OPERATOR REPRESENTATIONS OF FUNCTION ALGEBRAS AND FUNCTIONAL CALCULUS

Adina Juratoni, Nicolae Suciu

Abstract. This paper deals with some operator representations Φ of a weak*-Dirichlet algebra A, which can be extended to the Hardy spaces $H^p(m)$, associated to A and to a representing measure m of A, for $1 \leq p \leq \infty$. A characterization for the existence of an extension Φ_p of Φ to $L^p(m)$ is given in the terms of a semispectral measure F_{Φ} of Φ. For the case when the closure in $L^p(m)$ of the kernel in A of m is a simply invariant subspace, it is proved that the map $\Phi_p|H^p(m)$ can be reduced to a functional calculus, which is induced by an operator of class C_ρ in the Nagy-Foiaş sense. A description of the Radon-Nikodym derivative of F_{Φ} is obtained, and the log-integrability of this derivative is proved. An application to the scalar case, shows that the homomorphisms of A which are bounded in $L^p(m)$ norm, form the range of an embedding of the open unit disc into a Gleason part of A.

Keywords: weak*-Dirichlet algebra, Hardy space, operator representation, semispectral measure.

Mathematics Subject Classification: 46J25, 47A20, 46J10.

1. INTRODUCTION AND PRELIMINARIES

Let X be a compact Hausdorff space and $C(X)$ the Banach algebra of all complex continuous functions on X. Denote by A a function algebra on X, that is a closed subalgebra of $C(X)$ which contains the constant functions and separates the points of X. $\mathcal{M}(A)$ stands for the set of all non zero complex homomorphisms (or Gelfand spectrum) of A. The equivalence classes of $\mathcal{M}(A)$ induced by the relation: $\gamma \sim \varphi$ iff $||\gamma - \varphi|| < 2$ for $\gamma, \varphi \in \mathcal{M}(A)$, are the Gleason parts of A (see [2,21]).

For $\gamma \in \mathcal{M}(A)$, A_γ means the kernel of γ, and M_γ designates the set of all representing measures m for γ, that is m is a probability Borel measure on X satisfying
\[\gamma(f) = \int f \, dm, \quad f \in A. \] For a subspace \(B \subset C(X) \), we put \(\overline{B} = \{ \mathcal{f} : f \in B \} \). Notice that the homomorphism \(\gamma \) can be naturally extended to \(A + \overline{A} \) by

\[\gamma(f + \mathcal{g}) = \gamma(f) + \gamma(g), \quad f, g \in A. \]

In this paper we consider \(A \) to be a function algebra on \(X \) which is weak*-Dirichlet in \(L^\infty(m) \), that is \(A + \overline{A} \) is weak* dense in \(L^\infty(m) \), for some fixed \(m \in M_\gamma \) and \(\gamma \in \mathcal{M}(A) \). This concept introduced in [20] is weaker than one of Dirichlet algebra, which means that \(A + \overline{A} \) is dense in \(C(X) \). For example, the standard algebra \(A(\mathbb{T}) \) of all continuous functions \(f \) on the unit circle \(\mathbb{T} \) which have analytic extensions \(\tilde{f} \) to the open unit disc \(\mathbb{D} \), is a Dirichlet algebra on \(\mathbb{T} \). On the other hand, the subalgebra \(A_1(\mathbb{T}) \) of \(A(\mathbb{T}) \) of those functions \(f \) satisfying \(f(1) = \tilde{f}(0) \) is a weak*-Dirichlet algebra in \(L^\infty(m_0) \), \(m_0 \) being the normalized Lebesgue measure on \(\mathbb{T} \), and \(A_1(\mathbb{T}) \) is not a Dirichlet algebra.

Let \(\mathcal{H} \) be a complex Hilbert space and \(\mathcal{B}(\mathcal{H}) \) be the Banach algebra of all bounded linear operators on \(\mathcal{H} \).

Any bounded linear and multiplicative map \(\Phi \) of \(A \) in \(\mathcal{B}(\mathcal{H}) \) with \(\Phi(1) = I \) (the identity operator on \(\mathcal{H} \)) is called a representation of \(A \) on \(\mathcal{H} \). When \(\|\Phi\| \leq 1 \) one says that \(\Phi \) is contractive. Here, we only consider a representation \(\Phi \) for which there exist a scalar \(\rho > 0 \) and a system \(\{\mu_x\}_{x \in \mathcal{H}} \) of positive measures on \(X \) with \(\|\mu_x\| = \|x\|^2 \) such that

\[\langle \Phi(f)x, x \rangle = \int [\rho f + (1 - \rho)\gamma(f)]d\mu_x \]

for any \(f \in A \) and \(x \in \mathcal{H} \). Such a \(\mu_x \) is called a weak \(\rho \)-spectral measure for \(\Phi \) attached to \(x \) by \(\gamma \). It is known ([8,9]) that the existence of a system of measures \(\{\mu_x\}_{x \in \mathcal{H}} \) as above, is equivalent to the fact that \(\Phi \) satisfies a weaker von Neumann inequality of the form

\[w(\Phi(f)) \leq \|\rho f + (1 - \rho)\gamma(f)\| \quad (f \in A), \quad (1.1) \]

where \(w(T) \) means the numeric radius of \(T \in \mathcal{B}(\mathcal{H}) \).

In [10] it was proved that if the representation \(\Phi \) of \(A \) on \(\mathcal{H} \) admits a system \(\{\mu_x\}_{x \in \mathcal{H}} \) of weak \(\rho \)-spectral measures attached by \(\gamma \) such that \(\mu_x \) is \(m - a.c. \) for any \(x \), then \(\Phi \) has a \(\gamma \)-spectral \(\rho \)-dilation, that is there exists a contractive representation \(\tilde{\Phi} \) of \(C(X) \) on a Hilbert space \(\mathcal{K} \supset \mathcal{H} \) satisfying the relation

\[\Phi(f) = \rho P_\mathcal{H}\tilde{\Phi}(f)|\mathcal{H} \quad (f \in A_\gamma), \quad (1.2) \]

where \(P_\mathcal{H} \) is the orthogonal projection on \(\mathcal{H} \). Moreover, in this case there exists a unique semispectral measure \(F_\Phi : \text{Bor}(X) \to \mathcal{B}(\mathcal{H}) \) such that

\[\langle F_\Phi(x), x \rangle = \mu_x, \quad \text{or equivalently} \]

\[\langle \Phi(f)x, y \rangle = \int [\rho f + (1 - \rho)\gamma(f)]d\langle F_\Phi x, y \rangle \quad (f \in A), \quad (1.3) \]

for any \(x, y \in \mathcal{H} \). As usual, \(\text{Bor}(X) \) denotes the set of all Borel subsets of \(X \). Using the polarization formula, it follows that all measures \(\langle F_\Phi(x), y \rangle \) for \(x, y \in \mathcal{H} \) are \(m - a.c. \).
The relation (1.2) means that the representation \(\tilde{\Phi} \) is a \(\gamma \)-spectral \(\rho \)-dilation of \(\Phi \), and \(F_\Phi \) is obtained as the compression to \(\mathcal{H} \) of the spectral measure of \(\tilde{\Phi} \) (see [21]).

The representations with spectral \(\rho \)-dilations was first studied by D. Gaşpar ([4–6]), and recently by T. Nakazi ([15, 16]). Any such representation of the algebra \(A(\mathbb{T}) \) on \(\mathcal{H} \) reduces to the usual functional calculus with the operators of class \(C_\rho \) in \(B(\mathcal{H}) \) in the sense of Sz. Nagy-Foiaş [22] (i.e. \(\rho \)-contractions; [1, 11]). In the general setting of a weak*-Dirichlet algebra \(A \), it is natural to find conditions for a representation \(\Phi \) of \(A \) on \(\mathcal{H} \), under which \(\Phi \) can be reduced to a certain functional calculus with a \(\rho \)-contraction. Recall that in [6] was given an example of a contractive representation of a Dirichlet algebra which cannot be reduced to a functional calculus with contractions.

In the sense of [5, 6], the problem of reduction to a functional calculus refers to absolutely continuous representations with respect to representing measures. Thus, we only investigate here the representations \(\Phi \) which have a system of \(m-a.c. \) weak \(\rho \)-spectral measures attached by \(\gamma \). In the sequel \(H^p(m) \) stands for the (weak*, for \(p = \infty \)) closure of \(A \) into \(L^p(m) \), that is the Hardy space associated to \(A \) in \(L^p(m) \).

In Section 2 we characterize in terms of \(F_\Phi \) the representations \(\Phi \) which have bounded linear extensions \(\Phi_p \) to the space \(L^p(m) \) for \(1 \leq p \leq \infty \). In Section 3 we prove the main result which says that, under some hypothesis on an invariant subspace of \(H^p(m) \) when \(1 \leq p \leq 2 \), the map \(\Phi_p|H^p(m) \) is given by a functional calculus with a \(\rho \)-contraction with the spectrum in \(D \), the functional calculus being induced by a Hoffman type [7] naturally associated to the corresponding invariant subspace. In this case, the Radon-Nikodym derivative of \(F_\Phi \) is an essentially bounded function on \(X \) and its logarithm belongs to \(L^1(m) \). The scalar case is considered in Section 4 where we refer to the homomorphisms in \(M(A) \) which are bounded in the \(L^p(m) \)-norm. Our main result is a version of Wermer’s embedding theorem ([1,7,21]) for weak*-Dirichlet algebras, which prove that the set of above quoted homomorphisms corresponds to an analytic disc in the Gleason part which contains \(\gamma \).

2. EXTENSION OF A REPRESENTATION TO THE SPACE \(L^p(m) \)

We characterize below some representations \(\Phi \) of \(A \) on \(\mathcal{H} \) which can be linearly and boundedly extended to the space \(L^p(m) \) for \(1 \leq p \leq \infty \). Our characterization is given in the terms of the Radon-Nikodym derivative with respect to \(m \) of the corresponding \(B(\mathcal{H}) \)-valued semispectral measure \(F_\Phi \). In the sequel we put \(\varphi_{x,y}dm = d\langle F_\Phi(\cdot)x,y \rangle \) for \(x, y \in \mathcal{H} \).

Theorem 2.1. Let \(\Phi \) be a representation of \(A \) on \(\mathcal{H} \) which admits a system of \(m-a.c. \) weak \(\rho \)-spectral measures attached by \(\gamma \). Then \(\Phi \) has a bounded linear extension \(\Phi_p \) from \(L^p(m) \) into \(B(\mathcal{H}) \) for \(1 \leq p \leq \infty \), if and only if \(\varphi_{x,y} \in L^q(m) \) and there exists a constant \(c > 0 \) such that

\[
\|\varphi_{x,y}\|_q \leq c\|x\|\|y\| \quad (x, y \in \mathcal{H}),
\]

(2.1)
where $\frac{1}{p} + \frac{1}{q} = 1$. In this case, Φ_p is uniquely determined and it satisfies for $h \in L^p(m)$ and $x, y \in \mathcal{H}$ the relation

$$\langle \Phi_p(h)x, y \rangle = \int [\rho h + (1 - \rho)]h dm \varphi_{x,y} dm.$$ \hfill (2.2)

Furthermore, for $h \in L^2(m)$ and $x \in \mathcal{H}$ we have the inequality

$$\|\Phi_2(h)x\|^2 \leq \int |\rho h + (1 - \rho)]h dm|^2 \varphi_{x,x} dm.$$ \hfill (2.3)

Hence, if $\{h_\alpha\} \subset L^\infty(m)$ is a bounded net such that $\{h_\alpha\}$ converges a.e. (m) to $h \in L^\infty(m)$, then $\{\Phi_p(h_\alpha)\}$ strongly converges to $\Phi_p(h)$ in $\mathcal{B}(\mathcal{H})$, for $p \geq 2$.

Proof. Suppose firstly that $\varphi_{x,y} \in L^p(m)$ and that the inequality (2.1) is satisfied. Since for $f \in A$, $g \in A_\gamma$ and $x, y \in \mathcal{H}$ we have

$$\langle (\Phi(f) + \Phi(g)^*)x, y \rangle = \int |\rho(f + g) + (1 - \rho)\gamma(f + g)|\varphi_{x,y} dm,$$

we infer that

$$|\langle (\Phi(f) + \Phi(g)^*)x, y \rangle| \leq \rho \int (f + g)\varphi_{x,y} dm + |(1 - \rho)\int (f + g) dm \cdot \int \varphi_{x,y} dm| \leq \rho + |1 - \rho|\|f + g\|_{\mathcal{B}}\| \varphi_{x,y} \|_{q}.$$

Since $A + A_\gamma$ is weak* dense in $L^\infty(m)$, the closure of $A + A_\gamma$ in $L^p(m)$ is just $L^p(m)$, for $1 \leq p < \infty$, (see [20]). Thus, the previous relations prove that for any $x, y \in \mathcal{H}$ there exists a bounded linear functional $\Phi_{x,y}$ on $L^p(m)$ satisfying for $f \in A$, $g \in A_\gamma$, $h \in L^p(m)$,

$$\Phi_{x,y}(f + g) = \langle (\Phi(f) + \Phi(g)^*)x, y \rangle,$$

and

$$\Phi_{x,y}(h) = \int [\rho h + (1 - \rho)]h dm \varphi_{x,y} dm.$$

Also we have $\Phi_{x,y} = \overline{\Phi_{y,x}}$ and using (2.1) we obtain

$$\|\Phi_{x,y}\| \leq c(\rho + |1 - \rho|)\|x\|\|y\|.$$

It follows that for every $h \in L^p(m)$, the map $(x, y) \mapsto \Phi_{x,y}(h)$ is a bounded bilinear functional on $\mathcal{H} \times \mathcal{H}$, hence there exists an operator $\Phi_p(h) \in \mathcal{B}(\mathcal{H})$ such that

$$\langle \Phi_p(h)x, y \rangle = \Phi_{x,y}(h), \quad x, y \in \mathcal{H}$$

and

$$\|\Phi_p(h)\| \leq c(\rho + |1 - \rho|)\|h\|.$$}

Then $\Phi_p : h \mapsto \Phi_p(h)$ is a bounded linear map from $L^p(m)$ into $\mathcal{B}(\mathcal{H})$, which extends Φ and also satisfies the relation (2.2). Using also (2.2) with $h = f + g$ for $f \in A$, $g \in A_\gamma$ one can see that Φ_p is the unique bounded linear extension of Φ to $L^p(m)$.
Now, let \(\tilde{\Phi} \) be the \(\gamma \)-spectral \(\rho \)-dilation of \(\Phi \) (from (1.2)), corresponding to the Naimark dilation (as a spectral measure) of the semispectral measure \(F_{\Phi} \) (see [6,21]). Then for \(f \in A, g \in A_{\gamma} \) and \(x \in \mathcal{H} \) we have \(\Phi(g)^*x = \rho P_{\mathcal{H}} \tilde{\Phi}(g)x \) and

\[
\|\Phi_2(f + g)x\|^2 = \| \Phi(f) + \Phi(g)^*x \|^2 = \| P_{\mathcal{H}} \tilde{\Phi}(f + g) + (1 - \rho)\gamma(f + g)\|x\|^2 \leq \leq \langle \tilde{\Phi}(\rho(f + g) + (1 - \rho)\gamma(f + g))^2x, x \rangle = \int |\rho(f + g) + (1 - \rho)\gamma(f + g)|^2 \varphi_{x,x}dm.
\]

Since \(A + A_{\gamma} \) is dense in \(L^2(m) \), by the continuity of \(\Phi_2 \) one obtains from this inequality just the inequality (2.3).

Next, let \(\{h_\alpha\} \subset L^\infty(m) \), be a bounded net which converges a.e. \((m) \) to \(h \in L^\infty(m) \). Then using (2.3) we obtain

\[
\|(\Phi_2(h_\alpha) - \Phi_2(h))x\|^2 \leq \leq \int |h_\alpha - h| + (1 - \rho) \int (h_\alpha - h)dm |\rho \varphi_{x,x}dm| \leq \leq 2\rho^2 \int |h_\alpha - h|^2 \varphi_{x,x}dm + |1 - \rho|^2 \int |h_\alpha - h|dm \varphi_{x,x}dm \leq \leq 2\rho^2 \int |h_\alpha - h|^2 \varphi_{x,x}dm + |1 - \rho|^2 \int |h_\alpha - h|^2dm \cdot \int \varphi_{x,x}dm \leq \leq 2 \int |h_\alpha - h|^2(\rho^2 \varphi_{x,x} + |1 - \rho|^2\|x\|^2)dm \longrightarrow_\alpha 0.
\]

The convergence to 0 is assured by Lebesgue's theorem, because \(\mu = \varphi_{x}^{(\rho)}m \) is a \(m - a.c. \) positive measure on \(X \), where \(\varphi_{x}^{(\rho)} = \rho^2 \varphi_{x,x} + |1 - \rho|^2\|x\|^2 \). We infer that \(\Phi_2(h_\alpha)x \rightarrow \Phi_2(h)x \) in \(\mathcal{H} \) for any \(x \in \mathcal{H} \), and since \(\Phi_p = \Phi_2|L^p(m) \) we have that \(\{\Phi_p(h_\alpha)\} \) strongly converges to \(\Phi_p(h) \) in \(\mathcal{B}(\mathcal{H}) \), for \(p \geq 2 \) (including and the case \(p = \infty \) because \(\Phi_\infty = \Phi_p|L^\infty(m) \) for \(p < \infty \)).

For the converse statement, we suppose now that \(\Phi \) admits a bounded linear extension \(\Psi \) to \(L^p(m) \) with \(1 \leq p < \infty \). For \(x, y \in \mathcal{H} \) the functional \(\langle \Psi(\cdot)x, y \rangle \) is bounded linear on \(L^p(m) \), so there exists \(\psi_{x,y} \in L^q(m) \) such that

\[
\langle \Psi(h)x, y \rangle = \int \psi_{x,y}dm \quad (h \in L^p(m)).
\]

Since \(\Psi|A = \Phi \) we have for \(f \in A \) and \(g \in A_{\gamma} \),

\[
\int (f + g)\psi_{x,y}dm = \langle \Psi(f + g)x, y \rangle = \langle (\Phi(f) + \Phi(g)^*)x, y \rangle = \int |\rho(f + g) + (1 - \rho)\gamma(f + g)| \varphi_{x,y}dm = \int (f + g)(\rho \varphi_{x,y} + (1 - \rho)\langle x, y \rangle)dm.
\]
Using the weak* density of $A + \overline{A}_\gamma$ in $L^\infty(m)$ we obtain

$$\int h\psi_{x,y}dm = \int h(\rho\varphi_{x,y} + (1 - \rho)\langle x, y \rangle)dm$$

for any $h \in L^\infty(m)$, hence $\psi_{x,y} = \rho\varphi_{x,y} + (1 - \rho)\langle x, y \rangle$. This implies $\varphi_{x,y} \in L^q(m)$ and also

$$\|\varphi_{x,y}\|_q = \frac{1}{\rho}\|\psi_{x,y} + (\rho - 1)\langle x, y \rangle\|_q \leq \left(\frac{1}{\rho}\|\Psi\| + |1 - \frac{1}{\rho}|\right)\|x\|\|y\|,$$

for any $x, y \in H$. Thus, $\varphi_{x,y}$ satisfies (2.1) and this proves the converse statement when $p < \infty$. If $p = \infty$ that is we assume that Φ has a bounded linear extension Ψ to $L^\infty(m)$, then clearly we have

$$\langle \Psi(h)x, y \rangle = \int (\rho h + (1 - \rho)\int hdm)\varphi_{x,y}dm$$

for all $h \in L^\infty(m)$ and $x, y \in H$. Since $\varphi_{x,y} \in L^1(m)$ we get

$$\|\varphi_{x,y}\|_1 = \sup_{g \in L^\infty(m), \|g\| \leq 1} \left|\int g\varphi_{x,y}dm\right| = \sup_{g \in L^\infty(m), \|g\| \leq 1} \left|\langle \Psi\left(\frac{1}{\rho} + \left(1 - \frac{1}{\rho}\right)\int hdm\right)x, y \rangle\right| \leq \|\Psi\left(\frac{1}{\rho} + \left|1 - \frac{1}{\rho}\right|\right)\|x\|\|y\|,$$

and so $\varphi_{x,y}$ also satisfies (2.1) when $p = \infty$. This ends the proof.

Remark 2.2. The equivalent conditions of Theorem 2.1 imply

$$\|\Phi\|_p := \sup_{f \in A, \|f\|_p \leq 1} \|\Phi(f)\| < \infty. \quad (2.4)$$

It is easy to see that the condition (2.4) is equivalent to the existence of a bounded linear extension $\hat{\Phi}_p$ of Φ to $H^p(m)$. In this case, $\hat{\Phi}_p$ is uniquely determined and it satisfies the relation (2.2) for $g \in H^p(m)$. In addition, the following property holds.

Proposition 2.3. Let Φ be a representation of A on H as in Theorem 2.1 such that $\|\Phi\|_p < \infty$. Then

$$\hat{\Phi}_p(fg) = \hat{\Phi}_p(f)\hat{\Phi}_p(g) \quad (f \in H^\infty(m), \ g \in H^p(m)) \quad (2.5)$$

and, in particular, $\hat{\Phi} := \hat{\Phi}_p|H^\infty(m)$ is a representation of $H^\infty(m)$ on H. Moreover, if $\{f_\alpha\} \subset H^\infty(m)$ is a bounded net which converges a.e. (m) to $f \in H^\infty(m)$, then $\{\hat{\Phi}(f_\alpha)\}$ strongly converges to $\hat{\Phi}(f)$ in $B(H)$.
Proof. Let \(g \in H^p(m) \) and \(f, g_n \in A \) such that \(g_n \to g \) in \(L^p(m) \). Then \(fg_n \to fg \) in \(L^p(m) \), so

\[
\hat{\Phi}_p(fg) = \lim_n \Phi(fg_n) = \Phi(f)\hat{\Phi}_p(g).
\]

Now, if \(f \in H^\infty \) and \(\{f_\alpha\} \subset A \) is a net which converges to \(f \) in the weak* topology of \(L^\infty(m) \) then for \(g, g_n \) as above and \(x, y \in H \) one has

\[
\langle \hat{\Phi}_p(fg)x, y \rangle = \int (\rho fg + (1 - \rho) \int fdm)\varphi_{x,y}dm =
\]

\[
= \lim_n \lim_\alpha \int (\rho f_\alpha g_n + (1 - \rho) \int f_\alpha g_n dm)\varphi_{x,y}dm =
\]

\[
= \lim_n \lim_\alpha \langle \Phi(f_\alpha g_n)x, y \rangle = \lim_n \langle \Phi(f_\alpha)\Phi(g_n)x, y \rangle =
\]

\[
= \lim_n \int (\rho f_\alpha + (1 - \rho) \gamma(f_\alpha))\varphi_{g_n,x,y}dm =
\]

\[
= \lim_n \int (\rho f + (1 - \rho) \int fdm)\varphi_{g_n,x,y}dm =
\]

\[
= \lim_n \langle \hat{\Phi}_p(f)\Phi(g_n)x, y \rangle = \langle \hat{\Phi}_p(f)\hat{\Phi}_p(g)x, y \rangle.
\]

So, property (2.5) is proved. This also gives that \(\hat{\Phi}_p \) is multiplicative on \(H^\infty(m) \), therefore \(\hat{\Phi} := \hat{\Phi}_p | H^\infty(m) \) is a representation of \(H^\infty(m) \) on \(H \).

The second statement of the proposition can be inferred as in the previous proof. \(\square \)

Remark 2.4. If the representation \(\Phi \) in Theorem 2.1 is contractive, that is \(\rho = 1 \) and \(\|\Phi\| = 1 \) (because \(\Phi(1) = I \)), then its extension \(\Phi_p \) is also contractive, in the case when it exists. Indeed, if \(\tilde{\Phi} \) is as in the proof of Theorem 2.1, we have for \(f \in A \), \(g \in A_\gamma \) and \(x, y \in H \),

\[
\left| \int (f + \overline{g})\varphi_{x,y}dm \right| = \left| \langle (\Phi(f) + \Phi(g)^*)x, y \rangle \right| = \left| \langle P_H \tilde{\Phi}(f + \overline{g})x, y \rangle \right| \leq
\]

\[
\leq \|\tilde{\Phi}(f + \overline{g})\|\|x\|\|y\| \leq \|f + \overline{g}\|\|x\|\|y\|,
\]

because \(\tilde{\Phi} \) is a contractive representation of \(C(X) \). From this inequality we infer by the density of \(A + A_\gamma \) in \(L^p(m) \) that

\[
\left| \int h\varphi_{x,y}dm \right| \leq \|h\|_\infty \|x\|\|y\| \quad (h \in L^p(m)),
\]

hence \(\|\varphi_{x,y}\|_q \leq \|x\|\|y\| \). Thus, we can take \(c = 1 \) in (2.1) and from the proof of Theorem 2.1 we deduce (the case \(\rho = 1 \)) that \(\|\Phi_p\| \leq 1 \), and finally \(\|\Phi_p\| = 1 \) because \(\Phi_p(1) = I \).
3. REDUCTION TO FUNCTIONAL CALCULUS

In the sequel we denote by $H^p_0(m)$ the closure (weak*, if $p = \infty$) of A_γ in $L^p(m)$, that is

$$H^p_0(m) = \left\{ f \in H^p(m) : \int f dm = 0 \right\}.$$

We say ([17, 20, 21]) that $H^p_0(m)$ is simply invariant if the closure of $A_\gamma H^p_0(m)$ in $L^p(m)$ is strictly contained in $H^p_0(m)$. By Theorem 4.1.6 [20] (see also [17, 21]) if $H^p_0(m)$ is simply invariant then there exists a function $Z \in H^\infty_0(m)$ with $|Z| = 1$ a.e. (m) such that $H^p_0(m) = ZH^p(m).

As in Theorem 3 [14] one can prove that, if m_0 is the normalized Lebesgue measure on \mathbb{T}, there exists an isometric $*$-isomorphism τ of $L^p(m_0)$ onto a closed subspace of $L^p(m)$, taking $H^p(m_0)$ onto a closed subspace of $H^p(m)$, for $1 \leq p \leq \infty$. In fact, τ is defined by

$$(\tau h)(s) = h(Z(s))$$

for $h \in L^p(m_0)$ and a.e. (m) $s \in X$.

The following main result shows that under the simple invariance of $H^p_0(m)$ with $1 \leq p \leq 2$, the representations from Theorem 2.1 and their extensions to $H^p(m)$ can be reduced to functional calculus. For this we need to define the operator $S : H^p(m) \to L^p(m)$ by

$$Sg = Z(g - \int g dm) \quad (g \in H^p(m)). \quad (3.1)$$

Also, for $T \in \mathcal{B}(\mathcal{H})$ we denote by $r(T)$ the spectral radius of T.

Theorem 3.1. Suppose that $H^p_0(m)$ is a simply invariant subspace for $1 \leq p < \infty$, and let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then $r(\Phi(Z)) < 1$, and if $1 \leq p \leq 2$ one has

$$\hat{\Phi}_p(g) = \sum_{n=0}^{\infty} \hat{g}(n)\hat{\Phi}(Z)^n \quad (g \in H^p(m)), \quad (3.2)$$

where $\hat{g}(n) = \int Z^n dm$ for $n \in \mathbb{N}$, the series being absolutely convergent in $\mathcal{B}(\mathcal{H})$. Moreover, the relation (3.2) is also true when $2 < p < \infty$, for $g \in H^p(m)$ such that $\{S^ng\}$ is a bounded sequence in $H^p(m)$, S being the operator from (3.1).

Proof. The assumption on Φ means that $\varphi_{x,y}$ satisfies (2.1) for any $x, y \in \mathcal{H}$. As a bounded linear functional on $L^p(m)$, $\varphi_{x,y}$ induces, by the isomorphism τ, a bounded linear functional on $L^p(m_0)$, that is there exists $\varphi^0_{x,y} \in L^q(m_0)$ satisfying

$$\int h\varphi^0_{x,y} dm_0 = \int (\tau h)\varphi_{x,y} dm \quad (h \in L^p(m_0)). \quad (3.3)$$

Since τ is an isometry we find

$$\|\varphi^0_{x,y}\|_q = \sup_{\|h\|_p = 1} \left| \int h\varphi^0_{x,y} dm_0 \right| = \sup_{\|\tau h\|_p = 1} \left| \int (\tau h)\varphi_{x,y} dm \right| \leq \|\varphi_{x,y}\|_q \leq c\|x\|\|y\|,$$

with c as in (2.1).
Now from (3.3) and (2.2) we infer, for any analytic polynomial \(P \), that

\[
\int [\rho P + (1 - \rho)P(0)] \varphi_{x,y}^0 \, dm_0 = \int [\rho (P \circ Z) + (1 - \rho)P(0)] \varphi_{x,y}^0 \, dm = \langle \Phi_p (P \circ Z) x, y \rangle = \langle P(\Phi_p (Z)) x, y \rangle.
\]

So, using the previous inequality we get

\[
|\langle P(\Phi_p (Z)) x, y \rangle| \leq \|\rho P + (1 - \rho)P(0)\|_p \|\varphi_{x,y}^0\|_q \leq c(\rho + |1 - \rho|) \|P\|_p \|x\|_p \|y\|,
\]

and putting \(c_{\rho} = c(\rho + |1 - \rho|) \) one obtains

\[
\|P(\Phi_p (Z))\| \leq c_{\rho} \|P\|_p.
\]

This means that the operator \(\Phi_p (Z) \) is polynomially bounded. On the other hand, taking \(P(\lambda) = \lambda^n \) for \(n \in \mathbb{N} \) in the above equality, we obtain

\[
\langle \Phi_p (Z)^n x, y \rangle = \rho \int \lambda^n \varphi_{x,y}^0 \, dm_0
\]

and so it follows that for \(x, y \in \mathcal{H} \) there exists \(\psi_{x,y} \in L^q(m_0) \) such that

\[
\langle \Phi_p (Z)^{*n} x, y \rangle = \int \overline{\lambda^n} \psi_{x,y} \, dm_0 \quad (n \in \mathbb{N}).
\]

This yields that the operator \(\Phi_p (Z)^* \) is absolutely continuous, and since \(\psi_{x,y} \in L^q(m_0) \) with \(q > 1 \) (by the choose of \(p \)), from Lebow’s theorem [13] we infer that \(r(\Phi_p (Z)) < 1 \).

The assumption that \(H^0_p (m) = ZH^p (m) \) assures that the range of operator \(S \) from (3.1) is contained in \(H^p (m) \), so \(S \in \mathcal{B}(H^P(m)) \). In addition, for \(g \in H^P(m) \) we have

\[
\int Sg \, dm = \int \overline{Z} g \, dm = \hat{g}(1),
\]

therefore \(S^2 g = \overline{Z}(Sg - \hat{g}(1)) \), or \(Sg = \hat{g}(1) + Z(S^2g) \). This also gives

\[
g = \int g \, dm + Z(Sg) = \hat{g}(0) + \hat{g}(1) Z + Z^2(S^2 g).
\]

Assume now that \(g = \sum_{j=0}^{n-1} \hat{g}(j) Z^j + Z^n(S^n g) \) for \(n > 1 \). Then

\[
S^n g = \overline{Z}^n g - \sum_{j=0}^{n-1} \hat{g}(j) \overline{Z}^{n-j},
\]

whence we get \(\int S^ng \, dm = \hat{g}(n) \). So, we have \(S^{n+1} g = \overline{Z}(S^n g - \hat{g}(n)) \), or \(S^n g = \hat{g}(n) + Z(S^{n+1}g) \), and by our assumption on \(g \) we obtain

\[
g = \sum_{j=0}^{n} \hat{g}(j) Z^j + Z^{n+1}(S^{n+1}g) \quad (g \in H^P(m)). \tag{3.4}
\]
Considering the extension $\tilde{\Phi}_p = \Phi_p|H^p(m)$ of Φ to $H^p(m)$ (as in Proposition 2.3) we get by (3.4) that

$$\|\tilde{\Phi}_p(g) - \sum_{j=0}^{n} \hat{g}(j)\tilde{\Phi}(Z)^j\| = \|\tilde{\Phi}(Z^{n+1})\tilde{\Phi}_p(S^{n+1}g)\| \leq \|\tilde{\Phi}_p\|\|S^{n+1}g\|_p\|\tilde{\Phi}(Z^{n+1})\|,$$

(3.5)

for any $g \in H^p(m)$.

If $p = 2$, the operator S is a contraction on $H^2(m)$ that is

$$\|Sg\|_2 = \|g - \int gdm\|_2 \leq \|g\|_2,$$

because $g - \int gdm$ is the orthogonal projection of g on $H^2_0(m)$ for $g \in H^2(m)$. In this case, in (3.5) we have $\|S^{n+1}g\|_2 \leq \|g\|_2$ for any $n \in \mathbb{N}$, and since $\tilde{\Phi}(Z)^n \to 0$ ($n \to \infty$) by a remark before, it follows that the representation (3.2) holds true for $g \in H^2(m)$.

Suppose now $1 \leq p < 2$. As $H^2(m)$ is dense in $H^p(m)$, for $g \in H^p(m)$ and every $\varepsilon > 0$ there exists $g_\varepsilon \in H^2(m)$ with $\|g - g_\varepsilon\|_p < \varepsilon$. Since $|\hat{g}(n)| \leq \|g\|_p$ for $n \in \mathbb{N}$, the series from (3.2) is absolutely convergent in $\mathcal{B}(\mathcal{H})$ and applying the previous remark to g_ε we obtain

$$\|\sum_{n=0}^\infty \hat{g}(n)\tilde{\Phi}(Z)^n - \Phi_p(g)\| \leq \|\sum_{n=0}^\infty (\hat{g}(n) - \hat{g}_\varepsilon(n))\tilde{\Phi}(Z)^n\| + \|\Phi_p(g_\varepsilon - g)\| \leq \|g - g_\varepsilon\|_p(\|\tilde{\Phi}_p\| + \sum_{n=0}^\infty \|\tilde{\Phi}(Z)^n\|) < \varepsilon M$$

for some constant $M > 0$. Thus, the representations (3.2) occurs for any $g \in H^p(m)$, if $p \leq 2$. When $p > 2$, from the inequality (3.5) we infer that the equality (3.2) is also true for $g \in H^p(m)$ for which $\{S^ng\}$ is a bounded sequence in $H^p(m)$. The proof is finished.

\[\square\]

Remark 3.2. By (3.4) we have that the sequence $\{S^ng\}_n$ is bounded if and only if the sequence $\{\sum_{j=0}^n \hat{g}(j)Z^j\}_n$ is bounded in $H^p(m)$, and in particular, this happens if S is a power bounded operator in $\mathcal{B}(H^p(m))$. But, even if the second sequence before converges, its limit is not necessary the function g. In fact, one has (by (3.4)) $g = \sum_{j=0}^\infty \hat{g}(j)Z^j$ in $H^p(m)$ if and only if $S^ng \to 0$ ($n \to \infty$); but this condition is false, in general, as we can see in the following

Example 3.3. Let A be the algebra of all continuous functions f on \mathbb{T}^2 having the Fourier coefficients

$$c_{ij} = \int_{\mathbb{T}^2} \lambda^i \omega^j f(\lambda, \omega)dm_2 \quad (i, j \in \mathbb{Z})$$
Theorem 3.4. Suppose $c_{ij} = 0$ if either $j < 0$, or $j = 0$ and $i < 0$. Then A is a Dirichlet algebra on \mathbb{T}^2, while the normalized Lebesgue measure m_2 on \mathbb{T}^2 is the representing measure for the homomorphism of evaluation in $(0, 0)$ of A. Here the function $Z \in H_0^\infty(m_2)$ is given by $Z(\lambda, w) = \lambda, \lambda, w \in \mathbb{T}$. On the other hand, for the function $g_0 \in H^\infty(m_2)$ defined by $g_0(\lambda, w) = w$, we have $(S^n g_0)(\lambda, w) = \lambda^w$ and $\|S^n g_0\|_p = 1$, for any $n \in \mathbb{N}$, $\lambda, w \in \mathbb{T}$. Hence $\{S^n g_0\}$ is a bounded sequence which is not convergent to 0, in $H^p(m_2)$ for $1 \leq p \leq \infty$. Clearly, $\hat{g}_0(n) = 0$ for any $n \geq 0$, therefore $\sum_{j=0}^{n} \hat{g}_0(j)\lambda^j = 0$ for $n \geq 0$, what justifies the last assertion of Remark 3.2.

This example also provides that, in general under the hypothesis of Theorem 3.1, the space $H^p(m)$ is not spanned by $\{Z^n\}_{n \in \mathbb{N}}$, even if the operator S is power bounded. For instance, S is always a contraction on $H^2(m)$, but $\{Z^n\}_{n \in \mathbb{N}}$ becomes an orthonormal basis in $H^2(m)$ if and only if $H^\infty(m)$ is a maximal weak* closed algebra in $L^\infty(m)$, when m is the unique representing measure for γ, while $\{\gamma\}$ is not a Gleason part of A (see [1,6]). If $H^p(m)$ is spanned by $\{Z^n\}_{n \in \mathbb{N}}$ then for any $g \in H^p(m)$ the representation (3.2) holds (by Remark 3.2), which means that the map Φ_ρ is reduced to a functional calculus. Theorem 3.1 shows that this fact occurs for Φ satisfying (2.1) for $2 \leq q \leq \infty$, but we cannot prove (3.2) in the case $2 < p \leq \infty$ (when $1 \leq q < 2$), the boundedness condition (2.1) for $\varphi_{x,y}$, being weakened in this case.

We see now that, from the point of view of the semispectral measure F_Φ, the cases when p belongs to the range $1 \leq p \leq 2$ are not essentially different, in Theorem 3.1.

Theorem 3.4. Suppose $1 \leq p \leq 2$ and that $H_0^p(m)$ is a simply invariant subspace in $H^p(m)$. Let Φ be a representation of A on \mathcal{H} satisfying Theorem 2.1. Then the semispectral measure F_Φ has the form $F_\Phi = \theta(\cdot)m$ where the function $\theta : X \to \mathcal{B}(\mathcal{H})$ is given by

$$\theta(s) = \sum_{n=0}^{\infty} Z^n(s)\hat{\Phi}(Z)^{(n)},$$

(3.6)

while the series converges absolutely and uniformly a.e. (m) for $s \in X$. Moreover, θ is a bounded function a.e. (m) on X.

Proof. Since $r(\hat{\Phi}(Z)) < 1$ (by Theorem 3.1) one can define the function

$$\theta_+(s) = \sum_{n=0}^{\infty} Z^n(s)\hat{\Phi}(Z)^{n},$$

the series being absolutely and uniformly convergent a.e. (m) for $s \in X$. In addition, one has

$$\|\theta_+(s)\| \leq \sum_{n=0}^{\infty} \|\hat{\Phi}(Z)^n\| \quad (\text{a.e. } (m) \ s \in X).$$
Then for \(g \in H^p(m) \) and \(x \in \mathcal{H} \) the function \(g(\theta_+(\cdot)x,x) \) belongs to \(L^p(m) \), and we have (by (3.2) and (2.2)),

\[
\int g(\theta_+(\cdot)x,x)dm = \sum_{n=0}^\infty \hat{g}(n)\langle \Phi(Z)^nx,x \rangle = \langle \Phi_\rho(g)x,x \rangle = \int (\rho g + (1-\rho) \int gdm) \varphi_{x,x}dm.
\]

Equivalently, taking \(\frac{1}{\rho}g + (1-\frac{1}{\rho}) \int gdm \) instead of \(g \) in this relation, we obtain

\[
\int g\varphi_{x,x}dm = \int \left[\frac{1}{\rho}g(s) + \left(1 - \frac{1}{\rho} \right) \int gdm \right] \langle \theta_+(s)x,x \rangle dm = \frac{1}{\rho} \int g(s) \left[\frac{1}{\rho} \langle \theta_+(s)x,x \rangle + \left(1 - \frac{1}{\rho} \right) \int \langle \theta_+(s)x,x \rangle dm \right] dm = \frac{1}{\rho} \int g(s) \left[\frac{1}{\rho} \langle \theta_+(s)x,x \rangle + \left(1 - \frac{1}{\rho} \right) \|x\|^2 \right] dm = \left(1 - \frac{1}{\rho} \right) \|x\|^2 + \frac{1}{\rho} \int \sum_{n=0}^\infty gZ^n \langle \Phi(Z)^nx,x \rangle dm = \left(1 - \frac{1}{\rho} \right) \|x\|^2 + \frac{1}{\rho} \int g(s) \langle \theta(s)x,x \rangle dm,
\]

where the function \(\theta \) is defined as in (3.6), that is

\[
\theta(s) = \theta_+(s) + \theta_+(s)^* - I \quad (a.e. \ (m) \ s \in X).
\]

Clearly, we used before that \(\int gZ^n dm = 0 \) for \(n > 0 \).

Since \(\varphi_{x,x} \) and \(\langle \theta(\cdot)x,x \rangle \) are real functions, we get that

\[
\int (f + \overline{g})\varphi_{x,x}dm = \int (f + \overline{g}) \langle \theta(\cdot)x,x \rangle dm
\]

for \(f \in A, \ g \in A_\gamma, \) and this gives \(\varphi_{x,x} = \langle \theta(\cdot)x,x \rangle \) because \(A \) is weak* Dirichlet in \(L^\infty(m) \). Hence \(\theta \) is the Radon-Nikodym derivative of \(F_\Phi \) with respect to \(m \), and \(\theta \) is bounded a.e. \((m) \) on \(X \), in fact

\[
\|\theta(s)\| \leq 1 + \frac{2}{\rho} \sum_{n=0}^\infty \|\hat{\Phi}(Z)^n\| \quad (a.e. \ (m) \ s \in X).
\]

This ends the proof. \(\square \)

From this theorem it follows that, for \(\Phi \) as in Theorem 2.1, the \(L^q(m) \)-boundedness of \(\varphi_{x,y} \) in the sense of (2.1) for any \(x, y \in \mathcal{H} \) and some \(q \) in the range \(2 \leq q \leq \infty \), is equivalent to the fact that the Radon-Nikodym derivative of \(F_\Phi \) is a bounded function a.e. \((m) \) on \(X \), if \(H^p_0(m) \) is simply invariant. In this last case, \(\Phi \) can be extended
to whole $L^1(m)$ as in Theorem 2.1 and one has $\Phi_p = \Phi_1|L^p(m)$ for $1 < p \leq \infty$. Moreover, if $1 \leq p \leq r \leq \infty$ then $\hat{\Phi}_r = \hat{\Phi}_p|H^r(m)$. Hence we infer from Theorem 3.1 the following

Corollary 3.5. Suppose that for some $p \in [1, 2]$ the subspace $H^p_0(m)$ is simply invariant, and let Φ be a representations of A on H satisfying Theorem 2.1. Then the relation (3.2) holds for $\hat{\Phi}_r$ and any $g \in H^r(m)$ with $p \leq r \leq \infty$.

Notice that the above results extend some facts from [12] where only the case $p = 2$ was considered. Remark also that the assertion $r(\hat{\Phi}(Z)) < 1$ in the corresponding version in [12] of Theorem 3.1 before was obtained in a different way, adapting an argument of M. Schreiber [19].

In turn the Theorem 3.4 shows that the semispectral measure F_Φ can be described by the operator $\hat{\Phi}(Z)$. Conversely, $\hat{\Phi}(Z)$ can be retrieved from F_Φ as follows.

Proposition 3.6. Suppose that $H^p_0(m)$ is a simple invariant subspace for some $p \in [1, 2]$, and let Φ be a representation of A on H satisfying Theorem 2.1. Then $\hat{\Phi}(Z)$ is a ρ-contraction on H and we have

$$\hat{\Phi}(Z)^{(n)} = \int Z^n(s)\theta(s)dm \quad (n \in \mathbb{Z}),$$

(3.7)

where θ is function defined in (3.6).

Moreover, if there exists $s_0 \in X$ and $\lambda \in \mathbb{C}$ such that $\theta(s_0) = \lambda I$ then $\hat{\Phi}(Z)$ is a normal strict contraction.

Proof. The relation (3.7) follows immediately because we may integrate the series of θ term by term (by uniform convergence in norm), having in view that $\int Zdm = 0$. From (3.7) we infer for any analytic polynomial P and $x \in H$ that

$$\langle P(\hat{\Phi}(Z))x, x \rangle = \int [\rho(P \circ Z)(s) + (1 - \rho)P(0)]\langle \theta(s)x, x \rangle dm =$$

$$= \int [\rho(P \circ Z)(s) + (1 - \rho)P(0)]\varphi_{x,x}(s)dm,$$

the last equality being ensured by Theorem 3.4. So, we obtain

$$|\langle P(\hat{\Phi}(Z))x, x \rangle| \leq \sup_{|\lambda| = 1} |\rho P(\lambda) + (1 - \rho)P(0)| \int \varphi_{x,x} dm =$$

$$= \|\rho P + (1 - \rho)P(0)\||x|^2,$$

whence

$$\sup_{||x|| = 1} |\langle P(\hat{\Phi}(Z))x, x \rangle| \leq \|\rho P + (1 - \rho)P(0)\|.$$

This last inequality just means that $\hat{\Phi}(Z)$ is a ρ-contraction on H (see [1, 4, 6, 22]).

Suppose now that there exists $s_0 \in X$ and $\lambda \in \mathbb{C}$ such that $\theta(s_0) = \lambda I$. We write $\theta(s_0) = I + T + T^*$ where

$$T = \frac{1}{\rho} \sum_{n=1}^{\infty} \hat{Z}^n \hat{\Phi}(Z)^{n}.$$
Then our assumption yields $TT^* = (\lambda - 1)T - T^2 = T^*T$, hence T is a normal operator. Since one has

$$\rho T = [I - Z(s_0)\hat{\Phi}(Z)]^{-1} - I,$$

we get

$$\hat{\Phi}(Z) = Z(s_0)[I - (I + \rho T)^{-1}],$$

therefore $\hat{\Phi}(Z)$ is a normal operator. This also gives $\|\hat{\Phi}(Z)\| = r(\hat{\Phi}(Z)) < 1$, that is $\hat{\Phi}(Z)$ is a strict contraction. This ends the proof. \hfill \Box

The converse statement fails for the second assertion of Proposition 3.6, even in the case $\rho = 1$, and this fact was proved in [19, p.189], concerning the contractive representations of the disc algebra.

Theorem 3.4 can be also completed as follows.

Theorem 3.7. Suppose that $H^p_0(m)$ is a simply invariant subspace for some $p \in [1, 2]$ and that $H^\infty(m)$ coincides to the weak* closure of the system $\{Z^n\}_{n \in \mathbb{N}}$. Let Φ be a representation of \mathcal{A} on \mathcal{H} satisfying Theorem 2.1. Then the semispectral measure F_Φ is mutually absolutely continuous with respect to m, and for every $x \in \mathcal{H}$, $x \neq 0$, the function $\log(\theta(\cdot)x, x)$ belongs to $L^1(m)$, where θ is defined in (3.6).

Proof. Since F_Φ is absolutely continuous with respect to m, it remains to prove the converse assertion.

Notice firstly that for $g \in H^\infty(m)$ one has $g = \sum_{n=0}^\infty \hat{g}(n)Z^n$, and that $\{Z^n\}_{n \in \mathbb{N}}$ forms an orthogonal basis in $H^2(m)$. Since $L^2(m) = H^2(m) \oplus \overline{H^2_0(m)}$ (the bar meaning the complex conjugate), the isomorphism τ applies $L^2(m_0)$ onto $L^2(m)$, and $L^\infty(m_0)$ onto $L^\infty(m)$ too.

Let $\sigma \in \text{Bor}(X)$ and $0 \neq x \in \mathcal{H}$ such that $\langle F_\Phi(\sigma)x, x \rangle = 0$. By (3.3) we have ($\chi_\sigma$ being the characteristic function of σ)

$$\int(\tau^{-1}\chi_\sigma)(\tau^{-1}\langle \theta(\cdot)x, x \rangle)dm_0 = \int \chi_\sigma(\theta(\cdot)x, x))dm = \langle F_\Phi(\sigma)x, x \rangle = 0.$$

Since one has

$$\langle \tau^{-1}\langle \theta(\cdot)x, x \rangle \rangle(\lambda) = \sum_{n=-\infty}^{\infty} \lambda^n \hat{\Phi}(Z)^{(n)}_\rho (|\lambda| = 1),$$

this function is just the Radon-Nikodym derivative of the semispectral measure \hat{F} of $\hat{\Phi}(Z)$ with respect to m_0 ($\hat{\Phi}(Z)$ being a uniformly stable ρ-contraction, by Theorem 3.1 and Proposition 3.6). So, we have $\int(\tau^{-1}\chi_\sigma)d\langle \hat{F}x, x \rangle = 0$, and since the measures m_0 and $\langle \hat{F}x, x \rangle$ are equivalent (see [18]), while $\tau^{-1}\chi_\sigma$ is a positive function ($(\tau^{-1}\chi_\sigma)^2 = \tau^{-1}\chi^2_\sigma = \tau^{-1}\chi_\sigma \geq 0$), it follows $\int(\tau^{-1}\chi_\sigma)dm_0 = 0$. Then we obtain

$$m(\sigma) = \int \chi_\sigma dm = \int(\tau^{-1}\chi_\sigma)dm_0 = 0,$$

hence the measures m and $\langle F_\Phi x, x \rangle$ are equivalent.
Now, by (3.3) we also have for \(g \in H^\infty_0(m) \),
\[
\int |1 - g(s)|^p \langle \theta(s)x, x \rangle dm = \int |1 - (\tau^{-1}g)(s)|^p d(\hat{F}x, x).
\]
But \(\tau^{-1}H^\infty_0(m) = H^\infty_0(m_0) \), and so taking the infimum for \(g \in H^\infty_0(m) \) in the previous equality we obtain by Szegö’s Theorem 4.2.2 [20] that
\[
\exp \int \log \langle \theta(s)x, x \rangle dm = \exp \int \log \tau^{-1}(\theta(\cdot)x, x) dm_0.
\]
Since the \(\rho \)-contraction \(\hat{\Phi}(Z) \) is completely non unitary, the right side of this equality cannot be 0 (by Theorem 3.8 [18]), hence \(\log \langle \theta(\cdot)x, x \rangle \in L^1(m) \). The proof is finished. \(\square \)

Note that the hypothesis on \(H^\infty(m) \) in Theorem 3.7 is not verified for the algebra \(A \) in Example 3.3., as was proved in [6]. In the case that \(H^\infty(m) \) is the weak* closure of \(\{Z^n\}_{n \in \mathbb{N}} \), then for any \(g \in H^\infty(m) \) we have \(g = \sum_{n=0}^{\infty} \hat{g}(n)Z^n \) in \(H^2(m) \). In this case, for every \(\Phi \) as above, \(\hat{\Phi}(g) = \hat{\Phi}_2(g) \) is given by (3.2), and it is easy to see that this means that the representations \(\hat{\Phi} \) of \(H^\infty(m) \) on \(\mathcal{H} \) is reduced to a functional calculus in the sense of Gaspar [4,6]. Finally, let us note that the case \(\rho = 1 \) of Theorem 3.7 is contained in Theorem 2.3.2 [6].

4. APPLICATION TO THE SCALAR CASE

In this section we consider the case when \(\Phi \) is a homomorphism of \(A \), this is the one-dimensional case \(\mathcal{H} = \mathbb{C} \). In this context, we generalize to a weak* Dirichlet algebra some classical results concerning the function algebra with the uniqueness property for representing measures ([2,7,21]).

Theorem 4.1. Suppose that \(H^p_0(m) \) is a simply invariant subspace for some \(p \in [1, 2] \). Then for any homomorphism \(\varphi \in \mathcal{M}(A) \) with \(\|\varphi\|_p < \infty \) we have \(|\hat{\varphi}(Z)| < 1 \) and
\[
\varphi_p(g) = \sum_{n=0}^{\infty} \hat{g}(n)\hat{\varphi}(Z)^n \quad (g \in H^p(m)), \quad (4.1)
\]
where \(\varphi_p \) respectively (\(\hat{\varphi} \)) is the bounded linear extension of \(\varphi \) to \(H^p(m) \) (respectively, to \(H^\infty(m) \)), the series being absolutely convergent.

Moreover, the measure
\[
\mu = \frac{1 - |\varphi(Z)|^2}{|Z - \varphi(Z)|^2} dm
\]
(4.2)
is a representing measure for \(\varphi \).
Proof. Let $\varphi \in \mathcal{M}(A)$ with $\|\varphi\|_p = \sup\{|\varphi(f)| : f \in A, \|f\|_p \leq 1\} < \infty$. Assume, by contrary, that $|\hat{\varphi}(Z)| = 1$. Since Z is uniquely determined by a scalar λ with $|\lambda| = 1$, one can suppose that $\hat{\varphi}(Z) = 1$. Then for $n \geq 1$ there exists a function $f_n \in A(T)$ of the form $f_n(\lambda) = \sum_{j=0}^{\infty} c_j \lambda^j$ with $f_n(1) = n$ and $\|f_n\|_p \leq 1$, because 1 is a Choquet point for the standard algebra $A(T)$ ([2, 21]). So, $\tau f_n \in H^p(m)$ and we have

$$\varphi_p(\tau f_n) = \varphi_p\left(\sum_{j=0}^{\infty} c_j Z^j\right) = \sum_{j=0}^{\infty} c_j \hat{\varphi}(Z)^j = \sum_{j=0}^{\infty} c_j = f_n(1) = n$$

and $\|\tau f_n\|_p = \|f_n\|_p \leq 1$, contradicting the fact that φ is bounded on $H^p(m)$. Hence $|\hat{\varphi}(Z)| < 1$.

Now, we can apply Theorem 3.1 for φ to obtain (4.1). Next, since $|\hat{\varphi}(Z)| < 1$, the function

$$\theta_0 = \sum_{n=-\infty}^{\infty} Z^n \hat{\varphi}(Z)^{(n)}$$

is well defined and bounded a.e. (m) on X. In fact, because

$$\theta_0 = \sum_{n=0}^{\infty} Z^n \hat{\varphi}(Z)^{(n)} + \sum_{n=1}^{\infty} Z^n \bar{\hat{\varphi}(Z)^{(n)}} = \frac{1}{1-Z \hat{\varphi}(Z)} + \frac{Z \hat{\varphi}(Z)}{1-Z \bar{\hat{\varphi}(Z)}} = 1 - |\hat{\varphi}(Z)|^2,$$

θ_0 is positive and $\int \theta_0 dm = 1$, hence $\mu = \theta_0 m$ is a probability measure on X. Clearly, we have by (4.1) for $f \in A$,

$$\int fdm = \sum_{n=-\infty}^{\infty} \hat{\varphi}(Z)^{(n)} \int Z^n f dm = \sum_{n=0}^{\infty} \hat{f}(n) \hat{\varphi}(Z)^n = \varphi(f),$$

that is μ is a representing measure for φ. This ends the proof. \(\square\)

Remark that only boundedness of φ on $H^p(m)$ assures that φ is $m - a.c.$ that is φ has a $m - a.c.$ representing measure, if $H^p_0(m)$ is simply invariant. In the general setting of Theorem 3.1, we cannot prove $r(\Phi(Z)) < 1$ without assuming that Φ is $m - a.c.$

Concerning the existence of homomorphism of A which are bounded on $H^p(m)$, we give the following result which generalize Theorem 6.4 [21] (or Theorem V 7.1, and Theorem VI 7.2 of [1]) in the context of weak* Dirichlet algebras.

Theorem 4.2. Suppose that $H^p_0(m)$ is a simple invariant subspace for some $p \in [1, 2]$. Then the set $\Delta_p(m)$ of all homomorphisms of A which are bounded on $H^p(m)$ is not reduced to $\{\gamma\}$, and $\Delta_p(m)$ is contained in the Gleason part of A which contains γ. Moreover, there exists a one to one continuous map Γ from \mathbb{D} into $\mathcal{M}(A)$ such that:

1. $\Gamma(\mathbb{D}) = \Delta_p(m)$, $\Gamma(0) = \gamma$,
2. For any $f \in A$, the function $\hat{f} \circ \Gamma$ is analytic on \mathbb{D}, where \hat{f} is the Gelfand transform of f.
Proof. Let $\Delta_p(m) := \{ \varphi \in \mathcal{M}(A) : \|\varphi\|_{H^p(m)} < \infty \}$. For $\varphi \in \Delta_p(m)$ we have by Theorem 4.1 that $|\hat{\varphi}(Z)| < 1$ where $Z \in H^\infty_0(m)$, $|Z| = 1$ a.e. (m) such that $H^p_0(m) = ZH^p(m)$. We define the map $\Gamma_0 : \Delta_p(m) \to \mathbb{D}$ by $\Gamma_0(\varphi) = \hat{\varphi}(Z)$, $\varphi \in \Delta_p(m)$.

Firstly, Γ_0 is one to one because if $\Gamma_0(\varphi_0) = \Gamma_0(\varphi_1)$ for $\varphi_0, \varphi_1 \in \Delta_p(m)$ then by (4.1) we have $\varphi_0(f) = \varphi_1(f)$ for $f \in A$, so $\varphi_0 = \varphi_1$. Γ_0 is also onto \mathbb{D}. Indeed, for $z \in \mathbb{D}$ we define the linear functional φ_z on A by

$$\varphi_z(f) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \quad (f \in A).$$

Obviously, one has

$$|\varphi_z(f)| \leq \frac{\|f\|_p}{1 - |z|},$$

because $|\hat{f}(n)| \leq \|f\|_p$ for $f \in A$. It is also easy to see (as in the proof of Theorem 6.4 [21]) that φ_z is multiplicative on A, therefore $\varphi_z \in \mathcal{M}(A)$. From the above estimation we have

$$\|\varphi_z\| \leq \frac{1}{1 - |z|},$$

hence $\varphi_z \in \Delta(m)$, and clearly, $\Gamma_0(\varphi_z) = \hat{\varphi}_z(Z) = z$ that is Γ_0 is surjective. In addition, by Theorem 4.1 a representing measure for φ_z is m_z given by

$$m_z = \frac{1 - |\hat{\varphi}_z(Z)|^2}{|Z - \hat{\varphi}_z(Z)|^2} m = \frac{1 - |z|^2}{|Z - z|^2} m.$$

So, the measures m and m_z are mutually absolutely continuous and their corresponding Radon-Nikodym derivatives are bounded a.e. (m) on X. This means that φ_z belongs to the Gleason part $\Delta(\gamma)$ of A which contains γ (see [2, 21]). As Γ_0 is a bijection from $\Delta_p(m)$ onto \mathbb{D}, we infer that

$$\{ \gamma \} \subseteq \Delta_p(m) = \{ \varphi_z : z \in \mathbb{D} \} \subset \Delta(\gamma).$$

Now, $\Gamma = \Gamma_0^{-1}$ is one to one from \mathbb{D} onto $\Delta(m)$ and for $f \in A$ and $z \in \mathbb{D}$ we obtain by (4.1),

$$\hat{f} \circ \Gamma(z) = \hat{f}(\varphi_z) = \varphi_z(f) = \sum_{n=0}^{\infty} \hat{f}(n)z^n,$$

hence $\hat{f} \circ \Gamma$ is an analytic function on \mathbb{D}. Finally, Γ is a continuous map on \mathbb{D}, relative to the Gelfand topology in $\mathcal{M}(A)$, and $\Gamma(0)(f) = \hat{f}(0) = \int f dm = \gamma(f)$ for $f \in A$, so $\Gamma(0) = \gamma$. This ends the proof.

Remark 4.3. If for a function algebra A on X, m is the unique representing measure for $\gamma \in \mathcal{M}(A)$, then A is weak* Dirichlet in $L^\infty(m)$, and any $\varphi \in \Delta(\gamma)$ has a unique representing measure which is bounded absolutely continuous with respect to m ([2], Cor. IV 1.2). This gives $\|\varphi\|_{H^p(m)} < \infty$ for $\varphi \in \Delta(\gamma)$, hence $\Delta(\gamma) = \Delta_p(m) \neq \{ \gamma \}$ in this case, if $H^p_0(m)$ is simple invariant for some $p \in [1,2]$. Furthermore, only assumption $\Delta(\gamma) \neq \{ \gamma \}$ assures that $H^p_0(m)$ is simply invariant, in the case of unique representing measure (see Theorem 6.4 [21], or Theorem V 7.2 [1]).
REFERENCES

Adina Juratoni
adinajuratoni@yahoo.com

“Politehnica” University of Timişoara
Department of Mathematics
Piaţa Victoriei No. 2, Et. 2, 300006, Timişoara, Romania

Nicolae Suciu
suciu@math.uvt.ro

West University of Timişoara
Department of Mathematics
Bv. V. Parvan 4, Timişoara 300223, Romania

Received: May 18, 2010.
Revised: July 13, 2010.
Accepted: July 15, 2010.