Robert Chlebosz*, Bogusława Fabia*, Sławomir Wysocki*

BEZIŁOWA PŁUCZKA WIERTNICZA
PRZEZNACZONA DO WIERCEN HDD
NA BAZIE NOWEGO POLIMERU PT-51**

1. WSTĘP

W polskiej i światowej praktyce inżynieryjnej coraz częściej spotykamy się z odwiertami HDD. Mają one na celu głównie podniesienie standardu życia poprzez umożliwienie transportu energii elektrycznej, paliwa, informacji czy budowania sieci wodnych i sanitarnych. W przypadkach, kiedy powierzchniowe metody okazują się zbyt drogie, lub po prostu niemożliwe, doskonałą alternatywą okazują się być instalacje podziemne, umożliwiające łatwe omijanie przeszkód takich jak drogi, budynki czy rzeki [2].

Rys. 1. Ilustracja przedstawiająca ideę horyzontalnych przewiertów sterowanych [7]

Płyny wiertnicze to jeden z najważniejszych elementów w technologii horyzontalnych wierczeń kierunkowych. Dobór optymalnego systemu płuczkoowego skutkuje zwiększeniem postępu wiercienia i bezpieczeństwa inwestycji. Dzięki dobremu oczyszczaniu dna ze

* Wydział Wiertnictwa, Nafty i Gazu AGH, Kraków
** Praca wykonana w ramach badań własnych

511
zwierciern możliwa jest efektywna praca narzędzia, bez konieczności ponownego rozdrabniania okruchów skalnych, a także realizacja założonej trajektorii. Dobry system eliminuje problemy związane z przechwytem przewodu wiertniczego, szczelinowaniem hydraulicznym przewieranych warstw, nadmierną migracją płynu poza otwór oraz brakiem kontroli wiercenia. Każda z wymienionych komplikacji skutkuje nieprodukcyjnym czasem pracy wiertnicy [3].

Podczas wykonywania odwiertów HDD należy zwrócić uwagę na inny profil przepływu płynu wiertniczego niż ma to miejsce w przypadku wykonywania otworów pionowych. Przewód wiertniczy może znajdować się praktycznie na ścinanie otworu. Determinuje to stosowanie płynu o stosunkowo wysokiej wytrzymałości strukturalnej, umożliwiającego uniknięcie obwałenia górnej części otworu. Struktura płuczek nie może jednak wymagać zbyt dużej energii potrzebnej do jej zniszczenia i uruchomienia krążenia w otworze [1].

W odwiertach horyzontalnych spotykamy się także ze znacznie mniejszymi prędkościami ścinania, zwłaszcza w części znajdującej się pod przewodem wiertniczym. Korzystne są zatem płyny charakteryzujące się „odwróconą reologią”, niskimi wartościami lepkości plastycznej oraz podwyższonymi wartościami lepkości pozornej (przy niskich prędkościach ścinania) i granicy płynięcia [1].

W realizowaniu tych wymagań szczególną rolę odgrywają polimery, które poza regulacją parametrów reologicznych umożliwiają także zmniejszenie ilości fazy stałej w systemie płuczkowym. Rozwój chemii polimerów umożliwia stosowanie nowych związków i zrozumienie zjawisk zachodzących z użyciem już istniejących, dzięki czemu pełnią one istotną rolę w przemyśle płynów wiertniczych. Niniejsza praca przedstawia wyniki badań dotyczące płuczek przeznaczonej do horyzontalnych przewiertów sterowanych, z dodatkiem nowego polimeru PT-51. Jest to biopolimer modyfikowany jonami CO₃²⁻. Zawartość grup jonowych wynosi 5%. Sporządzona płuczka jest płuczką beziółową i stanowi alternatywę dla suspensji bentonitowych.

2. CZĘŚĆ DOŚWIADCZALNA

W pierwszym etapie przeprowadzono badania wstępne mające na celu sprawdzenie płuczek z nowym polimerem pod kątem wykorzystania w kierunkowych odwiertach sterowanych. W tym celu sporządzono suspensję o składzie: biopolimer PT-51 – 0,5%, rotonmag – 1%, kreda – 5% oraz przeprowadzono pomiary parametrów technologicznych zgodnie z z naleczeniami American Petroleum Institute (13 spec. API) oraz polskiej normy branżowej [4,5], sprawdzono także stabilność parametrów płuczek po 24 h od sporządzenia. Wyniki badań przedstawiono na rysunku 2.

Rys. 2. Parametry technologiczne płuczek z dodatkiem polimeru PT-51 po 15 min i 24 h
Rys. 3. Badanie zależności parametrów technologicznych płuczek w zależności od stężenia System-13

Ponieważ skomponowane płuczki spełniają założenia technologiczne stawiane płuczkom do wiercen HDD, postanowiono przeprowadzić badania odporności na skażenie solami jedno- i dwuwartościowymi, odporności temperaturowej oraz smarności. Do badań wytypowano płuczkę o 3% stężeniu System-13A.
2.1. Odporność na skażenie solami jednowartościowymi

W celu sprawdzenia odporności płuczki System-13A na skażenie jonami jednowartościowymi przeprowadzono badania zmian parametrów technologicznych pod wpływem soli NaCl. Wyniki badań przedstawiono na rysunku 5.

Na podstawie przeprowadzonych badań stwierdzono, że nawet duży dodatek soli (NaCl) nie powoduje znaczących zmian parametrów reologicznych opracowanej płuczki. Zaoberwano również korzystne obniżenie wartości filtracji. Na tej podstawie można stwierdzić, że sól kamienna, w razie zaistnienia takiej konieczności, może zostać użyta, w tej płuczce, jako materiał obciążający.
2.2. Odporność na skażenie solami dwuwartościowymi

W celu sprawdzenia odporności płuczki System-13A na skażenie jonami dwuwartościowymi przeprowadzono badania zmian parametrów technologicznych pod wpływem CaCl₂ i MgCl₂. Wyniki badań przedstawiono na rysunku 6.

Przeprowadzone badania wykazały, że jony dwuwartościowe nie wpływają na parametry technologiczne suspensji sporządzonej na bazie System-13A.
2.3. Odporność temperaturowa

Na podstawie badań stwierdzono, że dopiero po przekroczeniu temperatury 70°C wartość granicy płynienia oraz wytrzymałość strukturalna ulegają istotnym zmianom.
2.4. Smarność

W celu określenia właściwości smarnych badanych suspensji, przeprowadzono pomiary współczynnika smarności za pomocą aparatu Lubricity Tester. Dla porównania przedstawiono wyniki pomiarów wykonanych dla 3% suspensji Bentonit Zębiec oraz czystej wody, dodatkowo przedstawiono wyniki badania płuczki System-13A z dodatkiem środka smarnego LUBE. Wyniki badań przedstawiono na rysunku 8.
Przeprowadzone badania pokazały, że skomponowana płuczka System-13A charakteryzuje się dobrym współczynnikiem smarności, który dodatkowo można obniżyć dzięki zastosowaniu środka smarnego.

2.5. Dobór modelu reologicznego

Dla badanych płuczek sporządzono również wykresy krzywych płynięcia. Pozwoliło to na dobór modeli reologicznych. W badaniach wykorzystano program Rheosolution 3 opracowany na Wydziale Wiertnictwa, Nafty i Gazu AGH. Wyniki przedstawiono na rysunku 9.

![Rys. 9. Modele reologiczne badanej płuczki](image_url)

Przedstawione wykresy (rys. 9) wykazały, że płuczkę Systemu-13A dobrze opisuje model Herschel – Buleeya. Opis za pomocą modelu Binghama używanego w normach branżowych jest mniej dokładny.

3. WNIOSKI

Badania wykazały, że polimer PT-51 może znaleźć zastosowanie do płuczek HDD. Sporządzony na jego bazie system płuczkowy System-13A charakteryzuje się dobrymi parametrami technologicznymi i smarnością, jest odporny na skażenie solami jedno- i dwuwartościowymi oraz na wpływ temperatury, a dzięki prostej recepturze istnieje możliwość stosunkowo łatwej regulacji jego parametrów.
LITERATURA

[1] Bielewicz D., Bortel E., Witek E.: Polimery amfoteryczne w zastosowaniu do płu-
czek wiertniczych, Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH, Kraków
2003.

nowego kopolimeru kationowo-niejonowego do płucek HDD, „Wiertnictwo, Nafta,

