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Abstract
The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material contain-
ing two phases, 2H and 1T, of Molybdenum Disulphide (MoS2). The goal of the optimization is to obtain a nanostructure with 
tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. 
The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use 
of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.
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1. Introduction

Optimization plays an important role in the design and 
numerical modelling of existing macro and nanome-
chanical systems. By appropriately formulating the op-
timization problems, including the objective function, 
constraints, and design variables, it is possible to obtain 
new solutions with better tailored mechanical proper-
ties which are less energy-consuming, more durable or 
lighter. A special case of the optimization problems as-
sociated with materials science is the design of new two - 
-dimensional (2D) nanomaterials and nanostructures.

2D materials can be classified as periodic, flat lat-
tices made of replicated stable configurations of atoms. 
The importance of 2D in the development of modern 
electronic and optoelectronic devices, as well as sen-
sors and sophisticated composites, is crucial (Jiang, 
2015; Li et al., 2015). The last decade has seen an 
abundance of studies on the carbon-based graphene 

allotropes, revealing their unique mechanical, thermal 
and electronic properties (Cranford & Buehler, 2011; 
Enyashin & Ivanovskii, 2011; Maździarz et al., 2018; 
Mrozek & Burczyński, 2018; Park et al., 2012; Peng 
et al., 2012). Other examples of monoatomic 2D ma-
terials, made up of graphene-like honeycomb lattices, 
are allotropes called bizmuthene, germenene, silicene 
and stanene, based on bismuth, germanium silicon and 
tin atoms respectively. On the other hand, similar hex-
agonal flat structures can be made of atoms of different 
elements, like boron nitride and single-layered molyb-
denum disulfide (SLMoS2). The scientific work of the 
authors has been related to the latter (Mrozek, 2019; 
Kuś et al., 2022).

Several methods of searching for new stable config-
urations of flat as well as three-dimensional nanostruc-
tures have been developed over the last few years. Most 
of these algorithms combine non-classical optimization 
techniques with simulations on the atomic-level, like 
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Molecular Dynamics (MD) or Molecular Statics (MS), 
or even quantum levels like CALYPSO (Wang et al., 
2010), an approach which combines Particle Swarm 
Optimization (PSO) and ab initio calculations.

The authors of this work previously successful-
ly implemented various bio-inspired algorithms: from 
the Artificial Immune System (AIS) and PSO, to Evo-
lutionary and Memetic Algorithms (Kuś et al., 2016, 
2022; Mrozek et al., 2010, 2015). These routines have 
been linked with MS and MD solvers and engaged in 
processes of searching for small, three-dimensional, 
aluminium clusters, new stable graphene allotropes, 
and other carbon-based 2D materials with predefined 
mechanical properties. This paper summarizes the next 
stage in the development of the author’s own methods 
of optimization and searching for new, stable nanos-
tructures and further research on various 2D materials.

The optimization problem was formulated as min-
imizing the difference between the given material pa-
rameters and the values for a given vector of design 
variables. The closer the material parameters are to the 
set ones, the smaller the objective function’s value. The 
optimization algorithm allows the easy formulation of 
the optimization problem due to the coding of the de-
sign variables. An attempt was made to solve a similar 
problem with the use of an evolution algorithm based 
on floating point design variables representation, but 
it required more calculations of the objective function 
than the proposed quantum-based approach.

The quantum-inspired evolutionary algorithm, 
the structure of the SLMoS2, the ReaxFF atomic po-
tential and the formulation of the optimization problem 
are described and explained in the following sections,. 
The article ends with an analysis and discussion of the 
obtained results. The mechanical properties of the opti-
mized two-phase atomic structures were verified during 
Molecular Dynamics based tensile tests.

2. Quantum-inspired  
evolutionary algorithm

To solve optimization problems, algorithms based on clas-
sical optimization methods using the gradient of the objec-
tive function are used frequently, as well as global meth-
ods based on biological phenomena (Burczyński et al., 
2020). Another group of global optimization methods are 
algorithms inspired by quantum phenomena implement-
ed and run on classical computers. These algorithms have 
been under development and modifications for two de-
cades, and their applications are limited to common test 
problems (Han & Kim, 2002). The most important dis-
tinguishing feature of quantum-inspired algorithms is the 
representation of design variables using qubits. In classi-

cal computers, data is encoded with bits of 0–1 values, 
with a qubit being the equivalent of a bit in quantum com-
puters. The qubit value also takes the ‘pure value’ 0 or 1 
at the time of measurement, while during data processing, 
the qubit has a value often represented as one of the points 
in the Bloch sphere (Lahoz-Beltra, 2016) (Fig. 1a).

a)

 

  

Fig. 1. Qubit represented on a Bloch sphere (a)  
and qubit representation on a circle (b)

The position can be defined by a vector contain-
ing two complex numbers. During data processing, this 
vector can change its values, while at the time of reading 
or measuring the qubit value, its value changes to one of 
the positions marked as |0> and |1>. The value during 
the measurement is determined by the values of the qu-
bit vector determining the probability of reaching the 
value 0 or 1, it may also depend on the phenomenon of 
qubits entanglement. In quantum-inspired algorithms, 
the position description using complex numbers is of-
ten abandoned in favour of real numbers, and the qubit 
value may be presented as a point on a circle or even 
on a segmanet of a circle (Fig. 1b). Data representation 

a)

b)
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with the use of qubits forces changes to optimization al-
gorithms, individual operations of changing the design 
variables in subsequent iterations of the algorithm must 
take into account phenomena typical for qubits. The 
values of the design variables take values after reading 
individual qubits. However, the value of the objective 
function can still be determined in a traditional way. 
The representation of qubits using two real parameters 
is used in the paper. The qubit can be visualised as a cir-
cle in Figure 1b. The value of qubit during measurement 
can be either 0 or 1, as in the case of qubit state repre-
sentation with complex numbers. The QEA algorithm 
operates in each of the steps on many solutions written 
in qubit vectors. The qubits determine the values of de-
sign variables values. The scheme of the QEA algorithm 
is shown in Figure 2. The presented algorithm is based 
on previously known solutions (Han & Kim, 2002; La-
hoz-Beltra, 2016; Silveira et al., 2017; Zhang, 2011).

Fig. 2. QEA algorithm flowchart

First, a starting population is created containing qu-
bits in the Hadamard state with a probability of 1 or 0 
states after measurement equal to 50%, then each qubit 
is rotated by a random angle value. The algorithm uses 
an approach in which each of the qubits can take values 
defined by the real numerical values of two parameters. 
The qubit rotation is performed with the use of a typical 
quantum gate. In the next step, it is necessary to calculate 
the value of the objective function for each qubit vec-
tor that determines the values of the design variables. 
For this purpose, it is first necessary to measure the 

values represented by each of the qubits (it should be 
remembered that the parameters of the qubit determine 
the probability it takes from a value of 1 or 0 during the 
measurement). After measurements are made, the bits 
are converted into the values of the design variables. 
The next stage of QEA consists in modifying the values 
of individual qubits with the use of mechanisms typical 
for evolutionary algorithms – mutations, rotation gates, 
as well as selection based on the value of the objective 
function specified for individual qubit vectors. The se-
lection operator typical for the evolutionary algorithm is 
replaced in QEA with a similar to Particle Swarm Opti-
mization operation where the qubits states are influenced 
by the best solution. Figure 3 illustrates qubits and the 
change of their value dependending on the best solution 
qubit value, the modifications are introduced as rotations 
toward the best solution qubit position.

Fig. 3. The modification of qubits on the base of  
the best solution qubit

3. Two phase MoS2 modelling 

The SLMoS2 has two stable polymorphs, usually called 
2H and 1T, which can exist simultaneously, creating 
complex heterostructures. As presented in Figure 4, 
the most common 2H phase of the SLMoS2, similar to 
graphene, has a hexagonal honeycomb-like lattice. De-
spite the fact that SLMoS2 is usually considered as a 2D 
material, it is composed of three atomic layers: a single 
central plane of Mo atoms is symmetrically covered by 
two layers of S atoms, with stacking sequence A–B–A. 
Each elementary unit cell contains a single Mo atom 
and two sulfur atoms. The replication of the unit along 
the armchair and zigzag directions results in the cre-
ation of a periodic lattice where each Mo atom is sur-
rounded by the six sulfur nearest-neighbours.
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Fig. 4. SLMoS2 2H lattice

The main difference between the 2H and 1T phases 
is the stacking scheme of the outer layers (A–B–C instead 
of A–B–A). The one layer of sulfurs is shifted by half of 
the distance of the nearest-neighbour pairs S–Mo and 
Mo–Mo, denoted respectively by LSMo and LMoMo. 
Thus, the S atoms are placed in the centre of the hexago-
nal lattice created by the other two layers (Fig. 5).

Fig. 5. SLMoS2 1T lattice

The structural and mechanical properties of the 
pristine SLMoS2 lattices depend on the investigation 
methods adopted: experimental approaches, ab initio 
quantum calculations, MD and MS simulations with 
proper atomic potential. Distances LSMo and LMoMo, 
estimated using the DFT method by Xiong & Cao (2015) 
are equal to 2.408 Å and 3.181 Å, respectively, while 
the same parameters obtained during MD simulations, 
varies from 2.398 Å and 3.065 Å (Stillinger–Weber po-
tential) to 2.444 Å 3.167 Å in the case of ReaxFF inter-
action model. Analogically, the effective thickness of the 
SLMoS2, i.e. the distance between outer sulfur layers (d) 
varies from 3.114 Å (DFT) to 3.242 Å (ReaxFF). An 
exhaustive juxtaposition of the lattice parameters of the 
SLMoS2 is also available in a paper by Mrozek (2019).

As already stated and reported by Lin et al. (2014), 
both 2H and 1T phases of SLMoS2 can occur concur-
rently. However, the symmetry properties of the two 
described types of lattices restrict possible stable com-
binations and shapes of them to equilateral triangular or 
hexagonal geometries (Mortazavi et al., 2016).

Fig. 6. SLMoS2 heterostructure: triangular 1T inclusion, 
surrounded by 2H phase

An example of a combined SLMoS2 triangular het-
erostructure, used in this work and similar to the one pre-
sented in the paper by (Mortazavi et al., 2016), is shown 
in Figure 6. Such an arrangement allows the imposition of 
periodic boundary conditions in the zigzag and armchair 
directions (compare Figure 6 with Figures 12 and 13,  
respectively) and a convenient parameterization of the 
geometry, as shown in Figures 7, 9 and 10.

ReaxFF potential

The reality, efficiency and precision of the performed 
nanoscale simulations are defined by the applied model 
of interatomic interactions. Such a model, called atom-
ic potential, describes neighborhood-dependent poten-
tial energy of a whole atomic system, thus determining 
the forces acting between the atoms.

Unfortunately, the most accurate approach: ab ini-
to calculations (Liang et al., 2009, 2012; Xiong & Cao, 
2015), are not the optimal choice for geometrical opti-
mization, where many independent simulations have to 
be solved in each iteration of the algorithm, mainly due 
to the high computational cost. However, in the case 
of discrete atomic models of the SLMoS2 (as shown 
in Figures 4–6), methods of particle mechanics, like 
Molecular Dynamics, Molecular Statics (Burczyński 
et al., 2010) or even Conjugated Gradient-based energy 
minimization algorithms (Nakano, 1997) can be suc-
cessfully used. Both of these methods engage atomic 
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potentials to handle atomic interactions with different 
degrees of accuracy.

The simplest, popular many-body and neighbor-
hood-dependant potentials applied to modeling MoS2 
materials are based on the Stillinger–Weber and Re-
active Empirical Bond Order (REBO) models, usually 
equipped with sets of parameters fitted to describe the 
behavior of a certain type of atoms in given conditions, 
and not all, but only selected spatial configurations and 
types of bondings.

Previous research by Mrozek (2019) have revealed 
that two available parameterizations of Stillinger–We-
ber (Liang et al., 2012; Kandemir et al., 2016) and 
REBO (Liang et al., 2009, 2012) potentials, although 
computationally efficient, are suitable for simulating 
1T phase of SLMoS2. Both approaches failed during 
the estimation of the mechanical properties of 1T lat-
tice under small deformations. Additionally, the 1T to 
Body Centered Cell phase transition preceding the final 
damage mechanism was artificially introduced by an 
improperly parameterized potential.

As a trade-off between the accuracy of MS/MD 
simulations and computational time, the Reactive 
Force Fields model (ReaxFF) developed by van Duin 
et al. (2001) and Chenoweth et al. (2008), one of the 
most sophisticated and complex approaches and direct-
ly based on the data from quantum computations, is ap-
plied in this work. 

In the ReaxFF concept, the overall potential ener-
gy EP is formulated as a sum of partial energies which 
characterize the structure and state of the atomic system:

E E E E E
E E E E E
P bond over under lp

val tor vdW coul ep

� � � �

� � � � �
 (1)

Each term in Equation (1) corresponds to the en-
ergy contributions from: bonds (Ebond), over, and under-
coordinated atoms (respectively: Eover, Eunder) and lone 
pairs (Elp). The Eval and Etor denote energy contributions 
introduced by the valence and torsion angles. Terms 
EvdW and Ecoul are energies dependent on the non-bonded 
van der Waals and Coulomb interactions. The last term 
in (1), the penalty energy Eep, controls the stability of 
the modelled system.

Depending on the type of atoms or molecules, ad-
ditional components, like triple-bond energy correction 
(e.g. in the case of carbon monoxide) can be introduced 
to the total potential energy formulation.

Sets of fitting data are usually obtained on the 
basis of quantum computations and provided in a dis-
crete tabularized form. In contrast to many other atomic 
potentials given in relatively simple mathematical ex-
pressions (like Stillinger–Weber model), the ReaxFF, 

besides complex formulation, needs the interpolation of 
discrete data and routines like conjugated gradient-based 
charge-equilibration. All of these additional procedures 
make this approach computationally less effective than 
Stillinger–Weber and REBO (Mrozek, 2019) but at least 
allow the proper simulation of both 1T and 2H poly-
morphs without using ab inito computations. The data 
sets with parameters for SLMoS2 used in this work were 
published by Ostadhossein et al. (2017).

4. Optimization problem formulation

The aim of optimization is to determine the values of 
the design variables describing the geometry of the 
nanostructure so that the mechanical properties of the 
obtained two-dimensional material are as close as pos-
sible to the set values. The nanostructure contains two-
phases of MoS2 and the share of each phase is defined 
with three variables, as shown in Figure 7.

Fig. 7. The two-phase nanostructure with parameters  
defining both phases in unit cell

The design variables vector ch contains coded 
values of parameters p1–p3. The objective function is 
defined as a norm of the difference of chosen material 
properties:

F C Crefij ij
i j

( )
,

ch � ��
 

(2)

where Crefij is the reference value of stiffness matrix 
element ij and Cij is the value of stiffness matrix el-
ement ij obtained for nanostructure defined by design 
variables vector ch. The constraints are not imposed in 
the problem. The range of parameter values is defined 
by a number of bits and a coding algorithm. The objec-
tive function is computed on the base of the flowchart 
presented in Figure 8.
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Fig. 8. The objective function evaluation 
on the base of qubits values

To determine the mechanical properties, it is nec-
essary to perform numerical simulations with the use of 
molecular statics. During the simulation, the nanostruc-
ture is deformed and on the basis of the stress and strains 
values, it is possible to determine the components of its 
stiffness. Numerical simulations of the nanostructure 
were carried out using LAMMPS (Thompson et al., 
2022) software, the ReaxFF (Aktulga, 2012) potential 
was used to simulate the interatomic interactions, which 
allows for the correct simulation of both phases and 
interactions between them in the MoS2 material. The 
problem was coded with 12 qubits, each of the follow-
ing 4 qubits corresponds to one of the variables describ-
ing the problem, Gray coding was used for the conver-
sion from bit to an integer. After the measurements are 
made, the bits are converted into the values of the design 
variables. Design variables are used to build the nano-
structure, which is then subjected to numerical analysis. 
As a result of the simulation, we obtain the mechanical 
properties of the nanostructure, which is used to calcu-
late the value of the objective function.

5. Numerical examples

Two SLMoS2 nanostructures containing two phases with 
substitute material properties close to the desired ones 
were generated as a result of the optimization. Figure 9 

shows the first of the newly-created heterostructures. 
The boundaries of the lattice allow its periodic replica-
tion along the zigzag and armchair directions (compare 
with Figures 4 and 12). Mechanical material properties 
(components of the stiffness tensor) obtained during op-
timization (engaging molecular statics and ReaxFF po-
tential), are close to the predefined ones and summarized 
in Table 1. Indices of the parameters C11 and C22 refer to 
the armchair and zigzag directions, respectively. 

Fig. 9. The first of the generated 2H SLMoS2 structures 
with triangular 1T inclusion

Table 1. Desired and actual properties of the structure 
from Figure 9 obtained during optimization

Parameter 
[GPa]

Predefined 
value

Actual  
value

Error 
[%]

C11 130.0 129.5 0.4
C22 110.0 114.7 4.3

The second example of optimized heterostructure, 
although similar to the previous one, is characterized by 
higher anisotropy. The main dimensions of the atomic 
model are shown in Figure 10, while its parameters are 
collected in Table 2.

Fig. 10. The second of the optimized 2H SLMoS2 structures 
with triangular 1T inclusion
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Table 2. Desired and actual properties of the structure 
from Figure 10 obtained during optimization

Parameter 
[GPa]

Predefined 
value

Actual  
value

Error
[%]

C11 150.0 146.3 2.5
C22 120.0 124.6 3.8

Mechanical properties

The following section describes the further, more de-
tailed investigation of the two SLMoS2 nanostructures, 
already obtained as an effect of quantum evolutionary 
optimization.

Mechanical properties and full stress-strain rela-
tions of obtained SLMoS2 heterostructures at non-zero 
temperature were evaluated during the MD simulation 
of the tensile tests. The NPT ensemble with a pressure 
damping coefficient set to 100 fs and a time step equal 
to 0.25 fs was applied. Periodic boundary conditions 
were imposed along the zigzag and armchair directions. 

The proposed simulation of the tensile test is based 
on the subsequent steps:

1. Pre-heating of the atomic model with a constant 
speed of 0.1 K/ps from 0 K to 30 K.

2. Relaxation of the unstrained nanostructure at 30 K.
3. Computation of the time-averaged micro-stress 

tensor σ using the virial theorem (Zhou, 2003):

� � � � � �
�

�
�

�

�
�

�
��1 1

2�
m v v r fi i i ij ij

j i

N

i

N

 (3)

where force fij , acting between atom i and j is 
computed as a derivative of the atomic potential 
energy Ep (using ReaxFF formulation, see Equa-
tion (1)), with respect to the distance vector rij  
(between the same considered atoms):

f
r

r
ij

p ij

ij

E
� �

� � �
�  

(4)

4. Computations of the time-averaged dimensions, 
the volume of the atomic system, and all other 
necessary quantities.

5. Imposition of the finite strain at the chosen direction.
6. Equilibration of the strained atomic lattice at 30 K.
7. Computation of the micro-stress tensor and the 

rest of time-averaged quantities (steps 3 and 4).

Steps 5–7 are repeated until a desired final strain 
or total failure of the structure is achieved. During the 
tensile test, models were stretched with the strain rate 
corresponding to the effective velocity of 10 m/s. 

According to Shengping & Atluri (2004), the at-
omistic stress given by Equation (3) may be reduced 
to the Cauchy stress by neglecting the kinetic part and 
averaging the data necessary to obtain the stress tensor 
from each integration step over the time and geometry. 
A near-zero temperature of the simulation was chosen 
to keep the kinetic energy, and thus the vibrations of the 
atoms, at a low level. All data necessary to obtain stress-
strain curves were averaged every 1000 time steps.

In the case of 2D materials such as graphene and 
SLMoS2, it is more convenient to present the values 
of elastic constants and Young moduli in the force per 
length [N/m] units rather than common stress – force 
per area [GPa] units. It is mainly due to the problem-
atic evaluation of the average effective thickness of 
the single atomic lattice. As reported by Narita et al. 
(2002), especially when a certain 2D material has many 
allotropes, the distance between two or more layers of 
atoms depends on the types of lattices and their mutual 
spatial orientation. The authors of this paper assumed 
the effective thickness of the SLMoS2 lattices, as given 
by Jiang et al. (2013), equal to 6.092 Å, thus the results 
of the tensile tests are expressed in stress units.

The first considered example, the heterostruc-
ture obtained by the proposed quantum evolutionary 
optimization algorithm (as shown in Figure 9) has 
approximate dimensions of 112 Å × 124 Å and con-
tains 4669 atoms. The side dimension of the triangular 
inclusion is equal to 74 Å. The obtained stress-strain 
relations are presented in Figure 11. The armchair 
and zigzag directions refer to the 2H surrounding area 
(see Figures 3 and 5 for details).

Unlike pristine 1T or 2H polymorphs, the inves-
tigated heterostructures reveal anisotropic properties. 
The average values of the Young moduli, roughly esti-
mated on the initial parts (up to several percent) of the 
stress-strain graphs using linear regression, are equal to 
133.4 GPa, and 123.6 GPa, respectively in the zigzag 
and armchair direction. These values are in good agree-
ment with stiffnesses computed using molecular statics 
during optimization run (C11 and C22, as presented in 
Table 1). For comparison: defectless 2H structures have 
a Young modulus in the range of 213 GPa ±50 GPa, 
while ideal 1T lattices – 91 GPa ±7 GPa. The exact val-
ues strongly depend on the method of investigation; see 
Mrozek (2019) for more details.

Regardless of the direction of the applied load, 
SLMoS2 heterostructure starts to behave similarly 
when it is subjected to small deformations (i.e. 0–5%, 
neglecting slightly higher stiffness along a zigzag di-
rection). The differences in the behaviour of the atomic 
model responsible for the failure mechanism begin to 
show under larger strains.
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Fig. 11. Stress-strain relations of the first optimized structure: a) zigzag; b) armchair direction

As shown in Figure 12a, during the elongation 
of the lattice in the zigzag direction, the final dam-
age is initiated by the movements of atoms in the 
privileged slip directions (see Figure 11a, approx-
imately 18–26% of strain). The final failure (Fig-

ure 12b, strain >27%) starts, like the slips, from the 
tip of the 1T inclusion, however the particular place 
of the damage also depends on (random, but scale to 
the desired temperature) distribution of atom’s initial 
velocities.

a) 

   

b)

 
Fig. 12. Deformation of the hetereostructure (replicated four times for better visualisation) along zigzag direction:  

a) slips; b) final damage

a)

   

b) 

Fig. 13. Deformation of the hetereostructure along armchair direction: a) elongated atomic bonds; b) final damage
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In the case of armchair direction, slips in the 2H lat-
tice do not occur. Instead of this, atomic bonds are elon-
gated and softened (as presented in Figure 8a; approx-
imately 12–20% of strain). Unlike the slip mechanism, 
in this case displaced atoms are unable to reach new 
equilibrium positions with a proper number of nearest 
neighbours. Elongated bonds tend to break, and atoms 
are attracted to one of the free boundaries. This phenom-
enon is responsible for the smaller ultimate strain during 
the tensile test in the armchair direction (23% vs. 27%).

The failure begins at the junction of the central 
tip of the inclusion with the rest of the structure (Fig-
ure 13b – A). Such an arrangement, where a small part of 
the triangular 1T lattice is surrounded from two sides by 
a large region of the 2H phase, results in many non-opti-
mally bonded atoms, which can change their position eas-
ily during continuous deformation of the structure. In the 
next step (>23%), a crack is opened at the narrowest dis-
tance between two 1T phase inclusions (Figure 13b – B). 

The second SLMoS2 heterostructure, determined by 
the same optimization algorithm, contains 3371 atoms and 
has approximate dimensions equal to 144 Å × 73 Å and  
the 1T inclusion has the shape of an equilateral triangle 
of dimension 29 Å. Similar to the previous example, 
the armchair and zigzag directions refer to the rectan-
gular 2H surrounding area. The obtained stress-strain 
curves are shown in Figure 14.
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Fig. 14. Stress-strain relations of  
the second optimized structure:  
a) zigzag; b) armchair direction

In this example, estimated values of the Young 
moduli are respectively equal to 155.7 GPa in the zig-
zag direction, and 131.5 GPa along the armchair (com-
pare with the stiffnesses collected in Table 2). The fail-
ure mechanisms which occurred in both directions are 
analogical to those described previously, however the 
increase in ultimate strengths and strains (as compared 
to the first example) are caused by the greater participa-
tion of the stiffer 2H phase.

6. Conclusions

The quantum-inspired evolutionary algorithm permits 
the solution of the optimization problem for two-
phase heterogenous nanostructures. The objective 
function values were determined on the bases of Mo-
lecular Statics analyses in an atomic scale. The opti-
mization problem was formulated as minimizing the 
difference between the given material parameters and 
the values for a given vector of design variables. The 
presented numerical example confirms that the pro-
posed formulation of the optimization problem allows 
for structures to be obtained with a priori given mate-
rial parameters.

Two cases of optimization with predefined me-
chanical properties were considered, and the algorithm 
allowed us to obtain the resulting nanostructures. The 
mechanical properties of the nanostructures were later 
confirmed using Molecular Dynamics simulations. The 
nanostructures behaviour up to the destruction strain 
have been presented and analysed. 

The proposed method of heterogenous nanostruc-
ture optimization has been proven as a promising ap-
proach and can also be applied for other than SLMoS2 
materials in the future. The main drawback of the pre-
sented method is the computation time needed for anal-
ysis due to the atomic level simulations. 
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