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3-BIPLACEMENT OF BIPARTITE GRAPHS

Abstract. Let G = (L, R; E) be a bipartite graph with color classes L and R and edge set
E. A set of two bijections {ϕ1, ϕ2}, ϕ1, ϕ2 : L ∪ R → L ∪ R, is said to be a 3-biplacement

of G if ϕ1(L) = ϕ2(L) = L and E ∩ ϕ∗

1(E) = ∅, E ∩ ϕ∗

2(E) = ∅, ϕ∗

1(E) ∩ ϕ∗

2(E) = ∅, where
ϕ∗

1, ϕ
∗

2 are the maps defined on E, induced by ϕ1, ϕ2, respectively.
We prove that if |L| = p, |R| = q, 3 ≤ p ≤ q, then every graph G = (L, R; E) of size at

most p has a 3-biplacement.

Keywords: bipartite graph, packing of graphs, placement, biplacement.

Mathematics Subject Classification: 05C70.

1. INTRODUCTION

1.1. BASIC DEFINITIONS

Throughout the paper we will only consider finite, undirected graphs without loops
and multiple edges.

Let G be a graph with vertex set V (G) and edge set E(G). The cardinality of the
set V (G) is called the order of G and is denoted by |G|, while the cardinality of the
edge set E(G) is the size of G, denoted by ‖G‖.

For a vertex x ∈ V (G), N(x,G) denotes the set of its neighbors in G. The degree

d(x,G) of the vertex x in G is the cardinality of the set N(x,G). A vertex x of G is
said to be pendent (resp. isolated) if d(x,G) = 1 (resp. d(x,G) = 0).

A set of pairwise non-incident edges in a graph G is called a matching.
Let G1 and G2 be vertex disjoint graphs. The union G = G1 ∪G2 is a graph with

V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). If a graph G is the union of k
disjoint copies of a graph H, then we write G = kH.

Let G = (L,R;E) be a bipartite graph with vertex set V (G) = L ∪ R and edge
set E(G) = E. We denote then L(G) = L and R(G) = R, and we call these sets the
left and right set of bipartition of the vertex set of G.
We denote by ∆L(G) (resp. ∆R(G)) the maximum vertex degree in the set L (resp. R).
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If |L| = p and |R| = q, we say that G is a (p, q)-bipartite graph. Kp,q stands for

the complete (p, q)-bipartite graph. G
bip

is the complement of G in Kp,q. Thus

G
bip

= (L,R;E′), where E′ consists of all the edges joining L with R which are not
in E.

1.2. 2-PLACEMENT AND 3-PLACEMENT OF SIMPLE GRAPHS

Definition 1. Let G be a simple graph. We say that G is 2-placeable if there exists

a bijection ϕ : V (G) → V (G) such that

if xy ∈ E(G), then ϕ(x)ϕ(y) /∈ E(G).

The bijection ϕ will be called a 2-placement of G.

The study of placing problems was initiated by a series of papers published in the
late 1970s. The following theorem, proved by Sauer and Spencer [3], was the first
result in this area.

Theorem A. Let G be a graph of order n. If ‖G‖ ≤ n − 2, then G is 2-placeable.

This theorem can be generalized in a great variety of ways. Woźniak and Wojda
[5] showed that under the assumptions of Theorem A there exists a 3-placement of a
given graph G, unless G is an exception (see Theorem B below).

A 3-placement of a given graph can be defined analogously to a 2-placement.

Definition 2. Let G be a simple graph of order n. A graph G is 3-placeable if

there exist bijections ϕ1, ϕ2 : V (G) → V (G) such that E(G) ∩ ϕ∗

1
(E(G)) = ∅,

E(G) ∩ ϕ∗

2
(E(G)) = ∅, ϕ∗

1
(E(G)) ∩ ϕ∗

2
(E(G)) = ∅, where the map ϕ∗

i defined on

E(G) is induced by ϕi (i = 1, 2), that is ϕ∗

i (xy) = ϕi(x)ϕi(y).
The set {ϕ1, ϕ2} is called a 3-placement of G.

Woźniak and Wojda proved the following theorem.

Theorem B. Let G be a simple graph of order n. If ‖G‖ ≤ n − 2, then either G is

3-placeable or G is isomorphic to K3 ∪ 2K1 or to K4 ∪ 4K1.

Exhaustive surveys of the results concerning the problems of placing of simple
graphs are given in [1, Chapter 8] and [4]. However, we would like to focus on
placements of bipartite graphs, the so-called biplacements, defined by Fouquet and
Wojda [2] in 1993.

1.3. 2-BIPLACEMENT AND 3-BIPLACEMENT OF BIPARTITE GRAPHS

Definition 3. Let G = (L,R;E) be a bipartite graph. We say that G is 2-biplaceable

if there exists a bijection ϕ : L ∪ R → L ∪ R such that ϕ(L) = L and

if xy ∈ E, then ϕ(x)ϕ(y) /∈ E.

The bijection ϕ is called a 2-biplacement of G.
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Fouquet and Wojda [2] proved the following theorem, which is an analogue of
Theorem A for bipartite graphs.

Theorem C. Let G = (L,R;E) be a (p, q)-bipartite graph such that either p ≥ 3,
q ≥ 3 and ‖G‖ ≤ p+q−3, or 2 = p ≤ q and ‖G‖ ≤ p+q−2. Then G is 2-biplaceable.

The aim of this paper is to find a sufficient condition for a bipartite graph to be
3-biplaceable; in other words, find an analogue of Theorem B for bipartite graphs.

By analogy to a 2-biplacement we consider a 3-biplacement of a bipartite graph.
Let G = (L,R;E) be a (p, q)-bipartite graph. Then G can be considered as a

subgraph of the complete bipartite graph Kp,q.

Definition 4. The graph G = (L,R;E) is 3-biplaceable if there exist bijections

ϕ1, ϕ2 : L ∪ R → L ∪ R such that ϕ1(L) = ϕ2(L) = L and E ∩ ϕ∗

1
(E) = ∅,

E ∩ ϕ∗

2
(E) = ∅, ϕ∗

1
(E) ∩ ϕ∗

2
(E) = ∅, where the maps ϕ∗

1
, ϕ∗

2
: E → E(Kp,q) are

induced by ϕ1, ϕ2, respectively (i.e., ϕ∗

i (xy) = ϕi(x)ϕi(y) for i = 1, 2).
The set {ϕ1, ϕ2} is called a 3-biplacement of G.

It is easy to see that a (p, q)-bipartite graph G is 3-biplaceable if and only if we

can find two edge-disjoint copies of G, say Gr and Gb, in the graph G
bip

. We then call
the edges of G black, the edges of Gr red, the edges of Gb blue, and there is L(G) =
L(Gr) = L(Gb), R(G) = R(Gr) = R(Gb), E(G) ∩ E(Gr) = ∅, E(G) ∩ E(Gb) = ∅,
E(Gr) ∩ E(Gb) = ∅.

Now we are ready to formulate the main result of this paper.

2. MAIN RESULT

Let G1 denote a (2,3)-bipartite graph such that ‖G1‖ = 2 and ∆L(G1) = 2.

Our goal is to prove the following theorem.

Theorem 1. Let G = (L,R;E) be a (p, q)-bipartite graph, p ≤ q and q ≥ 3. If

‖G‖ ≤ p then either G is 3-biplaceable or G is isomorphic to G1.

Proof. We will proceed by induction on p + q.
The assertion is easy to check for p ≤ 3 and q = 3 (see Fig. 1), and hence for all

q ≥ 3.

1
G

p+q=4 p+q=5

p+q=6

Fig. 1
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Now assume that p + q ≥ 8, q ≥ p ≥ 4, and the theorem holds for all integers
p′ ≥ 1, q′ ≥ 3, such that p′ ≤ q′ and p′ + q′ < p + q.

Let G = (L,R;E) be a (p, q)-bipartite graph with p and q as above. Without loss
of generality, we can assume that ‖G‖ = p. We will show that G is 3-biplaceable.

In the proof, we shall consider three cases.

Case 1. ∆L(G) ≥ 3.

Let v ∈ L be a vertex such that d(v,G) = ∆L(G). It is evident that there are at
least two isolated vertices, say x and y, in L.

We define a new graph G′ := G \ {v, x, y}. G′ is (p′, q′)-bipartite, where p′ =
p − 3 ≥ 1, q′ = q ≥ 4, p′ ≤ q′. Thus G′ 6= G1 and ‖G′‖ ≤ p − 3 = p′. Hence, by the
inductive hypothesis, G′ is 3-biplaceable. Let {ϕ′

1
, ϕ′

2
} be a 3-biplacement of G′.

We define a 3-biplacement {ϕ1, ϕ2} of G as follows:
ϕ1(v) = x, ϕ1(x) = v, ϕ1(y) = y, ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = y, ϕ2(x) = x, ϕ2(y) = v, ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

Case 2. ∆L(G) = 2.

Pick v ∈ L with d(v,G) = 2. We need to consider several subcases.

Subcase 2.1. There is a pendent vertex in L, say x, such that N(x,G)∩N(v,G) = ∅.

Let N(v,G) = {w1, w2} ⊂ R, N(x,G) = {w3} ⊂ R, and let y be an isolated vertex
in L. We have to consider three subcases depending on the degrees of the vertices
w1, w2, w3.

Subcase 2.1.1. d(w3, G) = 1.

Put G′ := G \ {v, x, y, w3}. G′ is a (p′, q′)-bipartite graph with p′ = p − 3 ≥ 1,
q′ = q − 1 ≥ 3, p′ ≤ q′, ‖G′‖ = p′. Obviously, G′ is not isomorphic with G1, for
otherwise p = 5 and q = 4, which contradicts the assumption p ≤ q. By the inductive
hypothesis, there is a 3-biplacement of G′, say {ϕ′

1
, ϕ′

2
}. We define bijections ϕ1 and

ϕ2 in the following way:
ϕ1(v) = y, ϕ1(x) = v, ϕ1(y) = x, ϕ1(w3) = w3, ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = x, ϕ2(x) = y, ϕ2(y) = v, ϕ2(w3) = w3, ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

{ϕ1, ϕ2} is a 3-biplaceament of G.

Subcase 2.1.2. d(w3, G) > 1 and d(w1, G) = d(w2, G) = 1.

In the case of p = q = 4, we get one graph only. Obviously, it is 3-biplaceable (see
Fig. 2).

Thus we can assume that q ≥ 5. Then we define a graph G′ := G\{v, x, y, w1, w2},
which is (p′, q′)-bipartite with p′ = p−3 ≥ 1, q′ = q−2 ≥ 3, p′ ≤ q′. Since ‖G′‖ = p′,
there exists a 3-biplacement of G′, unless G′ = G1.

In the case of G′ = G1, the graph G is 3-biplaceable (see Fig. 3).
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In the case of G′ 6= G1, let {ϕ′

1
, ϕ′

2
} be a 3-biplacement of G′.

To get a 3-biplacement {ϕ1, ϕ2} of G, put:
ϕ1(v) = y, ϕ1(x) = v, ϕ1(y) = x, ϕ1(w1) = w1, ϕ1(w2) = w2,
ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = x, ϕ2(x) = y, ϕ2(y) = v, ϕ2(w1) = w1, ϕ2(w2) = w2,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

v

x

y

w1

w2

w3

Fig. 2

v

x

y

w1

w2

w3

Fig. 3

Subcase 2.1.3. d(w3, G) > 1; d(w1, G) > 1 or d(w2, G) > 1.

These assumptions imply that p ≥ 5. It is easy to check that, for q ≥ p = 5, G is
3-biplaceable. Therefore, we may assume that q ≥ p ≥ 6.

Let u1, u2 be isolated vertices in R and G′ := G \ {v, x, y, w3, u1, u2}. Again, G′

is 3-biplaceable; let {ϕ′

1
, ϕ′

2
} be a 3-biplacement of G′.

A set of bijections {ϕ1, ϕ2} such that
ϕ1(v) = y, ϕ1(x) = v, ϕ1(y) = x, ϕ1(w3) = u1, ϕ1(u1) = w3, ϕ1(u2) = u2, ϕ1(w) =
ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = x, ϕ2(x) = y, ϕ2(y) = v, ϕ2(w3) = u2, ϕ2(u1) = u1, ϕ2(u2) = w3, ϕ2(w) =
ϕ′

2
(w) ∀w ∈ V (G′),

is then a 3-biplacement of G.

Subcase 2.2. There is a pendent vertex in L, say x, such that N(x,G) ∩ N(v,G) 6=∅.

Without loss of generality, we put N(v,G) = {w1, w2} and N(x,G) = {w2}.
Consequently, for all z ∈ L of degree 2, there is N(z,G) ⊃ {w2}, and for all y ∈ L

of degree 1, there is N(y,G) ⊂ {w1, w2}. Otherwise, we get Subcase 2.1.
We have to consider the following subcases.

Subcase 2.2.1. For all z ∈ L of degree 2, there is N(z,G) = {w1, w2}.

In this case all (p, q)-bipartite graphs for p + q = 8, 9, 10 are 3-biplaceable, which
is easily verifiable. Hence we can assume that q ≥ 6. If so, there are at least four
isolated vertices in R, say u1, u2, u3, u4.
A 3-biplacement {ϕ1, ϕ2} of G is defined as follows:
ϕ1(w1) = u1, ϕ1(w2) = u2, ϕ1(u1) = w1, ϕ1(u2) = w2,
ϕ1(w) = w ∀w ∈ V (G) \ {w1, w2, u1, u2},
ϕ2(w1) = u3, ϕ2(w2) = u4, ϕ2(u3) = w1, ϕ2(u4) = w2,
ϕ2(w) = w ∀w ∈ V (G) \ {w1, w2, u3, u4}.
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Subcase 2.2.2. There exists z ∈ L of degree 2 such that N(z,G) = {w2, w3} and

w3 6= w1.

It follows that p ≥ 5. Moreover, every pendent vertex in L is joined with w2, for
otherwise we would get Subcase 2.1. Consequently, all non-isolated vertices in L are
joined with w2.

Firstly, suppose that d(w3, G) = 1.
A trivial verification shows that the theorem is true for q ≥ p = 5. Therefore, assume
that p ≥ 6. Let y1, y2 ∈ L, u ∈ R be isolated vertices in G.
Consider a graph G′ := G \ {v, x, z, y1, y2, w2, w3, u}. G′ 6= G1 and by the inductive
hypothesis G′ is 3-biplaceable.
A 3-biplacement of G is given by the maps ϕ1, ϕ2 defined as:
ϕ1(v) = z, ϕ1(x) = x, ϕ1(z) = v, ϕ1(y1) = y1, ϕ1(y2) = y2, ϕ1(w2) = u, ϕ1(w3) = w3,
ϕ1(u) = w2, ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = y1, ϕ2(x) = x, ϕ2(z) = y2, ϕ2(y1) = v, ϕ2(y2) = z, ϕ2(w2) = w3, ϕ2(w3) = u,
ϕ2(u) = w2, ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′),

where {ϕ′

1
, ϕ′

2
} is a 3-biplacement of G′.

Secondly, suppose that d(w3, G) ≥ 2.
It follows that d(w1, G) ≥ 2, for if not, we would replace w1 with w3, and get the
case proved above. Since all non-isolated vertices in L are joined with w2, then
d(w2, G) ≥ 5.
We conclude that q ≥ p ≥ 9 and there are at least three isolated vertices
in L and six isolated vertices in R. Let us denote by y1, y2, y3 isolated ver-
tices in L and by u1, u2, u3, u4 isolated vertices in R. Consider a graph G′ :=
G \ {v, x, z, y1, y2, y3, w2, w3, u1, u2, u3, u4}. As p ≥ 9, there is G′ 6= G1. Thus G′

has a 3-biplacement, say {ϕ′

1
, ϕ′

2
}.

A 3-biplacement {ϕ1, ϕ2} of G is defined below:
ϕ1(v) = z, ϕ1(x) = x, ϕ1(z) = v, ϕ1(yi) = yi for i = 1, 2, 3, ϕ1(w2) = u1,
ϕ1(w3) = u2, ϕ1(u1) = w2, ϕ1(u2) = w3, ϕ1(u3) = u3, ϕ1(u4) = u4, ϕ1(w) = ϕ′

1
(w)

∀w ∈ V (G′),
ϕ2(v) = y1, ϕ2(x) = x, ϕ2(z) = y2, ϕ2(y1) = v, ϕ2(y2) = z, ϕ2(y3) = y3,
ϕ2(w2) = u3, ϕ2(w3) = u4, ϕ2(u1) = u1, ϕ2(u2) = u2, ϕ2(u3) = w2, ϕ2(u4) = w3,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

Subcase 2.3. There are no pendent vertices in L.

It follows that all vertices in L are of degree 0 or 2. Three subcases need to be
considered.

Subcase 2.3.1. There are no pendent vertices in R.

Then we define sets:
A := {w ∈ L : d(w,G) = 2}, B := {w ∈ L : d(w,G) = 0},
C := {w ∈ R : d(w,G) ≥ 2}, D := {w ∈ R : d(w,G) = 0}.
We have A ⊂ L, B ⊂ L, |A| = |B| (since ‖G‖ = p) and C ⊂ R, D ⊂ R,
|C| ≤ |A|, |C| ≤ |B|, |C| ≤ |D|.
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It is easy to see that G is 3-biplaceable (see Fig. 4).

A

B

C

D

Fig. 4

Subcase 2.3.2. There are no vertices in R of degree greater than 1.

Set N(v,G) = {w1, w2} ⊂ R. There is d(w1, G) = d(w2, G) = 1. We deduce that
there are at least two isolated vertices in L, say y1, y2, and, apart from v, at least one
other vertex of degree 2, say x.

It is a simple matter to show that G is 3-biplaceable in the case of q ≥ p = 4.
Therefore, we assume that p ≥ 5 and apply the inductive hypothesis to the graph
G′ := G \ {v, x, y1, y2, w1, w2}. We extend bijections ϕ′

1
and ϕ′

2
of a 3-biplacement of

G′ to ϕ1 and ϕ2, maps of a 3-biplacement of G, in the following way:
ϕ1(v) = x, ϕ1(x) = v, ϕ1(y1) = y1, ϕ1(y2) = y2, ϕ1(w1) = w1, ϕ1(w2) = w2,
ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = y2, ϕ2(x) = y1, ϕ2(y1) = x, ϕ2(y2) = v, ϕ2(w1) = w1, ϕ2(w2) = w2,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

Subcase 2.3.3. There is a vertex of degree 2 in L such that one of its neighbors has

degree 1 and the other has degree at least 2.

Without loss of generality, we can choose our v to be this vertex. Put N(v,G) =
{w1, w2} with d(w1, G) = 1, d(w2, G) ≥ 2.

It follows that there exists a vertex x ∈ L such that N(x,G) = {w2, w3}, w3 6= w1,
and there exist isolated vertices, say y1, y2 ∈ L and u ∈ R.

The case of q ≥ p = 4 is left to the reader. We assume that q ≥ p ≥ 5. In fact,
since every non-isolated vertex in L has degree 2 and ‖G‖ = p, it implies that p ≥ 6.

Let G′ := G \ {v, x, y1, y2, w1, w2, u}. If G′ = G1, then G is one of the two graphs
which are 3-biplaceable, which is easy to check. If G′ 6= G1, then by the inductive
hypothesis there exists a 3-biplacement {ϕ′

1
, ϕ′

2
} of G′.

A 3-biplacement of G is given by the maps ϕ1, ϕ2 defined as
ϕ1(v) = x, ϕ1(x) = v, ϕ1(y1) = y1, ϕ1(y2) = y2, ϕ1(w1) = w1, ϕ1(w2) = u,
ϕ1(u) = w2, ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(v) = y1, ϕ2(x) = y2, ϕ2(y1) = v, ϕ2(y2) = x, ϕ2(w1) = w2, ϕ2(w2) = w1,
ϕ2(u) = u, ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

Case 3. ∆L(G) = 1.

By the assumption ‖G‖ = p, all vertices in L are pendent.
We shall consider three subcases depending on the maximum vertex degree in the

set R.
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Subcase 3.1. ∆R(G) = 1.

The theorem is evident in this case, since the edges of G define a matching pK1,1.

Subcase 3.2. ∆R(G) ≥ 3.

It is easily seen that the theorem is true for q ≤ 5. For this reason, assume that
q ≥ 6. Let u be a vertex in R such that d(u,G) = ∆R(G) and let v1, v2, v3 be
neighbors of u. There are at least two isolated vertices in R, say w1, w2. We define a
graph G′ := G \ {w1, w2, u, v1, v2, v3}. Obviously, G′ 6= G1, since all vertices in L are
pendent. Consequently, we may define a 3-biplacement {ϕ1, ϕ2} of G as follows:
ϕ1(w1) = u, ϕ1(w2) = w2, ϕ1(u) = w1, ϕ1(vi) = vi for i = 1, 2, 3,
ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(w1) = w1, ϕ2(w2) = u, ϕ2(u) = w2, ϕ2(vi) = vi for i = 1, 2, 3,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′),

where {ϕ′

1
, ϕ′

2
} is a 3-biplacement of G′.

Subcase 3.3. ∆R(G) = 2.

In this case, we have to consider the two situations: either there is a pendent
vertex in R or all non-isolated vertices in R are of degree 2.

Subcase 3.3.1. There is a pendent vertex in R, say w1.

If q ≤ 5, then G is 3-biplaceable, which is easy to check. Assume that q ≥ 6. Let
w2 ∈ R be of degree 2 and let u be an isolated vertex in R. Let N(w1, G) = {v1}
and N(w2, G) = {v2, v3}. We may apply the inductive hypothesis to the graph
G′ := G \ {w1, w2, u, v1, v2, v3}. Again, G′ 6= G1 and, in consequence, G′ has a
3-biplacement, say {ϕ′

1
, ϕ′

2
}.

A 3-biplacement {ϕ1, ϕ2} of G is defined below:
ϕ1(w1) = w2, ϕ1(w2) = u, ϕ1(u) = w1, ϕ1(vi) = vi for i = 1, 2, 3,
ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(w1) = u, ϕ2(w2) = w1, ϕ2(u) = w2, ϕ2(vi) = vi for i = 1, 2, 3,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′).

Subcase 3.3.2. There are no pendent vertices in R.

A trivial verification shows that in the cases of p + q = 8, 9, 10, 11 the theorem
is true. For q ≥ p ≥ 6, we define a graph G′ := G \ {w1, w2, u, v1, v2, v3, v4}, where
w1, w2 ∈ R are vertices of degree 2, u is an isolated vertex in R, v1, v2 and v3, v4 are
neighbors of w1 and w2, respectively. G′ is 3-biplaceable, hence so is G: put {ϕ1, ϕ2}
to be:
ϕ1(w1) = w2, ϕ1(w2) = u, ϕ1(u) = w1, ϕ1(vi) = vi for i = 1, 2, 3, 4,
ϕ1(w) = ϕ′

1
(w) ∀w ∈ V (G′),

ϕ2(w1) = u, ϕ2(w2) = w1, ϕ2(u) = w2, ϕ2(vi) = vi for i = 1, 2, 3, 4,
ϕ2(w) = ϕ′

2
(w) ∀w ∈ V (G′),

where {ϕ′

1
, ϕ′

2
} is a 3-biplacement of G′.
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