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Abstract. Let k ≥ 1 be an integer, and let D be a finite and simple digraph with
vertex set V (D). A weak signed Roman k-dominating function (WSRkDF) on a digraph
D is a function f : V (D) → {−1, 1, 2} satisfying the condition that

∑
x∈N−[v] f(x) ≥ k

for each v ∈ V (D), where N−[v] consists of v and all vertices of D from which arcs
go into v. The weight of a WSRkDF f is w(f) =

∑
v∈V (D) f(v). The weak signed

Roman k-domination number γk
wsR(D) is the minimum weight of a WSRkDF on D.

In this paper we initiate the study of the weak signed Roman k-domination number of
digraphs, and we present different bounds on γk

wsR(D). In addition, we determine the
weak signed Roman k-domination number of some classes of digraphs. Some of our
results are extensions of well-known properties of the weak signed Roman domination
number γwsR(D) = γ1

wsR(D) and the signed Roman k-domination number γk
sR(D).

Keywords: digraph, weak signed Roman k-dominating function, weak signed Ro-
man k-domination number, signed Roman k-dominating function, signed Roman
k-domination number.
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1. TERMINOLOGY AND INTRODUCTION

In this paper we continue the study of signed Roman dominating functions in graphs
and digraphs (see for example the survey article [2]). Let k ≥ 1 be an integer, G
a simple graph with vertex set V (G), and N [v] = NG[v] the closed neighborhood of
the vertex v. A weak signed Roman k-dominating function (WSRkDF) on a graph
G is defined in [10] as a function f : V (G) → {−1, 1, 2} such that

∑
x∈NG[v] f(x) ≥ k

for every v ∈ V (G). A weak signed Roman k-dominating function f on a graph G
is called a signed Roman k-dominating function (SRkDF) on G if every vertex u for
which f(u) = −1 is adjacent to a vertex v for which f(v) = 2 (see [6]). The weight of
a WSRkDF or an SRkDF f on a graph G is w(f) =

∑
v∈V (G) f(v). The weak signed

Roman k-domination number γk
wsR(G) or signed Roman k-domination number γk

sR(G)
of G is the minimum weight of a WSRkDF or an SRkDF on G, respectively. The
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special case γsR(G) = γ1
sR(G) was investigated by Ahangar, Henning, Löwenstein,

Zhao and Samodivkin [1].
Let now D be a finite and simple digraph with vertex set V (D) and arc set A(D).

The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and the
size of the digraph D, respectively. The sets N+

D (v) = N+(v) = {x | (v, x) ∈ A(D)}
and N−

D (v) = N−(v) = {x | (x, v) ∈ A(D)} are called the out-neighborhood and
in-neighborhood of the vertex v. Likewise, N+

D [v] = N+[v] = N+(v) ∪ {v} and
N−

D [v] = N−[v] = N−(v) ∪ {v}. We write d+
D(v) = d+(v) = |N+(v)| for the out-degree

of a vertex v and d−
D(v) = d−(v) = |N−(v)| for its in-degree. The minimum and maxi-

mum in-degree are δ− = δ−(D) and ∆− = ∆−(D) and the minimum and maximum
out-degree are δ+ = δ+(D) and ∆+ = ∆+(D). If X ⊆ V (D), then D[X] is the
subdigraph induced by X. For an arc (x, y) ∈ A(D), the vertex y is an out-neighbor of
x and x is an in-neighbor of y, and we also say that x dominates y or y is dominated by
x. For a real-valued function f : V (D) → R, the weight of f is w(f) =

∑
v∈V (D) f(v),

and for S ⊆ V (D), we define f(S) =
∑

v∈S f(v), so w(f) = f(V (D)). Consult [4]
and [5] for notation and terminology which are not defined here.

For an integer p ≥ 1, we define a set S ⊆ V (D) to be a p-dominating set of D if
for all v ̸∈ S, v is dominated by p vertices in S. The p-domination number γp(D) of
a digraph D is the minimum cardinality of a p-dominating set of D.

A weak signed Roman k-dominating function (abbreviated WSRkDF) on D is
defined as a function f : V (D) → {−1, 1, 2} such that f(N−[v]) =

∑
x∈N−[v] f(x) ≥ k

for every v ∈ V (D). A weak signed Roman k-dominating function f on D is called
a signed Roman k-dominating function on D if every vertex u for which f(u) = −1 has
an in-neighbor v for which f(v) = 2 (see [8]). The weight of a WSRkDF or an SRkDF f
on a digraph D is w(f) =

∑
v∈V (D) f(v). The weak signed Roman k-domination number

γk
wsR(D) or signed Roman k-domination number γk

sR(D) of D is the minimum weight of
a WSRkDF or an SRkDF on D, respectively. A γk

wsR(D)-function or a γk
sR(D)-function

is a weak signed Roman k-dominating function or a signed Roman k-dominating
function on D of weight γk

wsR(D) or γk
sR(D), respectively. For a WSRkDF or an

SRkDF f on D, let Vi = Vi(f) = {v ∈ V (D) : f(v) = i}. A weak signed Roman
k-dominating function or a signed Roman k-dominating function f : V (D) → {−1, 1, 2}
can be represented by the ordered partition (V−1, V1, V2) of V (D). The special cases
k = 1 were introduced and investigated by Sheikholeslami and Volkmann [7] and
Volkmann [11].

The weak signed Roman k-domination number exists when δ− ≥ k
2 − 1. The

definitions lead to γk
wsR(D) ≤ γk

sR(D). Therefore each lower bound on γk
wsR(D) is also

a lower bound on γk
sR(D).

Our purpose in this work is to initiate the study of the weak signed Roman
k-domination number in digraphs. We present basic properties and sharp bounds
on γk

wsR(D). In particular we show that many lower bounds on γk
sR(D) are also valid for

γk
wsR(D). In addition, we determine the weak signed Roman k-domination number of

some classes of digraphs. Some of our results are extensions of known properties
of the signed Roman domination number γsR(D) = γ1

sR(D) by Sheikholeslami and
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Volkmann [7] and the signed Roman k-domination number γk
sR(G) of graphs G, given

by Henning and Volkmann in [6].
The associated digraph D(G) of a graph G is the digraph obtained from G when

each edge e of G is replaced by two oppositely oriented arcs with the same ends as e.
Since N−

D(G)[v] = NG[v] for each vertex v ∈ V (G) = V (D(G)), the following useful
observation is valid.

Observation 1.1. If D(G) is the associated digraph of a graph G, then we have
γk

wsR(D(G)) = γk
wsR(G).

Let Kn and K∗
n be the complete graph and complete digraph of order n, respectively.

In [9] and [10], the author determines the weak signed Roman k-domination number
of complete graphs Kn for n ≥ k ≥ 1.

Proposition 1.2 ([9, 10]). If n ≥ k ≥ 1, then γk
wsR(Kn) = k.

Using Observation 1.1 and Proposition 1.2, we obtain the weak signed Roman
k-domination number of complete digraphs.

Corollary 1.3. If n ≥ k ≥ 1, then γk
wsR(K∗

n) = k.

Proposition 1.4 ([10]). Let k ≥ 1 be an integer, and let Kp,p be the complete bipartite
graph of order 2p. If p ≥ k + 3, then γk

wsR(Kp,p) = 2k + 2. If k + 1 ≤ p ≤ k + 2, then
γk

wsR(Kp,p) = p + k − 1. If k ≥ 2, then γk
wsR(Kk,k) = 2k and γwsR(K1,1) = 1. If k ≥ 2,

then γk
wsR(Kk−1,k−1) = 2k − 2.

Using Observation 1.1 and Proposition 1.4 , we obtain the weak signed Roman
k-domination number of complete bipartite digraphs K∗

p,p.

Corollary 1.5. If p ≥ k + 3, then γk
wsR(K∗

p,p) = 2k + 2. If k + 1 ≤ p ≤ k + 2, then
γk

wsR(K∗
p,p) = p + k − 1. If k ≥ 2, then γk

wsR(K∗
k,k) = 2k and γwsR(K∗

1,1) = 1. If k ≥ 2,
then γk

wsR(K∗
k−1,k−1) = 2k − 2.

2. PRELIMINARY RESULTS

In this section we present basic properties of the weak signed Roman k-dominating
functions and the weak signed Roman k-domination numbers of digraphs.

Lemma 2.1. If f = (V−1, V1, V2) is a WSRkDF on a digraph D of order n and
minimum in-degree δ−(D) ≥ k

2 − 1, then

(a) |V−1| + |V1| + |V2| = n,
(b) ω(f) = |V1| + 2|V2| − |V−1|,
(c) V1 ∪ V2 is a ⌈ k+1

2 ⌉-dominating set of D.

Proof. Since (a) and (b) are immediate, we only prove (c). If |V−1| = 0, then
V1 ∪ V2 = V (D) is a ⌈ k+1

2 ⌉-dominating set of D. Let now |V−1| ≥ 1, and let v ∈ V−1
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an arbitrary vertex. Assume that v has j in-neighbors in V1 and q in-neighbors in V2.
The condition f(N−[v]) ≥ k leads to j + 2q − 1 ≥ k and so q ≥ k+1−j

2 . This implies

j + q ≥ j + k + 1 − j

2 = k + j + 1
2 ≥ k + 1

2 .

Therefore v has at least j +q ≥ ⌈ k+1
2 ⌉ in-neighbors in V1 ∪V2. Since v was an arbitrary

vertex in V−1, we deduce that V1 ∪ V2 is a ⌈ k+1
2 ⌉-dominating set of D.

Corollary 2.2. If D is a digraph of order n and minimum in-degree δ−(D) ≥ k
2 − 1,

then γk
wsR(D) ≥ 2γ⌈ k+1

2 ⌉(D) − n.

Proof. Let f = (V−1, V1, V2) be a γk
wsR(D)-function. Then it follows from Lemma 2.1

that

γk
wsR(D) = |V1| + 2|V2| − |V−1| = 2|V1| + 3|V2| − n

≥ 2|V1 ∪ V2| − n ≥ 2γ⌈ k+1
2 ⌉(D) − n.

The digraph without arcs and the digraph qK∗
2 show that Corollary 2.2 is sharp

for k = 1 and k = 2. For the case ∆−(D) ≥ k+1
2 , we can improve Corollary 2.2 slightly.

Theorem 2.3. If D is a digraph of order n with δ−(D) ≥ k
2 − 1 and ∆−(D) ≥ k+1

2 ,
then

γk
wsR(D) ≥ min

{
2γ⌈ k+1

2 ⌉(D) + 2 − n, 2γk(D) + 1 − n, 2γk+1(D) − n
}

.

Proof. Let f = (V−1, V1, V2) be a γk
wsR(D)-function. If |V2| ≥ 2, then it follows from

Lemma 2.1 that

γk
wsR(D) = 2|V1| + 3|V2| − n = 2|V1 ∪ V2| + |V2| − n ≥ 2γ⌈ k+1

2 ⌉(D) + 2 − n.

If |V2| = 1 and v ∈ V−1 is an arbitrary vertex, then we deduce from the condi-
tion f(N−[v]) ≥ k that v has at least k in-neighbors in V1 ∪ V2. Hence V1 ∪ V2 is
a k-dominating set and thus

γk
wsR(D) = 2|V1 ∪ V2| + |V2| − n ≥ 2γk(D) + 1 − n.

Let now |V2| = 0. If |V−1| = 0, then V1 = V (D) and therefore γk
wsR(D) = |V1| = n.

If v is a vertex with d−(v) = ∆−(D), then the condition ∆−(D) ≥ k+1
2 implies that

V (D) \ {v} is a ⌈ k+1
2 ⌉-dominating set of D. Thus, γ⌈ k+1

2 ⌉(D) ≤ n − 1, and we obtain

γk
wsR(D) = n = 2(n − 1) + 2 − n ≥ 2γ⌈ k+1

2 ⌉(D) + 2 − n.

Finally, let |V2| = 0 and |V−1| ≥ 1. If v ∈ V−1 is an arbitrary vertex, then we deduce
from the condition f(N−[v]) ≥ k that v has at least k + 1 in-neighbors in V1. Hence
V1 is a (k + 1)-dominating set and thus

γk
wsR(D) = 2|V1| − n ≥ 2γk+1(D) − n,

and the proof is complete.



Weak signed Roman k-domination in digraphs 289

The proof of the next proposition is identically with the proof of Proposition 7
in [8] and is therefore omitted.

Proposition 2.4. Assume that f = (V−1, V1, V2) is a WSRkDF on a digraph D of
order n with δ−(D) ≥ k

2 − 1. If ∆+(D) = ∆+ and δ+(D) = δ+, then

(i) (2∆+ + 2 − k)|V2| + (∆+ + 1 − k)|V1| ≥ (δ+ + k + 1)|V−1|,
(ii) (2∆+ + δ+ + 3)|V2| + (∆+ + δ+ + 2)|V1| ≥ (δ+ + k + 1)n,
(iii) (∆+ + δ+ + 2)ω(f) ≥ (δ+ − ∆+ + 2k)n + (δ+ − ∆+)|V2|,
(iv) ω(f) ≥ (δ+ − 2∆+ + 2k − 1)n/(2∆+ + δ+ + 3) + |V2|.

3. BOUNDS ON THE WEAK SIGNED ROMAN k-DOMINATION NUMBER

We start with a general upper bound, and we characterize all extremal digraphs.

Theorem 3.1. Let D be a digraph of order n with δ−(D) ≥ ⌈ k
2 ⌉ − 1. Then

γk
wsR(D) ≤ 2n with equality if and only if k is even, δ−(D) = k

2 − 1, and each vertex
of D is of minimum in-degree or has an out-neighbor of minimum in-degree.

Proof. Define the function g : V (D) → {−1, 1, 2} by g(x) = 2 for each vertex x ∈ V (D).
Since δ−(D) ≥ ⌈ k

2 ⌉ − 1, the function g is a WSRkDF on D of weight 2n and thus
γk

wsR(D) ≤ 2n.
Now let k be even, δ−(D) = k

2 −1, and assume that each vertex of D is of minimum
in-degree or has an out-neighbor of minimum in-degree. Let f be a γk

wsR(D)-function,
and let x ∈ V (D) be an arbitrary vertex. If d−(x) = k

2 − 1, then f(N−[x]) ≥ k implies
f(x) = 2. If x is not of minimum in-degree, then x has an out-neighbor w of minimum
in-degree. Now the condition f(N−[w]) ≥ k leads to f(x) = 2. Thus f is of weight 2n,
and we obtain γk

wsR(D) = 2n in this case.
Conversely, assume that γk

wsR(D) = 2n. If k = 2p + 1 is odd, then δ−(D) ≥ p.
Define the function h : V (D) → {−1, 1, 2} by h(w) = 1 for an arbitrary vertex w and
h(x) = 2 for each vertex x ∈ V (D) \ {w}. Then

h(N−[v]) =
∑

x∈N−[v]

f(x) ≥ 1 + 2δ−(D) ≥ 1 + 2p = k

for each v ∈ V (D). Thus the function h is a WSRkDF on D of weight 2n − 1,
a contradiction to the assumption γk

wsR(D) = 2n.
Let now k be even and assume that there exists a vertex w such that d−(w) ≥ k

2
and d−(x) ≥ k

2 for each out-neighbor of w. Define the function h1 : V (D) → {−1, 1, 2}
by h1(w) = 1 and h1(x) = 2 for each vertex x ∈ V (D) \ {w}. Then h1(N−[v]) ≥ k + 1
for each vertex v ∈ N−[w] and h1(N−[x]) ≥ k for each vertex x ̸∈ N−[w]. Hence the
function h1 is a WSRkDF on D of weight 2n − 1, and we obtain the contradiction
γk

wsR(D) ≤ 2n − 1. This completes the proof.

The proof of Theorem 3.1 also leads to the next result.
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Theorem 3.2. Let D be a digraph of order n with δ−(D) ≥ ⌈ k
2 ⌉−1. Then γk

sR(D) ≤ 2n

with equality if and only if k is even, δ−(D) = k
2 − 1, and each vertex of D is of

minimum in-degree or has an out-neighbor of minimum in-degree.

Proposition 3.3. If D is a digraph of order n with minimum in-degree δ− ≥ k − 1,
then γk

wsR(D) ≤ γk
sR(D) ≤ n.

Proof. Define the function f : V (D) → {−1, 1, 2} by f(x) = 1 for each vertex x ∈ V (D).
Since δ− ≥ k − 1, the function f is an SRkDF on D of weight n and thus γk

wsR(D) ≤
γk

sR(D) ≤ n.

A digraph D is r-regular if ∆+(D) = ∆−(D) = δ+(D) = δ−(D) = r. As an
application of Proposition 2.4 (iii), we obtain a lower bound on the weak signed Roman
k-domination number for r-regular digraphs.

Corollary 3.4. If D is an r-regular digraph of order n with r ≥ k
2 − 1, then

γk
sR(D) ≥ γk

wsR(D) ≥ kn/(r + 1).

The special case k = 1 of Corollary 3.4 can be found in [11]. Using Corollary 3.4
and Observation 1.1, we obtain the next known result.

Corollary 3.5 ([10]). If G is an r-regular graph of order n with r ≥ k
2 − 1, then

γk
wsR(G) ≥ kn/(r + 1).

Example 3.6. If H is a (k − 1)-regular digraph of order n, then it follows from
Corollary 3.4 that γk

sR(H) ≥ γk
wsR(H) ≥ n and so γk

sR(H) = γk
wsR(H) = n, according

to Proposition 3.3.

Example 3.6 demonstrates that Proposition 3.3 and Corollary 3.4 are both sharp.
If k ≥ 2, then Corollary 1.5 implies that γk

wsR(K∗
k,k) = 2k. This is a further example

showing the sharpness of Proposition 3.3.

Theorem 3.7. If D is a digraph of order n with δ−(D) ≥ k
2 − 1, then

γk
wsR(D) ≥ k + 1 + ∆−(D) − n.

Proof. Let w ∈ V (D) be a vertex of maximum in-degree, and let f be
a γk

wsR(D)-function. Then the definitions imply

γk
wsR(D) =

∑

x∈V (D)

f(x) =
∑

x∈N−[w]

f(x) +
∑

x∈V (D)−N−[w]

f(x)

≥ k +
∑

x∈V (D)−N−[w]

f(x) ≥ k − (n − (∆−(D) + 1))

= k + 1 + ∆−(D) − n,

and the proof of the desired lower bound is complete.

If n ≥ k ≥ 1, then it follows from Corollary 1.3 that γk
wsR(K∗

n) = k. Therefore,
the bound given in Theorem 3.7 is sharp.
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A digraph D is out-regular or r-out-regular if ∆+(D) = δ+(D) = r. If D is not
out-regular, then the next lower bound on the weak signed Roman k-domination
number holds.
Corollary 3.8. Let D be a digraph of order n, minimum in-degree δ− ≥ k

2 − 1,
minimum out-degree δ+ and maximum out-degree ∆+. If δ+ < ∆+, then

γk
wsR(D) ≥

(
2δ+ + 3k − 2∆+

2∆+ + δ+ + 3

)
n.

Proof. Multiplying both sides of the inequality in Proposition 2.4 (iv) by ∆+ − δ+

and adding the resulting inequality to the inequality in Proposition 2.4 (iii), we obtain
the desired lower bound.

Corollary 3.9 ([8]). Let D be a digraph of order n, minimum in-degree δ− ≥ k
2 − 1,

minimum out-degree δ+ and maximum out-degree ∆+. If δ+ < ∆+, then

γk
sR(D) ≥

(
2δ+ + 3k − 2∆+

2∆+ + δ+ + 3

)
n.

Since the bound given in Corollary 3.9 is sharp (see [8]), the bound given in
Corollary 3.8 is sharp too.

Since ∆+(D(G)) = ∆(G) and δ+(D(G)) = δ(G), Corollary 3.8 and Observation 1.1
lead to the next known result.
Corollary 3.10 ([6, 10]). Let G be a graph of order n, minimum degree δ ≥ k

2 − 1
and maximum degree ∆. If δ < ∆, then

γk
sR(G) ≥ γk

wsR(G) ≥
(

2δ + 3k − 2∆
2∆ + δ + 3

)
n.

The special case k = 1 of Corollary 3.10 can be found in [1, 9].

The complement D of a digraph D is the digraph with vertex set V (D) such that
for any two distinct vertices u and v the arc uv belongs to D if and only if uv does
not belong to D. Using Corollary 3.5 one can prove the following Nordhaus–Gaddum
type inequality analogously to Theorem 17 in [8].
Theorem 3.11. If D is an r-regular digraph of order n such that r ≥ k

2 − 1 and
n − r − 1 ≥ k

2 − 1, then

γk
wsR(D) + γk

wsR(D) ≥ 4kn

n + 1 .

If n is even, then γk
wsR(D) + γk

wsR(D) ≥ 4k(n+1)
n+2 .

Example 3.12. Let k ≥ 1 be an integer, and let H and H be (k − 1)-regular digraphs
of order n = 2k − 1. In view of Example 3.6, we have γk

wsR(H) + γk
wsR(H) = 2n. This

leads to
γk

wsR(H) + γk
wsR(H) = 2n = 4kn

n + 1 .

Example 3.12 shows that the Nordhaus-Gaddum bound in Theorem 3.11 is sharp.
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4. SPECIAL FAMILIES OF DIGRAPHS

Example 4.1. If k ≥ 1 and n ≥ k
2 are integers, then γk

wsR(K∗
n) = k.

Proof. If n ≥ k, then Corollary 1.3 leads to the desired result. Let now k > n ≥ n
2 .

Corollary 3.5 implies γk
wsR(K∗

n) ≥ k. For the converse inequality, let the function
f : V (K∗

n) → {−1, 1, 2} assign to k − n vertices the value 2 and to the remaining
2n − k vertices the value 1. Then f is a WSRkDF on K∗

n of weight ω(f) = k and so
γwsR(K∗

n) ≤ k. This leads to γk
wsR(K∗

n) = k also in this case.

Let Cn be an oriented cycle of order n. In [7] and [11] it was shown that γsR(Cn) =
γwsR(Cn) = n

2 when n is even and γsR(Cn) = γwsR(Cn) = n+3
2 when n is odd. Now

we determine γk
wsR(Cn) and γk

sR(Cn) for 2 ≤ k ≤ 4.
Theorems 3.1 and 3.2 immediately lead to γ4

sR(Cn) = γ4
wsR(Cn) = 2n. In addition,

according to Example 3.6, we have γ2
sR(Cn) = γ2

wsR(Cn) = n.

Example 4.2. For n ≥ 2, we have γ3
wsR(Cn) = γ3

sR(Cn) = ⌈ 3n
2 ⌉.

Proof. Corollary 3.5 implies γ3
sR(Cn) ≥ γ3

wsR(Cn) ≥ ⌈ 3n
2 ⌉. For the converse inequality

we distinguish two cases.
Case 1. Assume that n = 2t is even for an integer t ≥ 1. Let C2t = v0v1 . . . v2t−1v0.
Define f : V (C2t) → {−1, 1, 2} by f(v2i) = 1 and f(v2i+1) = 2 for 0 ≤ i ≤ t − 1. Then
f(N−[vj ]) = 3 for each 0 ≤ j ≤ 2t − 1, and therefore f is an SR3DF on C2t of weight
ω(f) = 3t. Thus γ3

wsR(Cn) ≤ γ3
sR(Cn) ≤ 3t. Consequently, γ3

wsR(Cn) = γ3
sR(Cn) =

3t = ⌈ 3n
2 ⌉ in this case.

Case 2. Assume now that n = 2t + 1 is odd for an integer t ≥ 1. Let C2t+1 =
v0v1 . . . v2tv0. Define f : V (C2t) → {−1, 1, 2} by f(v2i) = 1, f(v2i+1) = 2 for 0 ≤ i ≤
t − 1 and f(v2t) = 2. Then f(N−[vj ]) ≥ 3 for each 0 ≤ j ≤ 2t, and therefore f is
an SR3DF on C2t+1 of weight ω(f) = 3t + 2. Thus γ3

wsR(Cn) ≤ γ3
sR(Cn) ≤ 3t + 2.

Consequently, γ3
wsR(Cn) = γ3

sR(Cn) = 3t + 2 = ⌈ 3n
2 ⌉ in the second case.

A digraph is connected if its underlying graph is connected. A rooted tree is
a connected digraph with a vertex r of in-degree 0, called the root, such that every
vertex different from the root has in-degree 1.

Proposition 4.3. If T is a rooted tree of order n ≥ 1, then γ2
wsR(T ) = γ2

sR(T ) = n+1.

Proof. Let f be a γ2
wsR(T )-function, and let r be the root of T . Since d−(r) = 0 and

d−(x) = 1 for x ∈ V (T ) \ {r}, we note that f(r) = 2 and f(x) ≥ 1 for x ∈ V (T ) \ {r}.
Thus γ2

sR(T ) ≥ γ2
wsR(T ) ≥ n+1. On the other hand, the function g : V (T ) → {−1, 1, 2}

defined by g(r) = 2 and f(x) = 1 for x ∈ V (T ) \ {r}, is an SR2DF on T of weight
ω(g) = n+1. Hence γ2

wsR(T ) ≤ γ2
sR(T ) ≤ n+1 and thus γ2

wsR(T ) = γ2
sR(T ) = n+1.

Corollary 4.4. If Pn is an oriented path of order n ≥ 1, then γ2
wsR(Pn) = γ2

sR(Pn) =
n + 1.
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5. FURTHER LOWER BOUNDS

Let S1 be an orientation of the star K1,n−1 such that the center w has out-degree
n − 1. In addition, let S2 consists of S1 together with an arc vw for an arbitrary leaf v
of K1,n−1.

Theorem 5.1. Let D be a digraph of order n ≥ 2. Then γwsR(D) ≥ 3 − n, with
equality if and only if D ∈ {S1, S2}.

Proof. If ∆−(D) ≥ 1, then Theorem 3.7 implies γwsR(D) ≥ 3−n. Clearly, this remains
valid for ∆−(D) = 0, and the lower bound is proved.

If D ∈ {S1, S2}, then define g : V (D) → {−1, 1, 2} by g(w) = 2 and g(x) = −1 for
x ∈ V (D) \ {w}. Then g is a weak signed Roman dominating function on D of weight
3 − n and thus γwsR(D) = 3 − n.

Assume now that γwsR(D) = 3 − n, and let f be a γwsR(D)-function. This implies
that D has exactly one vertex w with f(w) = 2 and n−1 vertices y1, y2, . . . , yn−1 such
that f(yi) = −1 for 1 ≤ i ≤ n − 1. By the definition, w dominates yi for 1 ≤ i ≤ n − 1.
If there exists an arc yiyj for i ̸= j, then f(N−[yj ]) ≤ 0, a contradiction. If yi and yj

dominate w for i ̸= j, then f(N−[w]) ≤ 0, a contradiction. Thus, D ∈ {S1, S2}, and
the proof is complete.

Theorem 5.2. Let D be a digraph of order n ≥ 2. Then γ2
wsR(D) ≥ 4 − n, with

equality if and only if D = K∗
2 .

Proof. If ∆−(D) = 0, then γ2
wsR(D) = 2n > 4 − n. If ∆−(D) ≥ 1, then Theorem 3.7

implies γwsR(D) ≥ 4 − n, and the lower bound is proved. If D = K∗
2 , then it follows

from Example 4.1 that γ2
swR(D) = 2 = 4 − n.

Assume now that γ2
wsR(D) = 4 − n, and let f be a γ2

wsR(D)-function. This implies
that D has exactly two vertices u and v with f(u) = f(v) = 1 and n − 2 vertices
x1, x2, . . . , xn−2 such that f(xi) = −1 for 1 ≤ i ≤ n − 2. It follows that n = 2,
u dominates v and v dominates u and thus D = K∗

2 .

Theorem 5.3. Let k ≥ 3 be an integer, and let D be a digraph of order n with
δ−(D) ≥ ⌈ k

2 ⌉ − 1. Then

γk
wsR(D) ≥ k +

⌈
k

2

⌉
− n,

with equality if and only if D = K∗
⌈ k

2 ⌉.

Proof. Since ∆−(D) ≥ δ−(D) ≥ ⌈ k
2 ⌉ − 1, it follows from Theorem 3.7 that

γk
wsR(D) ≥ k + 1 + ∆−(D) − n ≥ k + 1 +

⌈
k

2

⌉
− 1 − n = k +

⌈
k

2

⌉
− n,

and the desired lower bound is proved. If D = K∗
⌈ k

2 ⌉, then Example 4.1 shows that

γk
swR(D) = k = k +

⌈
k

2

⌉
−

⌈
k

2

⌉
.
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Conversely, assume that γk
wsR(D) = k + ⌈ k

2 ⌉ − n, and let f be γk
wsR(D)-function. If

∆−(D) ≥ ⌈ k
2 ⌉, then Theorem 3.7 implies γk

wsR(D) ≥ k +
⌈

k
2
⌉

+ 1 − n, a contradiction.
Thus, ∆−(D) = δ−(D) = ⌈ k

2 ⌉ − 1. If there exists a vertex w with f(w) = −1, then we
obtain the contradiction

k ≤ f(N−[w]) ≤ −1 + 2∆−(D) = −1 + 2
(⌈

k

2

⌉
− 1

)
≤ k − 2.

So f(x) ≥ 1 for each x ∈ V (D). Next we distinguish two cases.
Case 1. Assume that k is even. If there exixsts a vertex w with f(w) = 1, then we
arrive at the contradiction

k ≤ f(N−[w]) ≤ 1 + 2∆−(D) = 1 + 2
(

k

2 − 1
)

= k − 1.

Therefore f(x) = 2 for all x ∈ V (D). We deduce that ω(f) = 2n = k + k
2 − n and thus

n = k
2 . Consequently, D = K∗

⌈ k
2 ⌉ in this case.

Case 2. Assume that k is odd. If there exists a vertex w with f(w) = 1, then w has
exactly k−1

2 in-neighbors of weight 2. Suppose that D has t ≥ 0 further vertices of
weight 1 and s ≥ 0 further vertices of weight 2. Then n = 1 + k−1

2 + s + t and hence

2n = 2s + 2t + k + 1. (5.1)

On the other hand we observe that ω(f) = 2n − (t + 1) = k + k+1
2 − n and thus

6n = 3k + 2t + 3. (5.2)

Combining (5.1) and (5.2), we find that 6s + 4t = 0 and therefore s = t = 0. It follows
that n = k+1

2 and so D = K∗
⌈ k

2 ⌉.
Finally, assume that f(x) = 2 for each x ∈ V (D). Then ω(f) = 2n = k + k+1

2 − n,
and we obtain the contradiction 6n = 3k + 1.

Let {u, v, x1, x2, . . . , xn−2} be the vertex set of the digraph B of order n ≥ 2
such that u and v dominate xi for 1 ≤ i ≤ n − 2. In addition, let B1 = B ∪ {vu},
B2 = B1 ∪ {uv}, B3 = B1 ∪ {x1u}, B4 = B2 ∪ {x1u}, B5 = B2 ∪ {x1v, x1u} and
B6 = B2 ∪ {x1u, x2v}.
Theorem 5.4. Let D be a digraph of order n ≥ 2. If D ̸∈ {S1, S2}, then
γwsR(D) ≥ 4 − n, with equality if and only if

D ∈ {B, B1, B2, B3, B4, B5, B6}.

Proof. Theorem 5.1 implies γwsR(D) ≥ 4 − n. If

D ∈ {B, B1, B2, B3, B4, B5, B6},

then define the function g : V (D) → {−1, 1, 2} by g(u) = g(v) = 1 and g(xi) = −1 for
1 ≤ i ≤ n − 2. Then g is a weak signed Roman dominating function on D of weight
4 − n and thus γwsR(D) = 4 − n.
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Assume now that γwsR(D) = 4 − n, and let f be a γwsR(D)-function. This implies
that D has exactly two vertices u and v with f(u) = f(v) = 1 and n − 2 vertices
x1, x2, . . . , xn−2 such that f(xi) = −1 for 1 ≤ i ≤ n − 2. By the definition, u and v
dominate xi for 1 ≤ i ≤ n−2. If there exists an arc xixj for i ≠ j, then f(N−[xj ]) ≤ 0,
a contradiction. If xi and xj dominate u or v for i ̸= j, then f(N−[u]) ≤ 0 or
f(N−[v]) ≤ 0, a contradiction. If x1 dominates u, then v dominates u and D = B3 or
D = B4. If x1 dominates u and v, then v dominates u and u dominates v and D = B5.
If x1 dominates u and x2 dominates v, the D = B6. Finally, if there is no arc from xi

to {u, v}, then D ∈ {B, B1, B2}.

Let {u, v, x1, x2, . . . , xn−2} be the vertex set of the digraph L of order n ≥ 2
such that u and v dominate xi for 1 ≤ i ≤ n − 2 and u dominates v. In addition,
let L1 = L ∪ {vu}, L2 = L1 ∪ {x1u}, L3 = L ∪ {x1v}, L4 = L1 ∪ {x1u, x1v}, and
L5 = L1 ∪ {x1u, x2v}. Using Theorem 5.2 instead of Theorem 5.1, one can prove the
next result analogously to Theorem 5.4.
Theorem 5.5. Let D be a digraph of order n ≥ 3. Then γ2

wsR(D) ≥ 5 − n, with
equality if and only if D ∈ {L, L1, L2, L3, L4, L5}.
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