Lech Adamus, Edyta Leśniak, Beata Orchel

3-BIPLACEMENT OF BIPARTITE GRAPHS

Abstract. Let G = (L, R; E) be a bipartite graph with color classes L and R and edge set E. A set of two bijections $\{\varphi_1, \varphi_2\}, \varphi_1, \varphi_2 : L \cup R \to L \cup R$, is said to be a 3-biplacement of G if $\varphi_1(L) = \varphi_2(L) = L$ and $E \cap \varphi_1^*(E) = \emptyset, E \cap \varphi_2^*(E) = \emptyset, \varphi_1^*(E) \cap \varphi_2^*(E) = \emptyset$, where φ_1^*, φ_2^* are the maps defined on E, induced by φ_1, φ_2 , respectively.

We prove that if |L| = p, |R| = q, $3 \le p \le q$, then every graph G = (L, R; E) of size at most p has a 3-biplacement.

Keywords: bipartite graph, packing of graphs, placement, biplacement.

Mathematics Subject Classification: 05C70.

1. INTRODUCTION

1.1. BASIC DEFINITIONS

Throughout the paper we will only consider finite, undirected graphs without loops and multiple edges.

Let G be a graph with vertex set V(G) and edge set E(G). The cardinality of the set V(G) is called the *order* of G and is denoted by |G|, while the cardinality of the edge set E(G) is the *size* of G, denoted by ||G||.

For a vertex $x \in V(G)$, N(x, G) denotes the set of its neighbors in G. The degree d(x, G) of the vertex x in G is the cardinality of the set N(x, G). A vertex x of G is said to be *pendent* (resp. *isolated*) if d(x, G) = 1 (resp. d(x, G) = 0).

A set of pairwise non-incident edges in a graph G is called a *matching*.

Let G_1 and G_2 be vertex disjoint graphs. The union $G = G_1 \cup G_2$ is a graph with $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$. If a graph G is the union of k disjoint copies of a graph H, then we write G = kH.

Let G = (L, R; E) be a bipartite graph with vertex set $V(G) = L \cup R$ and edge set E(G) = E. We denote then L(G) = L and R(G) = R, and we call these sets the *left* and *right set of bipartition* of the vertex set of G.

We denote by $\Delta_L(G)$ (resp. $\Delta_R(G)$) the maximum vertex degree in the set L (resp. R).

If |L| = p and |R| = q, we say that G is a (p,q)-bipartite graph. $K_{p,q}$ stands for the complete (p,q)-bipartite graph. \overline{G}^{bip} is the complement of G in $K_{p,q}$. Thus $\overline{G}^{bip} = (L, R; E')$, where E' consists of all the edges joining L with R which are not in E.

1.2. 2-PLACEMENT AND 3-PLACEMENT OF SIMPLE GRAPHS

Definition 1. Let G be a simple graph. We say that G is 2-placeable if there exists a bijection $\varphi: V(G) \to V(G)$ such that

if
$$xy \in E(G)$$
, then $\varphi(x)\varphi(y) \notin E(G)$.

The bijection φ will be called a 2-placement of G.

The study of placing problems was initiated by a series of papers published in the late 1970s. The following theorem, proved by Sauer and Spencer [3], was the first result in this area.

Theorem A. Let G be a graph of order n. If $||G|| \le n-2$, then G is 2-placeable.

This theorem can be generalized in a great variety of ways. Woźniak and Wojda [5] showed that under the assumptions of Theorem A there exists a 3-placement of a given graph G, unless G is an exception (see Theorem B below).

A 3-placement of a given graph can be defined analogously to a 2-placement.

Definition 2. Let G be a simple graph of order n. A graph G is 3-placeable if there exist bijections $\varphi_1, \varphi_2 : V(G) \to V(G)$ such that $E(G) \cap \varphi_1^*(E(G)) = \emptyset$, $E(G) \cap \varphi_2^*(E(G)) = \emptyset$, $\varphi_1^*(E(G)) \cap \varphi_2^*(E(G)) = \emptyset$, where the map φ_i^* defined on E(G) is induced by φ_i (i = 1, 2), that is $\varphi_i^*(xy) = \varphi_i(x)\varphi_i(y)$. The set $\{\varphi_1, \varphi_2\}$ is called a 3-placement of G.

Woźniak and Wojda proved the following theorem.

Theorem B. Let G be a simple graph of order n. If $||G|| \le n-2$, then either G is 3-placeable or G is isomorphic to $K_3 \cup 2K_1$ or to $K_4 \cup 4K_1$.

Exhaustive surveys of the results concerning the problems of placing of simple graphs are given in [1, Chapter 8] and [4]. However, we would like to focus on placements of bipartite graphs, the so-called biplacements, defined by Fouquet and Wojda [2] in 1993.

1.3. 2-BIPLACEMENT AND 3-BIPLACEMENT OF BIPARTITE GRAPHS

Definition 3. Let G = (L, R; E) be a bipartite graph. We say that G is 2-biplaceable if there exists a bijection $\varphi : L \cup R \to L \cup R$ such that $\varphi(L) = L$ and

if
$$xy \in E$$
, then $\varphi(x)\varphi(y) \notin E$.

The bijection φ is called a 2-biplacement of G.

Fouquet and Wojda [2] proved the following theorem, which is an analogue of Theorem A for bipartite graphs.

Theorem C. Let G = (L, R; E) be a (p, q)-bipartite graph such that either $p \ge 3$, $q \geq 3$ and $||G|| \leq p+q-3$, or $2 = p \leq q$ and $||G|| \leq p+q-2$. Then G is 2-biplaceable.

The aim of this paper is to find a sufficient condition for a bipartite graph to be 3-biplaceable; in other words, find an analogue of Theorem B for bipartite graphs.

By analogy to a 2-biplacement we consider a 3-biplacement of a bipartite graph.

Let G = (L, R; E) be a (p, q)-bipartite graph. Then G can be considered as a subgraph of the complete bipartite graph $K_{p,q}$.

Definition 4. The graph G = (L, R; E) is 3-biplaceable if there exist bijections $\varphi_1, \varphi_2 : L \cup R \to L \cup R \text{ such that } \varphi_1(L) = \varphi_2(L) = L \text{ and } E \cap \varphi_1^*(E) = \emptyset,$ $E \cap \varphi_2^*(E) = \emptyset, \ \varphi_1^*(E) \cap \varphi_2^*(E) = \emptyset, \ \text{where the maps } \varphi_1^*, \varphi_2^* : E \to E(K_{p,q}) \ \text{are induced by } \varphi_1, \varphi_2, \ \text{respectively (i.e., } \varphi_i^*(xy) = \varphi_i(x)\varphi_i(y) \ \text{for } i = 1, 2).$ The set $\{\varphi_1, \varphi_2\}$ is called a 3-biplacement of G.

It is easy to see that a (p,q)-bipartite graph G is 3-biplaceable if and only if we can find two edge-disjoint copies of G, say G_r and G_b , in the graph \overline{G}^{bip} . We then call the edges of G black, the edges of G_r red, the edges of G_b blue, and there is L(G) = $L(G_r) = L(G_b), \ R(G) = R(G_r) = R(G_b), \ E(G) \cap E(G_r) = \emptyset, \ E(G) \cap E(G_b) = \emptyset,$ $E(G_r) \cap E(G_b) = \emptyset.$

Now we are ready to formulate the main result of this paper.

2. MAIN RESULT

Let G_1 denote a (2,3)-bipartite graph such that $||G_1|| = 2$ and $\Delta_L(G_1) = 2$.

Our goal is to prove the following theorem.

Theorem 1. Let G = (L, R; E) be a (p,q)-bipartite graph, $p \leq q$ and $q \geq 3$. If $||G|| \leq p$ then either G is 3-biplaceable or G is isomorphic to G_1 .

Proof. We will proceed by induction on p + q.

The assertion is easy to check for $p \leq 3$ and q = 3 (see Fig. 1), and hence for all $q \geq 3.$

Fig.

Now assume that $p + q \ge 8$, $q \ge p \ge 4$, and the theorem holds for all integers $p' \ge 1$, $q' \ge 3$, such that $p' \le q'$ and p' + q' .

Let G = (L, R; E) be a (p, q)-bipartite graph with p and q as above. Without loss of generality, we can assume that ||G|| = p. We will show that G is 3-biplaceable.

In the proof, we shall consider three cases.

Case 1. $\Delta_L(G) \geq 3$.

Let $v \in L$ be a vertex such that $d(v, G) = \Delta_L(G)$. It is evident that there are at least two isolated vertices, say x and y, in L.

We define a new graph $G' := G \setminus \{v, x, y\}$. G' is (p', q')-bipartite, where $p' = p - 3 \ge 1$, $q' = q \ge 4$, $p' \le q'$. Thus $G' \ne G_1$ and $||G'|| \le p - 3 = p'$. Hence, by the inductive hypothesis, G' is 3-biplaceable. Let $\{\varphi'_1, \varphi'_2\}$ be a 3-biplacement of G'. We define a 3-biplacement $\{\varphi_1, \varphi_2\}$ of G as follows: $\varphi_1(v) = x, \varphi_1(x) = v, \varphi_1(y) = y, \varphi_1(w) = \varphi'_1(w) \ \forall w \in V(G')$,

 $\varphi_2(v) = y, \, \varphi_2(x) = x, \, \varphi_2(y) = v, \, \varphi_2(w) = \varphi_2^{\overline{}}(w) \,\,\forall w \in V(G').$

Case 2. $\Delta_L(G) = 2.$

Pick $v \in L$ with d(v, G) = 2. We need to consider several subcases.

Subcase 2.1. There is a pendent vertex in L, say x, such that $N(x,G) \cap N(v,G) = \emptyset$.

Let $N(v, G) = \{w_1, w_2\} \subset R$, $N(x, G) = \{w_3\} \subset R$, and let y be an isolated vertex in L. We have to consider three subcases depending on the degrees of the vertices w_1, w_2, w_3 .

Subcase 2.1.1. $d(w_3, G) = 1$.

Put $G' := G \setminus \{v, x, y, w_3\}$. G' is a (p', q')-bipartite graph with $p' = p - 3 \ge 1$, $q' = q - 1 \ge 3$, $p' \le q'$, ||G'|| = p'. Obviously, G' is not isomorphic with G_1 , for otherwise p = 5 and q = 4, which contradicts the assumption $p \le q$. By the inductive hypothesis, there is a 3-biplacement of G', say $\{\varphi'_1, \varphi'_2\}$. We define bijections φ_1 and φ_2 in the following way:

 $\begin{array}{l} \varphi_1(v) = y, \ \varphi_1(x) = v, \ \varphi_1(y) = x, \ \varphi_1(w_3) = w_3, \ \varphi_1(w) = \varphi_1'(w) \ \forall w \in V(G'), \\ \varphi_2(v) = x, \ \varphi_2(x) = y, \ \varphi_2(y) = v, \ \varphi_2(w_3) = w_3, \ \varphi_2(w) = \varphi_2'(w) \ \forall w \in V(G'). \\ \{\varphi_1, \varphi_2\} \text{ is a 3-biplaceament of } G. \end{array}$

Subcase 2.1.2. $d(w_3, G) > 1$ and $d(w_1, G) = d(w_2, G) = 1$.

In the case of p = q = 4, we get one graph only. Obviously, it is 3-biplaceable (see Fig. 2).

Thus we can assume that $q \ge 5$. Then we define a graph $G' := G \setminus \{v, x, y, w_1, w_2\}$, which is (p', q')-bipartite with $p' = p - 3 \ge 1$, $q' = q - 2 \ge 3$, $p' \le q'$. Since ||G'|| = p', there exists a 3-biplacement of G', unless $G' = G_1$.

In the case of $G' = G_1$, the graph G is 3-biplaceable (see Fig. 3).

In the case of $G' \neq G_1$, let $\{\varphi'_1, \varphi'_2\}$ be a 3-biplacement of G'. To get a 3-biplacement $\{\varphi_1, \varphi_2\}$ of G, put: $\varphi_1(v) = y, \varphi_1(x) = v, \varphi_1(y) = x, \varphi_1(w_1) = w_1, \varphi_1(w_2) = w_2, \varphi_1(w) = \varphi'_1(w) \ \forall w \in V(G'), \varphi_2(v) = x, \varphi_2(x) = y, \varphi_2(y) = v, \varphi_2(w_1) = w_1, \varphi_2(w_2) = w_2, \varphi_2(w) = \varphi'_2(w) \ \forall w \in V(G').$

Subcase 2.1.3. $d(w_3, G) > 1$; $d(w_1, G) > 1$ or $d(w_2, G) > 1$.

These assumptions imply that $p \ge 5$. It is easy to check that, for $q \ge p = 5$, G is 3-biplaceable. Therefore, we may assume that $q \ge p \ge 6$.

Let u_1, u_2 be isolated vertices in R and $G' := G \setminus \{v, x, y, w_3, u_1, u_2\}$. Again, G' is 3-biplaceable; let $\{\varphi'_1, \varphi'_2\}$ be a 3-biplacement of G'.

A set of bijections $\{\varphi_1, \varphi_2\}$ such that $\varphi_1(v) = y, \ \varphi_1(x) = v, \ \varphi_1(y) = x, \ \varphi_1(w_3) = u_1, \ \varphi_1(u_1) = w_3, \ \varphi_1(u_2) = u_2, \ \varphi_1(w) = \psi_1'(w) \ \forall w \in V(G'), \ \varphi_2(v) = x, \ \varphi_2(x) = y, \ \varphi_2(y) = v, \ \varphi_2(w_3) = u_2, \ \varphi_2(u_1) = u_1, \ \varphi_2(u_2) = w_3, \ \varphi_2(w) = \psi_2'(w) \ \forall w \in V(G'), \ is then a 3-biplacement of G.$

Subcase 2.2. There is a pendent vertex in L, say x, such that $N(x,G) \cap N(v,G) \neq \emptyset$.

Without loss of generality, we put $N(v, G) = \{w_1, w_2\}$ and $N(x, G) = \{w_2\}$. Consequently, for all $z \in L$ of degree 2, there is $N(z, G) \supset \{w_2\}$, and for all $y \in L$ of degree 1, there is $N(y, G) \subset \{w_1, w_2\}$. Otherwise, we get Subcase 2.1.

We have to consider the following subcases.

Subcase 2.2.1. For all $z \in L$ of degree 2, there is $N(z,G) = \{w_1, w_2\}$.

In this case all (p,q)-bipartite graphs for p + q = 8, 9, 10 are 3-biplaceable, which is easily verifiable. Hence we can assume that $q \ge 6$. If so, there are at least four isolated vertices in R, say u_1, u_2, u_3, u_4 .

A 3-biplacement $\{\varphi_1, \varphi_2\}$ of *G* is defined as follows: $\varphi_1(w_1) = u_1, \varphi_1(w_2) = u_2, \varphi_1(u_1) = w_1, \varphi_1(u_2) = w_2,$ $\varphi_1(w) = w \ \forall w \in V(G) \setminus \{w_1, w_2, u_1, u_2\},$ $\varphi_2(w_1) = u_3, \varphi_2(w_2) = u_4, \varphi_2(u_3) = w_1, \varphi_2(u_4) = w_2,$ $\varphi_2(w) = w \ \forall w \in V(G) \setminus \{w_1, w_2, u_3, u_4\}.$ **Subcase 2.2.2.** There exists $z \in L$ of degree 2 such that $N(z,G) = \{w_2, w_3\}$ and $w_3 \neq w_1$.

It follows that $p \ge 5$. Moreover, every pendent vertex in L is joined with w_2 , for otherwise we would get Subcase 2.1. Consequently, all non-isolated vertices in L are joined with w_2 .

Firstly, suppose that $d(w_3, G) = 1$.

A trivial verification shows that the theorem is true for $q \ge p = 5$. Therefore, assume that $p \ge 6$. Let $y_1, y_2 \in L, u \in R$ be isolated vertices in G.

Consider a graph $G' := G \setminus \{v, x, z, y_1, y_2, w_2, w_3, u\}$. $G' \neq G_1$ and by the inductive hypothesis G' is 3-biplaceable.

A 3-biplacement of G is given by the maps φ_1, φ_2 defined as:

 $\begin{array}{l} \varphi_1(v) = z, \, \varphi_1(x) = x, \, \varphi_1(z) = v, \, \varphi_1(y_1) = y_1, \, \varphi_1(y_2) = y_2, \, \varphi_1(w_2) = u, \, \varphi_1(w_3) = w_3, \\ \varphi_1(u) = w_2, \, \varphi_1(w) = \varphi_1'(w) \,\, \forall w \in V(G'), \\ \varphi_2(v) = y_1, \, \varphi_2(x) = x, \, \varphi_2(z) = y_2, \, \varphi_2(y_1) = v, \, \varphi_2(y_2) = z, \, \varphi_2(w_2) = w_3, \, \varphi_2(w_3) = u, \end{array}$

 $\varphi_2(u) = w_2, \, \varphi_2(w) = \varphi'_2(w) \,\,\forall w \in V(G'),$

where $\{\varphi'_1, \varphi'_2\}$ is a 3-biplacement of G'.

Secondly, suppose that $d(w_3, G) \ge 2$.

It follows that $d(w_1, G) \ge 2$, for if not, we would replace w_1 with w_3 , and get the case proved above. Since all non-isolated vertices in L are joined with w_2 , then $d(w_2, G) \ge 5$.

We conclude that $q \ge p \ge 9$ and there are at least three isolated vertices in L and six isolated vertices in R. Let us denote by y_1, y_2, y_3 isolated vertices in L and by u_1, u_2, u_3, u_4 isolated vertices in R. Consider a graph G' := $G \setminus \{v, x, z, y_1, y_2, y_3, w_2, w_3, u_1, u_2, u_3, u_4\}$. As $p \ge 9$, there is $G' \ne G_1$. Thus G'has a 3-biplacement, say $\{\varphi'_1, \varphi'_2\}$.

A 3-biplacement $\{\varphi_1, \varphi_2\}$ of G is defined below:

 $\varphi_1(v) = z, \ \varphi_1(x) = x, \ \varphi_1(z) = v, \ \varphi_1(y_i) = y_i \text{ for } i = 1, 2, 3, \ \varphi_1(w_2) = u_1, \\ \varphi_1(w_3) = u_2, \ \varphi_1(u_1) = w_2, \ \varphi_1(u_2) = w_3, \ \varphi_1(u_3) = u_3, \ \varphi_1(u_4) = u_4, \ \varphi_1(w) = \varphi_1'(w) \\ \forall w \in V(G'),$

Subcase 2.3. There are no pendent vertices in L.

It follows that all vertices in L are of degree 0 or 2. Three subcases need to be considered.

Subcase 2.3.1. There are no pendent vertices in R.

Then we define sets: $A := \{w \in L : d(w, G) = 2\}, B := \{w \in L : d(w, G) = 0\},$ $C := \{w \in R : d(w, G) \ge 2\}, D := \{w \in R : d(w, G) = 0\}.$ We have $A \subset L, B \subset L, |A| = |B|$ (since ||G|| = p) and $C \subset R, D \subset R,$ $|C| \le |A|, |C| \le |B|, |C| \le |D|.$ It is easy to see that G is 3-biplaceable (see Fig. 4).

Subcase 2.3.2. There are no vertices in R of degree greater than 1.

Set $N(v,G) = \{w_1, w_2\} \subset R$. There is $d(w_1,G) = d(w_2,G) = 1$. We deduce that there are at least two isolated vertices in L, say y_1, y_2 , and, apart from v, at least one other vertex of degree 2, say x.

It is a simple matter to show that G is 3-biplaceable in the case of $q \ge p = 4$. Therefore, we assume that $p \ge 5$ and apply the inductive hypothesis to the graph $G' := G \setminus \{v, x, y_1, y_2, w_1, w_2\}$. We extend bijections φ'_1 and φ'_2 of a 3-biplacement of G' to φ_1 and φ_2 , maps of a 3-biplacement of G, in the following way:

 $\begin{aligned} \varphi_1(v) &= x, \ \varphi_1(x) = v, \ \varphi_1(y_1) = y_1, \ \varphi_1(y_2) = y_2, \ \varphi_1(w_1) = w_1, \ \varphi_1(w_2) = w_2, \\ \varphi_1(w) &= \varphi_1'(w) \ \forall w \in V(G'), \\ \varphi_2(v) &= y_2, \ \varphi_2(x) = y_1, \ \varphi_2(y_1) = x, \ \varphi_2(y_2) = v, \ \varphi_2(w_1) = w_1, \ \varphi_2(w_2) = w_2, \end{aligned}$

 $\begin{aligned} \varphi_2(v) &= y_2, \ \varphi_2(x) = y_1, \ \varphi_2(y_1) = x, \ \varphi_2(y_2) = v, \ \varphi_2(w_1) = w_1, \ \varphi_2(w_2) = w_2, \\ \varphi_2(w) &= \varphi'_2(w) \ \forall w \in V(G'). \end{aligned}$

Subcase 2.3.3. There is a vertex of degree 2 in L such that one of its neighbors has degree 1 and the other has degree at least 2.

Without loss of generality, we can choose our v to be this vertex. Put $N(v,G) = \{w_1, w_2\}$ with $d(w_1, G) = 1$, $d(w_2, G) \ge 2$.

It follows that there exists a vertex $x \in L$ such that $N(x,G) = \{w_2, w_3\}, w_3 \neq w_1$, and there exist isolated vertices, say $y_1, y_2 \in L$ and $u \in R$.

The case of $q \ge p = 4$ is left to the reader. We assume that $q \ge p \ge 5$. In fact, since every non-isolated vertex in L has degree 2 and ||G|| = p, it implies that $p \ge 6$.

Let $G' := G \setminus \{v, x, y_1, y_2, w_1, w_2, u\}$. If $G' = G_1$, then G is one of the two graphs which are 3-biplaceable, which is easy to check. If $G' \neq G_1$, then by the inductive hypothesis there exists a 3-biplacement $\{\varphi'_1, \varphi'_2\}$ of G'.

A 3-biplacement of G is given by the maps φ_1, φ_2 defined as

 $\begin{array}{l} \varphi_2(v) \ = \ y_1, \ \varphi_2(x) \ = \ y_2, \ \varphi_2(y_1) \ = \ v, \ \varphi_2(y_2) \ = \ x, \ \varphi_2(w_1) \ = \ w_2, \ \varphi_2(w_2) \ = \ w_1, \\ \varphi_2(u) \ = \ u, \ \varphi_2(w) \ = \ \varphi_2'(w) \ \forall w \in V(G'). \end{array}$

Case 3. $\Delta_L(G) = 1.$

By the assumption ||G|| = p, all vertices in L are pendent.

We shall consider three subcases depending on the maximum vertex degree in the set R.

Subcase 3.1. $\Delta_R(G) = 1$.

The theorem is evident in this case, since the edges of G define a matching $pK_{1,1}$.

Subcase 3.2. $\Delta_R(G) \geq 3$.

It is easily seen that the theorem is true for $q \leq 5$. For this reason, assume that $q \geq 6$. Let u be a vertex in R such that $d(u, G) = \Delta_R(G)$ and let v_1, v_2, v_3 be neighbors of u. There are at least two isolated vertices in R, say w_1, w_2 . We define a graph $G' := G \setminus \{w_1, w_2, u, v_1, v_2, v_3\}$. Obviously, $G' \neq G_1$, since all vertices in L are pendent. Consequently, we may define a 3-biplacement $\{\varphi_1, \varphi_2\}$ of G as follows: $\varphi_1(w_1) = u, \varphi_1(w_2) = w_2, \varphi_1(u) = w_1, \varphi_1(v_i) = v_i$ for $i = 1, 2, 3, \varphi_1(w) = \varphi_1'(w) \ \forall w \in V(G'), \varphi_2(w_1) = w_1, \varphi_2(w_2) = u, \varphi_2(u) = w_2, \varphi_2(v_i) = v_i$ for $i = 1, 2, 3, \varphi_2(w) = \varphi_2'(w) \ \forall w \in V(G'), where <math>\{\varphi_1', \varphi_2'\}$ is a 3-biplacement of G'.

Subcase 3.3. $\Delta_R(G) = 2$.

In this case, we have to consider the two situations: either there is a pendent vertex in R or all non-isolated vertices in R are of degree 2.

Subcase 3.3.1. There is a pendent vertex in R, say w_1 .

If $q \leq 5$, then G is 3-biplaceable, which is easy to check. Assume that $q \geq 6$. Let $w_2 \in R$ be of degree 2 and let u be an isolated vertex in R. Let $N(w_1, G) = \{v_1\}$ and $N(w_2, G) = \{v_2, v_3\}$. We may apply the inductive hypothesis to the graph $G' := G \setminus \{w_1, w_2, u, v_1, v_2, v_3\}$. Again, $G' \neq G_1$ and, in consequence, G' has a 3-biplacement, say $\{\varphi'_1, \varphi'_2\}$.

A 3-biplacement $\{\varphi_1, \varphi_2\}$ of *G* is defined below: $\varphi_1(w_1) = w_2, \varphi_1(w_2) = u, \varphi_1(u) = w_1, \varphi_1(v_i) = v_i \text{ for } i = 1, 2, 3,$ $\varphi_1(w) = \varphi'_1(w) \ \forall w \in V(G'),$ $\varphi_2(w_1) = u, \varphi_2(w_2) = w_1, \varphi_2(u) = w_2, \varphi_2(v_i) = v_i \text{ for } i = 1, 2, 3,$ $\varphi_2(w) = \varphi'_2(w) \ \forall w \in V(G').$

Subcase 3.3.2. There are no pendent vertices in R.

A trivial verification shows that in the cases of p + q = 8, 9, 10, 11 the theorem is true. For $q \ge p \ge 6$, we define a graph $G' := G \setminus \{w_1, w_2, u, v_1, v_2, v_3, v_4\}$, where $w_1, w_2 \in R$ are vertices of degree 2, u is an isolated vertex in R, v_1, v_2 and v_3, v_4 are neighbors of w_1 and w_2 , respectively. G' is 3-biplaceable, hence so is G: put $\{\varphi_1, \varphi_2\}$ to be:

 $\begin{array}{l} \varphi_1(w_1) = w_2, \, \varphi_1(w_2) = u, \, \varphi_1(u) = w_1, \, \varphi_1(v_i) = v_i \, \, \text{for} \, i = 1, 2, 3, 4, \\ \varphi_1(w) = \varphi_1'(w) \, \, \forall w \in V(G'), \\ \varphi_2(w_1) = u, \, \varphi_2(w_2) = w_1, \, \varphi_2(u) = w_2, \, \varphi_2(v_i) = v_i \, \, \text{for} \, \, i = 1, 2, 3, 4, \\ \varphi_2(w) = \varphi_2'(w) \, \, \forall w \in V(G'), \\ \text{where} \, \, \{\varphi_1', \varphi_2'\} \, \text{is a 3-biplacement of} \, \, G'. \end{array}$

Acknowledgements

The research was partially supported by the AGH University of Science and Technology grant No 11 420 04.

REFERENCES

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [2] J.L. Fouquet, A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993), 85–92.
- [3] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295–302.
- [4] M. Woźniak, Packing of graphs, Dissertationes Mathematicae CCCLXII, Warszawa, 1997.
- [5] M. Woźniak, A.P. Wojda, Triple placement of graphs, Graph Combin. 9 (1993), 85–91.

Lech Adamus ladamus@wms.mat.agh.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Cracow, Poland

Beata Orchel orchel@uci.agh.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Cracow, Poland

Received: September 25, 2007. Revised: February 15, 2008. Accepted: March 1, 2008.