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Abstract
Ductile iron is a material that is very sensitive to the conditions of crystallization. Due to this fact, the data on the cast iron prop-
erties obtained in tests are significantly different and thus sets containing data from samples are contradictory, i.e. they contain 
inconsistent observations in which, for the same set of input data, the output values are significantly different.

The aim of this work is to try to determine the possibility of building rule models in conditions of significant data un-
certainty. The paper attempts to determine the impact of the presence of contradictory data in a data set on the results of 
process modeling with the use of rule-based methods. The study used the well-known dataset (Materials Algorithms Project 
Data Library, n.d.) pertaining to retained austenite volume fraction in austempered ductile cast iron. Two methods of rule-
based modeling were used to model the volume of the retained austenite: the decision trees algorithm (DT) and the rough 
sets algorithm (RST).

The paper demonstrates that the number of inconsistent observations depends on the adopted data discretization criteria. 
The influence of contradictory data on the generation of rules in both algorithms is considered, and the problems that can be 
generated by contradictory data used in rule modeling are indicated.
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1. Introduction

Ductile iron, in all its varieties, is the fastest-growing 
replacement for other construction materials in many 
different applications for the parts of machines work-
ing under heavy loads, e.g. agricultural, automotive, 
mining ones (Barbosa et al., 2015; Colin García et al., 
2021; Kochański et al., 2015; Wieczorek et al., 2022). 
Searching for substitutes forces one to answer the fol-
lowing question: can the new material meet the require-
ments of the one used so far? In such situations, the 
best solution is to use a model for forecasting material 
properties as a function of given process parameters or 

selecting the ranges of process parameters as a function 
of the desired product properties.

Building a  generalized model for nodular cast 
iron and for ausferritic cast iron that allows the pre-
diction of properties in a wide range of variability of 
input parameters faces a number of problems resulting 
from the nature of the modeled material itself. Due 
to the nature of cast iron, the obtained test results are 
highly uncertain or contradictory. This also happens 
when the cast iron melts are carried out under labora-
tory conditions.

In many publications, the research results presented 
indicate the sensitivity of cast iron. Even slight changes 
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in the implemented process, such as a slight difference in 
the rate of heat dissipation, may cause significant differ-
ences in the measured values (Dal Corobbo & Arias, 
2009; Wohlfahrt et al., 2010). The work by Dal Corobbo 
& Arias (2009) presents the results of hardness measure-
ments of a ring with an internal diameter of ⌀390 mm 
and an external diameter of ⌀520 mm. Average hardness 
measurements of castings made of the same alloy on the 
inner and outer surfaces differed from 13 HV to 38 HV, 
i.e. from 4.5% to 13%. The influence of heat dissipation 
rate significantly influences the size of the graphite par-
ticles (Wohlfahrt et al., 2010). The samples cut from the 
Y test castings differed significantly in the size of graph-
ite – they measured 25 µm and 32 µm in the lower and 
upper parts of the casting. In the case of alloys with a clear 
tendency to segregation, such as in work (Heydarzadeh 
et al., 2004), cast in massive molds, the average strength 
measured in the upper part and in the lower part of the 
casting in the selected case was 1275 MPa and 1475 MPa 
(reading from the chart included in the publication), i.e. 
it was higher by approx.  15%. The second reason for 
such an uncertainty of the data is the nature and manner 
of carrying out the measurement itself. This obtains, for 
example, in the case of measuring the elongation A5, in 
which a non-metallic inclusion, carbide precipitation or 
bubbles of unobservable size can significantly reduce the 
result value. Examples of such scattered measurements 
can be found in (Olofsson et al., 2011), where at the hard-
ening temperatures of 250°C, 300°C, 350°C and 400°C 
and during 1 h, elongation in the following ranges was 
recorded: 1 – 5%; 3 – 4%; 5 – 10.5% and 7.5 – 10%, and 
for the 2 h time: 1 – 1.5%; 3 – 4.5%; 3 – 7% and 4 – 9%. 
In turn, the measurement of impact toughness is strongly 
determined, among others, by: the place where the sam-
ples were cut (Szykowny et  al., 2010), the orientation 
of the samples (Chawla et al., 2008) and the method of 
sample preparation (Nobuki et al., 2010). The paper by 
Szykowny et al. (2010) shows the influence of the dis-
tance of the notch from the top surface of the mold. Ac-
cording to Chawla et al. (2008), the direction of cutting 
out the impact specimens is important, as crack propaga-
tion always starts with the graphite spheroid, but contin-
ues along the austenite-ferrite boundary. It was shown in 
the work by Nobuki et al. (2010) that despite the much 
lower sensitivity of cast iron, as compared to steel, to 
the notch shape in impact samples, it has, nevertheless, 
a significant influence.

The effect of the sensitivity of cast iron and the un-
certainty of measurements is that the data sets contain-
ing the chemical compositions of the melts, parameters 
of the smelting and heat treatment process, pouring 
parameters and the properties of the obtained castings, 
both in the case of those derived from laboratory ex-

periments and those from industrial research, contain 
numerous contradictions (Kochański et al., 2012).

The fact that there are contradictions in a set, even 
if they are numerous, does not make it impossible to 
build a model. The properties of ductile iron have been 
repeatedly modeled with the use of soft mathematical 
models, but prediction models were usually used such 
as: multiple linear regression, artificial neural networks, 
support vector machine, projection pursuit regression 
(Kochański et  al., 2012; Perzyk & Kochański, 2001; 
Perzyk et al., 2015; Rodríguez-Rosales et al., 2022; 
Wilk-Kołodziejczyk et al., 2018). Less frequently, 
work was undertaken on property modeling with the use 
of rule-creating tools based on the theory of fuzzy sets 
and decision trees (Kochański et al., 2013, 2014; Per-
zyk & Soroczyński, 2008, 2019; Perzyk et al., 2011). It 
seems that an important reason for the use of contradic-
tory algorithms such as, e.g., artificial neural networks 
for sets is their greater ability to generalize, i.e. to ignore 
or eliminate the influence of contradictory observations 
on the model. The fact that rule modeling is less resistant 
to contradictory data should not lead to the abandonment 
of this type of modeling. It has a number of advantages, 
as well as the significant advantage of the easy interpre-
tation of the operation of the model itself.

Therefore, the aim of the work was to try to deter-
mine the possibility of building rule models in condi-
tions of significant data uncertainty, and then to assess 
the predictive capabilities of such models. An addional 
aim was to indicate the risks present in such models.

2. Austempered ductile iron  
database

In this paper, the authors decided to indicate the risks 
arising from the uncertainty of the data in the set used 
for rule models, such as those built with the use of e.g. 
decision trees and the theory of raw sets. For this pur-
pose, a generally available set was used, containing the 
chemical compositions of melts and the amount of re-
sidual austenite in the structure of cast iron after heat 
treatment (Yescas et al., 2001). The data file is available 
online on the MAP website (Materials Algorithms Proj-
ect Data Library, n.d.).

The collection was created as a  database of re-
search results from many scientific works. As de-
scribed, the collection contains 1910 observations from 
research results and experiments published in peer-re-
viewed scientific journals. The data in the file was 
saved in 12 (11 + 1) columns containing: 

	– chemical composition – 6 elements: Carbon, Silicon, 
Manganese, Molybdenum, Nickel, Copper [wt%];
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	– four heat treatment parameters: austenitising tem-
perature [°C]; austenitising time [min], austem-
pering temperature [°C], austempering time [min];

	– retained austenite volume fraction [%];
	– the reference (source of data). 

Table 1 shows the correlation coefficients between 
the input variables and Figure 1 shows selected pairs of 
variables. The highest value of the correlation coeffi-
cient was observed for the pair: austempering tempera-

ture – the amount of residual austenite, and the lowest 
for the pairs molybdenum – austempering time and 
carbon – molybdenum. They are respectively: 0.350 
and 0.0008 and 0.0036. The table also shows five pairs 
with a  correlation coefficient modulus in the range 
0.25–0.28. The above may prove the independence of 
the input variables, but it is not sufficient proof.

The graphs of the pairs of variables shown in Fig-
ure 1 illustrate the even distribution of observations in 
terms of the variability of parameters.

Table 1. Correlation coefficients of the input and output variables

C Si Mn Mo Ni Cu T 
austenit.

t 
austenit.

T 
austemp.

t  
austemp.

Ret_
aust

C 1.0000 −0.1109 −0.1127 −0.0036 −0.1296 −0.2760 0.1531 −0.0113 −0.0304 −0.0337 −0.0589
Si – 1.0000 −0.2594 −0.0727 −0.0385 0.2488 0.1045 −0.0599 0.0502 0.0086 0.0840

Mn – – 1.0000 −0.0872 −0.1286 −0.2572 −0.1078 −0.0084 −0.0798 0.1002 0.0891
Mo – – – 1.0000 −0.0287 −0.0539 −0.1130 0.1999 −0.0599 0.0008 −0.1042
Ni – – – – 1.0000 0.2650 0.0314 −0.1699 −0.0483 0.0217 0.1030
Cu – – – – – 1.0000 0.0408 −0.0297 0.0638 0.0227 0.1511

T austenit. – – – – – – 1.0000 0.0258 0.0102 −0.0309 0.2547
t austenit. – – – – – – – 1.0000 −0.1259 −0.1507 −0.0987

T austemp. – – – – – – – – 1.0000 −0.0252 0.3500
t austemp. – – – – – – – – – 1.0000 −0.1999
Ret_aust – – – – – – – – – – 1.0000

Fig. 1. Distribution of variability of pairs of input variables: a) silicon – manganese; b) molybdenum – copper;  
c) manganese – nickel; d) silicon – molybdenum

a) b)

c) d)
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In order to confirm this observation, tests of inde-
pendence were performed for pairs of variables. Fig-
ure 2 shows the distribution of the variability of the pair 
of variables with the highest correlation coefficient, 
Autemperization temperature vs Residual austenite 
content, equal to 0.35. 

For a pair of variables, the null hypothesis of the 
independence of variables was verified using the χ2 test 
(chi-square test). An alternative hypothesis was the de-
pendence of the variables in the discussed set. Figure 3 
presents a  contingency table for the variables of aus-
tempered temperature and retained austenite.

Fig. 2. Distribution of variability of pairs of input variables: austempering temperature – retained austenite
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11 0.0 0.1 0.7 0.9 2.0 7.7 0.3 0.0 3.4 0.0 0.2
10 0.2 0.4 0.5 4.0 9.4 0.3 2.2 0.4 9.5 0.2 5.1
9 0.4 0.9 2.4 4.9 15.6 12.7 4.3 2.9 2.9 0.3 0.0
8 1.0 2.3 9.3 16.8 38.7 0.4 26.1 5.7 17.4 1.6 3.1
7 1.1 0.1 10.7 3.4 14.8 4.4 1.3 14.8 3.5 1.1 0.4
6 1.1 2.6 7.5 0.3 7.5 2.0 10.2 3.7 3.7 1.1 1.1
5 0.0 3.5 0.6 5.5 13.1 0.5 1.0 5.3 7.0 0.0 0.2
4 1.0 0.2 7.7 33.6 18.5 4.4 14.4 11.8 4.1 0.9 0.2
3 1.1 3.1 21.9 0.1 40.2 7.3 10.0 2.5 14.4 0.9 0.7
2 9.0 0.2 26.6 0.0 10.6 0.1 15.2 1.3 0.9 0.5 0.2
1 0.4 1.0 0.2 0.0 0.0 2.3 0.1 3.7 17.2 0.4 0.3

639.3
1 2 3 4 5 6 7 8 9 10 11

Austempered temperature (equal – width discretization)

Fig. 3. Contingency table  for pairs of variables: austempered temperature and retained austenite

The value of the test statistic is 639.3 (shown in 
Figure 3, in the lower left corner), which supports the 
rejection of the hypothesis of independence of vari-
ables in the study set. 

The analysis of the data gathered in the base (Yes-
cas et al., 2001) showed that a number of observations 
are contradictory. Examples of such data are shown 
in Table 2 and in Table 3. The contradictions concern 
both obtaining different values of the output variable 
(amount of retained austenite) for the same values of 
the input variables, and the same value of the output 

variable (amount of austenite) for different values of 
one input variable (austempering time). The first situ-
ation is shown in the example of pairs of observations 
1151 and 1166, as well as 63 and 72 (in this case, the 
differences in the chemical composition are negligibly 
small, within the limits of the measurement error) from 
the set, as shown in Table 2. The second type of con-
tradiction, in which for pairs differing in the value of 
one input variable, the same output variable value was 
recorded, is shown in Table 3 on the example of obser-
vations 1803 and 1804 and 1572, 1577 and 1580.
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Table 2. Examples of contradictory observations recorded in the collection; contradictory data of the first type (Yescas et al., 2001)

No. of 
observ.

C Si Mn Mo Ni Cu Austenitising 
temp./time

Austempering 
temp./time

Amount 
of retained 
austenite

% % % % % % °C min °C min %
… … … … … … … … … … … …

1151 3.81 2.54 0.347 0.323 1.545 0.113 871 120 316 840 34.6
1166 3.81 2.54 0.347 0.323 1.545 0.113 871 120 316 840 20.3
… … … … … … … … … … … …
63 3.49 2.68 0.00 0.00 0.96 0.00 900 60 375 240 26.2
72 3.46 2.73 0.00 0.00 0.95 0.00 900 60 375 240 19.1

Table 3. Examples of contradictory observations recorded in the set of type II contradictory data (Yescas et al., 2001)

No. of 
observ.

C Si Mn Mo Ni Cu Austenitising 
temp./time

Austempering 
temp./time

Amount 
of retained 
austenite

% % % % % % °C min °C min %

… … … … … … … … … … … …

1572 3.80 2.77 0.037 0.00 0.07 0.33 950 120 300 5 23.3

1577 3.80 2.77 0.037 0.00 0.07 0.33 950 120 300 120 23.3

1580 3.80 2.77 0.037 0.00 0.07 0.33 950 120 300 720 23.3

… … … … … … … … … … … …

1803 3.50 2.65 0.40 0.30 1.60 0.55 871 120 260 90 21.4

1804 3.50 2.65 0.40 0.30 1.60 0.55 871 120 260 120 21.3

In the set, 34 pairs of observations of the first type 
of contradiction were found, i.e. different values of 
the output variable with the same values of the input 
variables. In the case of 10 pairs of observations, the 
difference in the measured content of retained austen-
ite exceeded 15% of the measured value. This type of 
contradiction accounts for 2% of the recorded obser-
vations. 206 pairs were identified in the set  involving 
observations with a  contradiction of the second type, 
i.e. differing in the value of one input variable with the 
same output value. This contradiction concerned only 
three variables: austenitization temperature, austemper-
ing temperature and austempering time and occurred in 
18, 20 and 168 cases respectively. In total, this accounts 
for 10.7% of registered observations. It should be noted 
that the two types of contradictions mentioned do not 
characterize all of the possible contradictions present 
in the dataset.

3. Data preparation

According to Grzegorzewski & Kochański (2019, 
p. 29): “Obtained raw data should not be included into 
essential inference without their cross-examination. 

This step, called data preprocessing, is necessary to 
examine whether data are genuine or faked, to detect 
possible measurement errors, recording errors and out-
liers, to test validity of prior information, to get rid of 
irrelevant or redundant information and so on”. The po-
sition of the data preparation task in the whole analysis 
process is shown in Figure 4.

 
Fig. 4. Structure of data analysis (Grzegorzewski 

& Kochański, 2019)

b)
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The collected data was subjected to minimal 
preparation, which did not affect the inconsistencies in 
the dataset. As the aim was to analyze the impact of data 
contradiction on the rule model, it was decided that only 
outliers should be removed from the set. The distribu-
tions of the input and output variables were analyzed. 
Figure 5 shows two exemplary distributions: austeniti-
zation temperature and the amount of retained austenite. 
Tukey’s tests were performed for the analyzed variables. 

The analysis of the distribution of variables showed that 
outliers were detected in two variables: the input vari-
able, i.e. the austempering time, and the output variable, 
i.e. the amount of retained austenite. In the case of the 
first variable (austempering time), the observations 
with times shorter than 5 and longer than 4,320 minutes 
(corresponding to a heat treatment exceeding 72 hours) 
were removed from the set, as shown in Figure 6 (values 
indicated by green arrows).

    

Fig. 5. Distribution of variables: a) austenitization temperature; b) amount of retained austenite in the original dataset

Fig. 6. Time of austempering in order from the largest to the smallest (green arrows indicate outliers,  
removed from the dataset in further analyzes)

After removing outliers for a given austempering 
time from the set of data, logarithmic normalization 
was performed, changing the variability range from 
the range 5–4320, to the range 0.699–3.635. The dis-
tribution of the original data showed a huge data den-
sity for times ranging from 5 to 435 [min], as shown 

in Figure 7a. After nonlinear logarithmic normaliza-
tion, a  uniform distribution was obtained, as shown 
in Figure 7b. The Shapiro–Wilk test performed on 
the transformed data did not allow for the rejection of 
the hypothesis with a normal distribution (for signifi-
cance α = 0.05).

a) b)
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Fig. 7. Distribution of the variable austempering time: a) originally data [min]; b) after logarithmic normalization

4. Discretization methods

All input and output variables were discretized in the 
dataset. Three methods of data discretization were 
used in the research. Two of them are the most com-
monly used discretization methods: equal width (W) 
and equal depth (D). The third, equally widely used, 
uses the k-means (k) cluster analysis algorithm. All 
methods require the number of intervals to be arbi-

trarily indicated. In the first two methods, discretiza-
tion was made with the assumption of division into 
three, five and seven intervals. They were used to split 
the output variable. However, in the k-means method, 
using the cost function being the mean value of the 
observation distance from the centroid, discretization 
was performed for the suggested number of intervals. 
Examples of the split cost functions for the variables: 
Mn and Mo are shown in Figure 8. For the manganese 

a)

b)
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content in accordance with the adopted criterion, the 
number of intervals equal to 7 was chosen as the op-
timal, as shown in Figure 8a, while for molybdenum, 
the value of 5 was chosen, as shown in Figure  8b. 

The k-means method was used to divide both the input 
and output variables.

Table 4 presents a summary of the optimal number 
of intervals for the input parameters.

 
Graph of Cost Sequence

Best number of clusters: 5
k-Means

2 3 4 5 6

Number of clusters

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

C
lu

st
er
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os

t

Fig. 8. Cost function for dividing the content of: a) manganese for the number of discretization intervals from 2 to 8;  
b) molybdenum for the number of intervals from 2 to 6

Table 4. Discretization of input signals using the k-means method according to the cost function

Elements Process parameters

C Si Mn Mo Ni Cu
austenitization austempering

temp. time temp. time
No. of classes 6 3 7 5 4 6 6 6 4 8

a)

b)
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For the output variable, i.e. the amount of retained 
austenite, the division into 11 intervals was established 
for the adopted selection method (cost curve), as shown 
in Figure 9.

After the discretization of the input variables, 
the first type of contradiction was revealed (different 
values of the output variable for the same set of input 
data). For the analyzed set, examples of such contra-

dictions resulting from data discretization are presented 
in Table 5. The left part of the table shows the values 
of the input variables discretized and the column Re-
tained_austenite shows the values of the output vari-
able, i.e. the amount of the residual austenite. The right 
part of the table shows the classes to which the output 
variable has been assigned, depending on the selected 
discretization method.

Fig. 9. Cost curve for the output variable – amount of restained austenite

Table 5. Selected records after discretization creating uncertainty

No.
k-means optimal division (individual for each parameter)

Ret_
aust

Equal 
width

Equal 
depth k-means k-means

C Si Mn Mo Ni Cu T
austenit.

T
austenit.

T
austemp.

log 
(t austemp.) 3 5 7 3 5 7 3 5 7 11

1 6 1 5 4 4 1 2 4 1 8 16.4 1 2 3 1 2 2 1 2 2 3

2 6 1 5 4 4 1 2 4 1 8 20.3 2 3 4 2 2 3 2 2 3 4

3 6 1 5 4 4 1 2 4 1 8 21.6 2 3 4 2 2 3 2 3 3 4

4 6 1 5 4 4 1 2 4 1 8 22.6 2 3 4 2 3 3 2 3 3 4

5 6 1 5 4 4 1 2 4 1 8 34.6 3 4 5 3 4 6 3 4 5 8

6 6 1 5 4 4 1 2 4 1 8 35.1 3 4 5 3 5 6 3 4 5 8

Table 6 shows the numerical description of the 
data uncertainty in the database for the discretization 
of the output variable the content of residual austenite 

using the k-means method with the number of intervals 
equal to 11. After removing outliers, 1,698 observations 
remained in the database, including 1,161 observations 
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distinguishable in terms of input. A unique, single val-
ue for output occurred for 1,098 observations, 929 of 
which were distinguishable. This means that 64.66% of 
the observations are consistent observations.

Table 6. The number of occurrences in the database of 
contradictory and non-contradictory observations

No. of predicted 
classes

No. of 
cases

No. of 
observations

Percentage of 
observations [%]

1 929 1098 64.66
2 188 446 26.27
3 43 150 8.83
4 1 4 0.24

05–11 0 0 0

There were contradictions in 35.34% of the ob-
servations in the database. Two different classes of 
output occurred in more than 26% of the cases (see 
cases with number 1151 and 1166 in Table 2). For 
43 observations, the digitized baseline variable was 
assigned to three classes (e.g., in the case shown in 
Table 5). In the case of one set of input variables, the 
output variable assumed four different values. No cas-
es were found with an output variable assigned to 5 or 
more classes.

Table 7 presents a summary of the impact of all se-
lected methods of discretization of the output variable 
on the set contradiction. For the analyzed dataset, in the 
corresponding divisions into 3, 5 and 7 classes, discreti-
zation of equal width is the least contradictory.

Table 7. The number of output classes covered by the distinguishable input record for all output variable discretization methods

Discretization 
methods

The number of output classes covered by the distinguishable input record

1 2 3 4 5 6 7 8 9 10 11

Equal
width

3 1053 104 4 – – – – – – – –

5 1004 144 13 0 0 – – – – – –

7 982 153 26 0 0 0 0 – – – –

Equal
depth

3 1,039 116 6 – – – – – – – –

5 1001 142 17 1 0 – – – – – –

7 948 185 27 1 0 0 0 – – – –

k-means

3 1050 104 7 – – – – – – – –

5 987 158 16 0 0 – – – – – –

7 958 172 31 0 0 0 0 – – – –

11 929 188 43 1 0 0 0 0 0 0 0

5. Rule modelling

Two different methods of rule modeling were used 
in the work. The first one uses the decision tree algo-
rithm (DT) and the second one is based on the rough 
set theory (RST). In order to compare the effectiveness 
of the methods, in both cases, modeling was performed 
using all previously discussed discretization methods. 
Both selected methods of rule-based modeling are com-
monly known and used, but, importantly, they work in 
a different way.

Decision trees are non-parametric classification 
models, built on the basis of data collected in a  set, 
thanks to the division of the set into smaller subsets. 
Starting from the entire set, it is divided in such a way 
that the obtained subsets of the values of the classes of 
decision variables are as homogeneous (preferably iden-
tical) as possible. The division is done using one of the 

variables called the breaking variable. The partitioning 
procedure is repeated for the resulting subsets, resulting 
in a tree-like structure of the model. The points of divi-
sion are called nodes. The subsets that are no longer sub-
divided, called leaves, are the results of the classification 
(the decision class which predominates in such a subset 
decides). Generally, tree construction requires a limited 
degree of detail. This is done either in the tree-building 
phase (e.g. by imposing a minimum number of exam-
ples on a  node) or in the procedure of simplifying an 
already generated, excessively large tree (the so-called 
pruning). There are many algorithms for generating (in-
ducing) decision trees, differing in terms of the criterion 
for assessing the homogeneity of classes when divided at 
a node and the criterion of the degree of detail, i.e. tree 
expansion. Note that any tree path from the root to the 
leaf of the tree can be written as a logical rule. Decision 
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trees also allow for the assessment of the relative signif-
icance of attributes, based on the so-called cleanliness 
of the divisions in the nodes. The greater the increase 
in class homogeneity in the subsets of data obtained as 
a result of division with the use of a given variable, the 
greater its relative importance.

Generating rules using the rough set theory re-
quires that not only the result variables, but also the 
attributes assume discrete values, i.e. nominal or ordi-
nal values. Each distinguishable example is essentially 
a rule. The set of rules obtained in this way can usual-
ly be reduced or the rules appearing in it can be simpli-
fied (i.e. the conditional part may be shortened). This 
is done by deleting the attributes that do not contribute 
anything to the classification, i.e. after the omission of 
which the rule still indicates the same class of the re-
sult value (for all records present in the database). The 
rules are assessed primarily in terms of the uniqueness 
of the classification expressed by the so-called reliabil-
ity of the rule. This parameter is defined as the ratio 
of the number of examples in which there is a given 
combination of attribute values and at the same time 
a given output class to the number of all examples in 
which this combination of attribute values occurs (i.e. 
also those in which the output class is different). Anoth-
er rule evaluation parameter is the number (share) of 
examples corresponding to a given rule in the training 
set, called rule support. If it is not possible to obtain 
rules with 100% likelihood from the data set, then less 
explicit rules are used, usually assessed on the basis of 
a combination of reliability and support or other, more 
complex criteria. The rough set theory also makes it 
possible to easily assess the significance of individu-
al attributes, based on the assessment of reducing the 
uniqueness of the classification by omitting a given at-
tribute in all rules.

Models DTs were obtained using Statistica 
ver.  13.3 commercial software package. Various 
splitting conditions, stopping criteria and pruning 
parameters were tried out. RST procedure, oriented 
at generation of a full set of rules, was written by the 
present authors with a somewhat similar approach as 
used in the Explore algorithm (Stefanowski & Van-
derpooten, 2001).

The differences in the operation of both algo-
rithms were revealed in the rules obtained for the 
modeled set. The operation of the decision tree al-
gorithm makes it possible to build rules in which the 
same variable is taken into account many times. This 
means that the same variable can be used in several 
nodes as a split criterion. An example of such a rule, 
obtained for the analyzed set, is shown in Figure 10. 
In the rule described by nodes 1, 2, 5, 15, austeniti-
zation_temperature (T_aust) was used twice as the 
division criterion. 

Rule modeling for contradictory sets with the use 
of two modeling methods showed two significantly dif-
ferent solutions in terms of the quality of the obtained 
rules.

For the division of the output variable into three 
classes, the shortest rules were obtained for modeling 
using RST. For an exit class of 2, eight rules with two 
arguments were obtained. All these rules, presented in 
Table 8, had 100% support. For example:

If Mn = 2 and T_austenit = 5 than Ret_aust = 2

However, for decision trees, the shortest rule con-
sisted of three arguments:

If T_austemp ≤ 1,5 and T_austenit ≤ 2,5 and Ni ≥ 
2,5 than Ret_aust = 2

Table 8. A set of binary rules with 100% support (discretization methods: equal width, 3 classes, W3)

C Si Mn Mo Ni Cu
Austenitization Austempering Ret_aust 

(W3)temp. time temp. log(time)

– 3 – – – – – – 1 – 2

– – – – – – 1 – – 1 2

– – – – – – 1 – – 2 2

2 – – – – – – – – 1 2

– – 2 – – – 5 – – – 2

– – – – – – – 3 – 2 2

– – – – – 4 – – – 7 2

1 – – – – – – – – 4 2
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Figure 11 shows the results obtained from the de-
cision tree and rough set theory rules when dividing the 
output variable into three classes.

In the case of discretization of the output value 
into three intervals, the levels of correct predictions 
are close to each other and fluctuate around 70% for 
the decision tree (see Fig. 11a). This happens regard-

less of whether the discretization was done using the 
equal width, equal depth or k-means method. The 
differences in the proportion of correct predictions 
cannot be directly explained by the size of the indi-
vidual classes (shown in Table 9) or the number of 
conflicting observations in the class (shown in Fig-
ure 12).

Fig. 11. Correct class prediction rules for dividing the output variable into 3 classes by: a) DT; b) RST

Table 9. The number of observations in each class for the three methods of discretization of the set into 3 classes

Discretization method
equal width equal depth k-means

No. of 
classes

1 391 566 431
2 837 566 687
3 470 566 580

Fig. 12. Percentage of non-contradictory observations in individual classes for three discretization methods (for 3 classes)

b)

a)
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Table 10 presents the results of the prediction distri-
bution of models based on DT and RST on the example of 
a set with the division of the output variable into 3 class-
es. The results clearly show that the model based on RST 
makes more accurate predictions, which translates into the 
number of correct predictions (diagonal values marked in 
bold). This is due to the fact that the decision tree mod-
el induces rules with greater coverage but less accuracy, 
while the model based on RST makes more precise pre-
dictions at the expense of the number of induced rule sets.

Table 10. Prediction accuracy table for DT and RST  
on the example of a set divided into 3 classes – equal width

 
Predicted

RST DT
1 2 3 1 2 3

O
bs

er
ve

d 1 373 17 1 269 103 19
2 47 783 7 98 600 139
3 5 39 426 21 64 385

In the case of RST modeling, the percentage of 
correct predictions is higher and fluctuates around 90% 
(see Fig. 11b).

Figure 13 shows the results of prediction by deci-
sion tree rules for the remaining discretization methods, 
i.e. for the division into 5 and 7 classes by methods of 
equal width, equal depth and k-means. Compared to the 
division into three classes, there is a significant varia-
tion in the number of correct predictions. The maxi-
mum value of correct predictions occurred for class 4, 
divided into 5 classes using the equal width method, 
and amounts to 78%. On the other hand, the lowest 
values of correct predictions, oscillating around 20%, 
were observed for all the right methods with the divi-
sion into 7 classes and for the equal width method with 
the division into 5 classes. Such low values were not 
observed when dividing by methods of equal depth and 
k-means into 5 classes. For these methods, the lowest 
values exceed 45%, and the mean value of correct pre-
dictions exceeds 50%.

 

Fig. 13. Correct class prediction with decision tree rules (DT) for dividing the output variable  
into 5 (a) or 7 (b) classes using three discretization methods

Figure 14 shows the predictions of DT and RST 
models for the set of 11 k-means. There is a visible ad-
vantage of the RST model over the DT model in terms of 
the correctness of prediction of the output variable. The 
lowest value of predicting the output variable using the 
RST model was obtained for class 9, and it was 71%, 

while for the DT model it was 0% for class 10. This 
means that using the DT model no prediction indi-
cating class 10 was obtained. This transpired despite 
the fact that there were 57 observations for class  10 
in the discretized dataset. In the case of predicting the 
remaining classes, the results were twice as bad for  

b)

a)
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the DT model. The exception is class 11, where the pre-
dictions are at a comparable level and amount to 88% 
for the RST method and 80% for the DT method.

The summary results for all sets of the correctness 
of predicting the output variable for all sets are present-
ed in Table 11. The clearly better model is one based on 
the rough sets theory. It is characterized by a smaller 
mean prediction error for each class in each set com-

pared to the DT model. For the DT model, no correla-
tion was observed between the correctness of the pre-
diction and the degree of inconsistency. For RST rules, 
a  trend was detected that the more inconsistencies in 
the data set, the worse the model’s prediction. In addi-
tion, note that the RST model based on rule evaluation 
measures does not omit any class. Such a phenomenon 
was observed for the DT model.

Fig. 14. Correct class prediction with RST and DT rules for 11 k-means

Table 11. Correct predictions of rule models for data sets for individual classes of the output variable [%]

Model Output 
classes

Name of the data set
equal width equal depth k-means

3 5 7 3 5 7 3 5 7 11

DT

1 69 45 38 72 71 73 67 45 38 49
2 72 57 59 67 48 30 66 51 65 59
3 82 60 50 73 47 54 84 51 56 34
4 – 78 51 – 51 23 – 75 29 46
5 – 22 61 – 68 43 – 52 59 36
6 – – 50 – – 33 – – 24 28
7 – – 17 – – 65 – – 61 16
8 – – – – – – – – – 17
9 – – – – – – – – – 46
10 – – – – – – – – – 0
11 – – – – – – – – – 80

RST

1 95 88 95 97 97 98 96 95 93 97
2 94 91 91 88 89 85 92 89 87 92
3 91 89 85 90 82 85 91 84 87 85
4 – 89 87 – 87 78 – 89 82 82
5 – 85 88 – 90 85 – 86 85 80
6 – – 85 – – 79 – – 82 82
7 – – 83 – – 86 – – 84 78
8 – – – – – – – – – 79
9 – – – – – – – – – 71
10 – – – – – – – – – 82
11 – – – – – – – – – 88
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6. Summary

In the conducted research, a data set containing indus-
trial-type data was used, having all the features of such 
a set, including a significant level of uncertainty result-
ing from contradictory data. The conducted research 
showed that, despite the presence of contradictory data 
in the data set, rule-based modeling is possible, howev-
er, the obtained models may be characterized by a high 
number of erroneous predictions. This is shown in Fig-
ure 15, and the summary of numerical data is presented 
in Table 12. The presented summary results show that:

	– no statistically significant difference was observed 
in the case of contradictory sets in the impact of 
the discretization method (equal width, equal depth, 
k-means) on the quality of the rules generated;

	– the RST method turned out to be significantly better 
than the rules obtained by the decision tree method;

	– in the RST method, a  correlation was observed 
between the degree of class contradiction and the 
quality of the rules.

In the case of the analyzed database, the higher 
quality of RST rule predictions results from:

	– generating shorter rules – the shortest RST rules 
contained two attributes, while the decision tree 
rules had three;

	– a higher number of correctly predicted classes of 
the output function – for all types of discretization 
the correct predictions exceeded 70% for RST, 
while for decision trees the average predictions 
oscillated around 50%;

	– ability to predict all classes of output functions – 
RST rules provided for all classes of output 
functions regardless of the type of discretization, 
while in the case of discretization of 11 classes 
using the k-means method, decision trees omitted 
one class.

In addition, decision trees generate rules that are 
either unsupported or inconsistent with the data, as also 
shown in (Perzyk & Soroczyński, 2019). The paper 
shows that contradictory data in rule-based modeling 
does not lead to a weak or incorrectly predicting model, 
but to the lack of a model for specific cases (meaning 
no predictions at all, for specific ranges of output vari-
ability). 

It should be noted that a  significant impact on 
the quality of the predicted rules was observed in both 
modeling methods, both by the discretization method 
and the number of classes. It is therefore important to 
work on defining the minimum number of decision 
classes to keep the rules short, making it easier to ana-
lyze the process.

Fig. 15. Number of cases with erroneous predictions obtained by both rule generation methods

Table 12. Number of observations with error predictions for all output function discretization methods

Modeling method
Name of the dataset – dicretization method

equal width equal depth k-means
3 5 7 3 5 7 3 5 7 11

DT
medium error [%] 26 40 49 29 43 54 28 44 52 63
no. of erroneous 444 682 826 500 731 924 468 743 885 1070

RST
medium error [%] 7 11 13 8 11 15 7 12 14 17
no. of erroneous 116 186 215 138 187 254 127 203 245 293
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7. Conclusions

The analysis of the DT and RST models built using 
a dataset containing a significant percentage of uncer-
tain data showed that in the case under study: RST 
generates shorter rules than DT and DT bypasses the 

classes in the set and may not create a rule even if the 
class has a significant percentage in the database.

In order to generalize the presented conclusions, it 
is necessary to conduct similar analyzes using generat-
ed synthetic databases and industrial databases contain-
ing a significant percentage of uncertain data.
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