow\{-1,1,2\}$ by $g(u)=g(v)=1$ and $g\left(x_{i}\right)=-1$ for $1 \leq i \leq n-2$. Then g is a weak signed Roman dominating function on D of weight $4-n$ and thus $\gamma_{w s R}(D)=4-n$.

Assume now that $\gamma_{w s R}(D)=4-n$, and let f be a $\gamma_{w s R}(D)$-function. This implies that D has exactly two vertices u and v with $f(u)=f(v)=1$ and $n-2$ vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ such that $f\left(x_{i}\right)=-1$ for $1 \leq i \leq n-2$. By the definition, u and v dominate x_{i} for $1 \leq i \leq n-2$. If there exists an arc $x_{i} x_{j}$ for $i \neq j$, then $f\left(N^{-}\left[x_{j}\right]\right) \leq 0$, a contradiction. If x_{i} and x_{j} dominate u or v for $i \neq j$, then $f\left(N^{-}[u]\right) \leq 0$ or $f\left(N^{-}[v]\right) \leq 0$, a contradiction. If x_{1} dominates u, then v dominates u and $D=B_{3}$ or $D=B_{4}$. If x_{1} dominates u and v, then v dominates u and u dominates v and $D=B_{5}$. If x_{1} dominates u and x_{2} dominates v, the $D=B_{6}$. Finally, if there is no arc from x_{i} to $\{u, v\}$, then $D \in\left\{B, B_{1}, B_{2}\right\}$.

Let $\left\{u, v, x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ be the vertex set of the digraph L of order $n \geq 2$ such that u and v dominate x_{i} for $1 \leq i \leq n-2$ and u dominates v. In addition, let $L_{1}=L \cup\{v u\}, L_{2}=L_{1} \cup\left\{x_{1} u\right\}, L_{3}=L \cup\left\{x_{1} v\right\}, L_{4}=L_{1} \cup\left\{x_{1} u, x_{1} v\right\}$, and $L_{5}=L_{1} \cup\left\{x_{1} u, x_{2} v\right\}$. Using Theorem 5.2 instead of Theorem 5.1, one can prove the next result analogously to Theorem 5.4.

Theorem 5.5. Let D be a digraph of order $n \geq 3$. Then $\gamma_{w s R}^{2}(D) \geq 5-n$, with equality if and only if $D \in\left\{L, L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$.

REFERENCES

[1] H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), no. 2, 241-255.
[2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, A survey on Roman parameters in directed graph, J. Combin. Math. Combin. Comput. 115 (2020), 141-171.
[3] G. Hao, X. Chen, L. Volkmann, Bounds on the signed Roman k-domination number of a digraph, Discuss. Math. Graph Theory 39 (2019), 67-79.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[6] M.A. Henning, L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016), 175-190.
[7] S.M. Sheikholeslami, L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), no. 3, 456-467.
[8] L. Volkmann, Signed Roman k-domimation in digraphs, Graphs Combin. 32 (2016), 1217-1227.
[9] L. Volkmann, Weak signed Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 2, 111-123.
[10] L. Volkmann, Weak signed Roman k-domination in graphs, Commun. Comb. Optim. 6 (2021), no. 1, 1-15.
[11] L. Volkmann, Weak signed Roman domination in digraphs, Tamkang J. Math. 52 (2021), no. 4, 497-508.

Lutz Volkmann
volkm@math2.rwth-aachen.de
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
Received: August 18, 2022.
Revised: August 22, 2023.
Accepted: August 23, 2023.

