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A MEIR-KEELER TYPE
COMMON FIXED POINT THEOREM

FOR FOUR MAPPINGS

Mohamed Akkouchi

Abstract. In this paper, we prove a general common fixed point theorem for two pairs
of weakly compatible self-mappings of a metric space satisfying a weak Meir-Keeler type
contractive condition by using a class of implicit relations. In particular, our result general-
izes and improves a result of K. Jha, R.P. Pant, S.L. Singh, by removing the assumption of
continuity, relaxing compatibility to weakly compatibility property and replacing the com-
pleteness of the space with a set of four alternative conditions for maps satisfying an implicit
relation. Also, our result improves the main result of H. Bouhadjera, A. Djoudi.
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1. INTRODUCTION

We start by recalling on some concepts of weak commutativity used in fixed point
theory.

Two self-mappings A and S of a metric space (X, d) are called compatible (see
Jungck [7]) if

lim
n→∞ d(ASxn, SAxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞Axn = lim

n→∞Sxn = t

for some t in X.
In 1993, Jungck, Murthy and Cho [9] define S and T to be compatible of type (A)

if limn→∞ d(TSxn, S2xn) = 0 and limn→∞ d(STxn, T 2xn) = 0, whenever {xn} is a
sequence in X such that limn→∞ Sxn = limn→∞ Txn = x for some x ∈ X.
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By [9, Ex. 2.1 and Ex. 2.2] it follows that the notions of compatible mappings
and compatible mappings of type (A) are independent.

In 1995, Pathak and Khan [22] introduced a new concept of compatible mappings
of type (B) as a generalization of compatible mappings of type (A). Two mappings S
and T are said to be compatible of type (B) if

lim
n→∞ d(STxn, T 2xn) ≤ 1

2
[ lim
n→∞ d(STxn, St) + lim

n→∞ d(St, S2xn)]

and
lim

n→∞ d(TSxn, S2xn) ≤ 1
2
[ lim
n→∞ d(TSxn, T t) + lim

n→∞ d(Tt, T 2xn)],

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for some
t ∈ X.

Clearly, compatible mappings of type (A) are compatible of type (B). By [22, Ex.
2.4] it follows that the converse is not true.

In [23], the concept of compatible mappings of type (P) was introduced and com-
pared with compatible mappings and compatible mappings of type (A). We recall
that two self-mappings S and T of a metric space (X, d) are said to be compatible of
type (P) if limn→∞ d(S2xn, T 2xn) = 0 whenever {xn} is a sequence in X such that
limn→∞ Sxn = limn→∞ Txn = t for some t ∈ X.

In 1994, Pant [15] introduced the notion of pointwise R-weakly commuting map-
pings. Two self mappings A and S of a metric space (X, d) are called R-weakly
commuting at a point x ∈ X if d(ASx, SAx) ≤ Rd(Ax, Sx) for some R > 0. The
mappings A and S are called pointwise R-weakly commuting if given x in X, there
exists R > 0 such that d(ASx, SAx) ≤ Rd(Ax, Sx). It is proved in [16] that the no-
tion of pointwise R-weakly commuting is equivalent to commutativity at coincidence
points.

In 1996, Jungck [8] defines S and T to be weakly compatible if Sx = Tx implies
STx = TSx. Thus S and T are weakly compatible if and only if S and T are pointwise
R-weakly commuting mappings.

Lemma 1.1 ([7], resp. [9, 22, 23]). Let S and T be compatible (resp. compatible of
type (A), compatible of type (B), compatible of type (P)) self mappings of a metric
space (X, d). If Sx = Tx for some x ∈ X, then STx = TSx.

Remark 1.2. By Lemma 1.1, it follows that every compatible (compatible of type
(A), compatible of type (B), compatible of type (P)) pair of mappings is weakly
compatible. In [25], V. Popa has given a pair of mappings which is weakly compatible
but not compatible (compatible of type (A), compatible of type (B), compatible of
type (P)).

2. PRELIMINARIES

In 1969, Meir and Keeler [12] established a fixed point theorem for self mappings of
a metric space (X, d) satisfying the following condition:
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For every ε > 0, there exists a δ > 0 such that

ε ≤ d(x, y) < ε + δ =⇒ d(fx, fy) < ε. (2.1)

In 1975, in connection to (2.1), J. Matkowski (see [11]) has proved the following fixed
point result.

Theorem 2.1 (J. Matkowski [11]). Let f be a self-mapping of a complete metric
space (X, d) and let

d(f(x), f(y)) < d(x, y) for all x, y ∈ X, x �= y. (2.2)

If for every ε > 0 there exists a δ > 0 such that

ε < d(x, y) < ε + δ =⇒ d(f(x), f(y)) ≤ ε, (2.3)

then there exists exactly one fixed point of f ; moreover, its domain of attraction
coincides with the whole of X.

For a self-mapping f of a metric space (X, d), we consider the following conditions:
for every ε > 0, there exists a δ > 0 such that

d(x, y) < ε + δ =⇒ d(fx, fy) ≤ ε, (2.4)

and
x, y ∈ X, d(x, y) > 0 =⇒ d(fx, fy) < d(x, y). (2.5)

Conditions (2.4) and (2.5) are implied by (2.1).
In [10], Maiti and Pal proved a fixed point theorem for a self-mapping f of a metric

space (X, d) satisfying the following condition, which is a generalization of (2.1):
for every every ε > 0, there exists a δ > 0 such that

ε ≤ max{d(x, y), d(x, fx), d(y, fy)} < ε + δ =⇒ d(fx, fy) < ε. (2.6)

In [21] and [26], Park-Rhodes and Rao-Rao have extended this result to the case of
two self-mappings f and g of a metric space (X, d) satisfying the following condition:

for every every ε > 0, there exists a δ > 0 such that

ε ≤max{d(fx, fy), d(fx, gx), d(fy, gy),
1
2
[d(fx, gy) + d(fy, gx)]} < ε + δ

=⇒ d(fx, gy) < ε.
(2.7)

In 1986, Jungck [7] and Pant [13] extended these results for four mappings. It
is known from Jungck [7] and Pant [14, 16–18] and other papers the fact that in
the case of four mappings A, B, S, T : (X, d) → (X, d), a contractive condition of
Meir-Keeler type is not sufficient to ensure the existence of a common fixed point. So
some additional conditions are needed. Generally, these conditions are a weak type
commutativity between the maps and some topological conditions.
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To simplify notations, for all x, y ∈ X, we set

M(x, y) := max
{

d(Sx, Ty), d(Ax, Sx), d(By, Ty),
d(Sx,By) + d(Ax, Ty)

2

}

and

σ(x, y) := d(Sx, Ty) + d(Ax, Sx) + d(By, Ty) + d(Sx,By) + d(Ax, Ty).

For four self-mappings A, B, S and T of a metric space (X, d), K. Jha, R.P. Pant
and S.L. Singh (see [6]) considered the following contractive condition of Meir-Keeler
type:

given ε > 0 there exists a δ > 0 such that

ε ≤ M(x, y) < ε + δ =⇒ d(Ax, By) < ε (2.8)

and have established the following theorem.

Theorem 2.2 ([6]). Let (A, S) and (B, T ) be two compatible pairs of self-mappings
of a complete metric space (X, d) such that:

(i) AX ⊂ TX, BX ⊂ SX,
(ii) given ε > 0 there exists a δ > 0 such that

ε ≤ M(x, y) < ε + δ =⇒ d(Ax, By) < ε, and

(iii) d(Ax, By) < kσ(x, y) for all x, y ∈ X, for 0 ≤ k ≤ 1
3 .

If one of the mappings A, B, S and T is continuous then A, B, S and T have a
unique common fixed point.

Remark 2.3. If A, B, S and T have a common fixed point, then the symbol ‘<’ in
the condition (iii) must be replaced by the symbol ‘≤’. Otherwise, (iii) would give
0 < 0 which is impossible. This change will suggest the new condition 0 ≤ k < 1

3 on
k instead of 0 ≤ k ≤ 1

3 .

In [18] and [20] other similar results are published.
In [25], V. Popa introduced a class of implicit relations to generalize the results

of [6].
In this paper, by using a combination of methods used in [4, 24] and [27], we im-

prove the result of [6] by removing the assumption of continuity, relaxing compatibility
to a weakly compatibility property and replacing the completeness of the space with
a set of four alternative conditions for four functions satisfying an implicit relation.

After the introduction and preliminaries, in the third section, we introduce a new
class of implicit relations (called P4) that will be used in our main result. In the
fourth section, we present and prove our main result (see Theorem 4.2).
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3. IMPLICIT RELATIONS

Let R+ be the set of non-negative real numbers and let P4 be the set of all functions
F (t1, . . . , t4) : R

4
+ → R which are lower semi-continuous and satisfying the following

conditions:
(P ): F (u, 0, u, u) ≤ 0 =⇒ u = 0.
It is easy to see that all the following functions satisfy property (P ).

Example 3.1. F (t1, . . . , t4) = t1 − k[t2 + t3 + t4], where k is such that 0 ≤ k < 1
2 .

Example 3.2. F (t1, . . . , t4) = t1 − at2 − bt3 − ct4, where a, b, c ≥ 0 are such that
0 ≤ b + c < 1.

Example 3.3. F (t1, . . . , t4) = t1 − q max{t2, t3, t4}, where 0 ≤ q < 1.

Example 3.4. F (t1, . . . , t4) = t21 − a[t22 + t23 + t24], where 0 ≤ a < 1
2 .

Example 3.5. F (t1, . . . , t4) = tp1 − k[tp2 + tp3 + tp4], where p > 0 and 0 ≤ k < 1
2 .

Example 3.6. F (t1, . . . , t4) = t21 − t22 − bt3t4
1+t2+t3

, where 0 ≤ b < 1.

Example 3.7. F (t1, . . . , t4) = t1 − max{t2, t3
2 , kt4

2 }, where 0 ≤ k ≤ 1.

Example 3.8. F (t1, . . . , t4) = t1 − max{k1t2,
k2
2 t3,

t4
2 }, where 0 ≤ k1 ≤ 1 and 1 ≤

k2 < 2.

4. COMMON FIXED POINT RESULT

The following lemma (see [5]) played a crucial role in the proofs of the main results
of [6] and [25] and will be used to prove the main result of this paper.

Lemma 4.1 (2.2 of [5]). Let A, B, S and T be self mappings of a metric space (X, d)
such that AX ⊂ TX and BX ⊂ SX. Assume further that given ε > 0 there exists
δ > 0 such that for all x, y in X

ε < M(x, y) < ε + δ =⇒ d(Ax, By) ≤ ε, (4.1)

and
d(Ax, By) < M(x, y), whenever M(x, y) > 0. (4.2)

Then for each x0 in X, the sequence {yn} in X defined by the rule

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2 ∀n ∈ N

is a Cauchy sequence.

The main result of this paper reads as follows.
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Theorem 4.2. Let S, T, I and J be the self-mappings of a metric space (X, d) such
that:

(H1) SX ⊆ JX and TX ⊆ IX,
(H2) (a) given ε > 0 there exists a δ > 0 such that

ε < M(x, y) < ε + δ =⇒ d(Sx, Ty) ≤ ε, and

(H2) (b) x, y ∈ X, M(x, y) > 0 =⇒ d(Sx, Ty) < M(x, y),
where

M(x, y) := max
{

d(Ix, Jy), d(Ix, Sx), d(Jy, Ty),
d(Ix, Ty) + d(Sx, Jy)

2

}
;

(H3) there exists F ∈ P4 such that the following inequality

F (d(Sx, Ty), d(Ix, Jy), d(Ix, Sx)+d(Jy, Ty), d(Ix, Ty)+d(Jy, Sx)) ≤ 0 (4.3)

holds for all x, y in X.

If one of S(X), T (X), I(X) and J(X) is a complete subspace of (X, d), then:

(i) S and I have a coincidence point,
(ii) T and J have a coincidence point.

Moreover, if the pairs (S, I) and (T, J) are weakly compatible, then the mappings
S, T, I and J have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Then by virtue of (H1), we can define
inductively two sequences {xn} and {yn} in X by the rule:

y2n = Sx2n = Jx2n+1 and y2n+1 = Tx2n+1 = Ix2n+2, (4.4)

for each nonnegative integer n. By Lemma 4.1, it follows that the sequence {yn} is a
Cauchy sequence.

(1) Suppose that S(X) is a complete subspace of (X, d). Then there exists a point
(say) z in S(X) such that

z = lim
n→∞ y2n = lim

n→∞Sx2n = lim
n→∞Jx2n+1. (4.5)

Since limn→∞ d(yn, yn+1) = 0, then by (4.5) it follows that we have

z = lim
n→∞Sx2n = lim

n→∞Jx2n+1 = lim
n→∞ Ix2n = lim

n→∞Tx2n+1. (4.6)

Since S(X) ⊂ J(X), then there exists v ∈ X such that z = Jv. By (H 3), we get

F (d(Sx2n, T v), d(Ix2n, Jv), d(Ix2n, Sx2n)+d(Jv, Tv), d(Ix2n, T v)+d(Jv, Sx2n)) ≤ 0.

Letting n → ∞ and using the lower semi-continuity of F , we obtain

F (d(Jv, Tv), 0, d(Jv, Tv), d(Jv, Tv)) ≤ 0.
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By the property (P ), it follows that Jv = Tv. Thus, we have z = Jv = Tv.
Since T (X) ⊂ I(X), and z = Tv ∈ T (X), then there exists w ∈ X such that
z = Tv = Iw. Then z = Jv = Tv = Iw. By applying the inequality (H3), we
get

0 ≥ F (d(Sw, Tv), d(Iw, Jv), d(Sw, Iw) + d(Jv, Tv), d(Iw, Tv) + d(Jv, Sw)) =
= F (d(Sw, Iw), 0, d(Sw, Iw), d(Sw, Iw)),

which, by virtue of (P ), implies that Sw = Iw. Hence, we obtain

z = Jv = Tv = Iw = Sw. (4.7)

The conclusions in (4.7) will be obtained by similar arguments, if we suppose that
J(X), T (X) or I(X) is a complete subspace of X. This proves (i) and (ii).

(2) Suppose that the pairs {S, I} and {T, J} are weakly compatible. Then it follows

Sz = Iz and Tz = Jz. (4.8)

Now, we show that z = Tz. To get a contradiction, let us suppose that d(z, Sz) >
0. We start by observing that by setting

ε := max{d(Iw, Jz), d(Iw, Sw), d(Jz, Tz), [d(Iw, Tz)+d(Sw, Jz)]/2} = d(z, Tz) > 0.

Then, by virtue of assumption (H2)(b), we get

d(z, Tz) = d(Sw, Tz) < ε = d(z, Tz),

which is a contradiction. Thus we have z = Tz = Jz.
Now, we show that z = Sz. To obtain a contradiction, let us suppose the contrary.
We observe that

ε := max{d(Iz, Jv), d(Iz, Sz), d(Jv, Tv), [d(Iz, Tv) + d(Sz, Jv)]/2} = d(Sz, z) > 0.

Then, by virtue of assumption (H2)(b), we get

d(Sz, z) = d(Sz, Tv) < ε = d(Sz, z),

which is a contradiction. Thus we have z = Sz = Iz. Thus, we have z = Sz =
Iz = Jz = Tz. We conclude that z is a common fixed point for S, T, I and J .

(3) Suppose that y is another common fixed point for the mappings S, T, I and J ,
such that y �= z. Obviously we have

ε := max{d(Iy, Jz), d(Iy, Sy), d(Jz, Tz), [d(Iy, Tz)+d(Sy, Jz)]/2} = d(y, z) > 0.

Then, by applying condition (H2)(b), we obtain

d(y, z) = d(Sy, Tz) < ε = d(y, z),

which is a contradiction. So the mappings S, T, I and J have a unique common
fixed point. This completes the proof.
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Corollary 4.3. Let S, T, I and J be the self mappings of a complete metric spaces
satisfying conditions (H1), (H2)(a), (H2)(b) and (H3) of Theorem 4.2. Then the
conditions (i) and (ii) of Theorem 4.2 hold. Moreover, if the pair (S, I) and (T, J)
are compatible (compatible of type (A), compatible of type (B), compatible of type
(P)) then S, T, I and J have a unique common fixed point.

Proof. It follows by Theorem 4.2 and Remark 1.2.

Corollary 4.4. Let (S, I) and (T, J) be two weakly compatible pairs of self-mappings
of a complete metric space (X, d) such that:

(a) SX ⊆ JX and TX ⊆ IX,
(b) one of SX, JX, TX or IX is closed,
(c) given ε > 0 there exists a δ > 0 such that

ε < M(x, y) < ε + δ =⇒ d(Sx, Ty) ≤ ε, and

(c’) x, y ∈ X, M(x, y) > 0 =⇒ d(Sx, Ty) < M(x, y), where

M(x, y) := max{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), [d(Ix, Ty) + d(Sx, Jy)]/2},

(d)

d(Ax, By) ≤ k[d(Ix, Jy) + d(Ix, Sx) + d(Jy, Ty) + d(Ix, Ty) + d(Jy, Sx)],

for 0 ≤ k < 1
2 .

Then S, T, I and J have a unique common fixed point.

Proof. It follows by Theorem 4.2 and Example 3.1.

We point out that Corollary 4.4 improves the main result of [1]. Indeed, in Corol-
lary 4.3 the Lipschitz constant k is allowed to take values in the interval [0, 1

2 ) instead
of the case studied in [1], where the constant k belongs to the smaller interval [0, 1

3 ).
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