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Abstract 
In the production of beverage cans, “short can” defects in the form of material discontinuities can occur during the deep draw-
ing of cylindrical thin-walled aluminium products. These defects have a significant impact on production efficiency and scrap 
generation, and their occurrence is influenced by material and process properties. To determine the main influence of material 
on defect occurrence, two approaches were used: deterministic analysis of mechanical properties and microstructure, as well 
as statistical processing of production data using decision tree models. The latter approach was found to be more efficient, and 
a numerical tool was developed based on this approach to predict and reduce defect occurrence in the production process.

Keywords: short can, deterministic, analysis, statistical methods, predict, defect, reduce, decision trees

* Corresponding author: wojciech.baran@canpack.com 
ORCID ID’s: 0000-0001-7368-1255 (W. Baran), 0000-0001-8080-2254 (K. Regulski), 0000-0001-9556-2345 (S. Kąc), 0000-0002-
6266-2881 (A. Milenin)
© 2023 Authors. This is an open access publication, which can be used, distributed and reproduced in any medium according to the 
Creative Commons CC-BY 4.0 License requiring that the original work has been properly cited.

1. Introduction 

Aluminium cans have been a cornerstone of the bev-
erage industry for over half a century. Since the intro-
duction of the first aluminium can by the Coors Brew-
ing Company in 1959, major beverage companies like 
PepsiCo and Coca-Cola have also adopted aluminium 
cans. Over time, advancements in aluminium beverage 
can manufacturing technology have resulted in an ef-
ficient and cost-effective process. The lightweight na-
ture and recyclability of aluminium cans make them an 
environmentally friendly choice (Stewart et al., 2018). 
Additionally, aluminium cans help preserve the fresh-
ness of beverages and prevent spoilage, making them 
particularly suitable for carbonated drinks.

Manufacturing companies in the can production 
industry strive to optimize their processes, including 

minimizing the production of defective products. Even 
a  one percent decrease in spoilage can save millions 
of products annually for a  typical beverage can line. 
As a result, identifying the significant factors or com-
binations of factors that lead to the highest number of 
defective products is crucial.

The production process of aluminium cans in-
volves several stages, including rolling aluminium 
sheets, deep drawing to form can bodies, separately 
forming can tops and bottoms, and attaching them to 
the can body through seaming (Folle et al., 2008). De-
spite technological advancements, minimizing defects 
remains a challenge in the manufacturing of aluminium 
beverage cans.

Previous studies have used deterministic approach-
es to investigate the impact of various process param-
eters on workability, force, and defects in aluminium 
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beverage can production. For example, Chang & Wang 
(1997) examined the influence of tool angles, thickness 
reduction, and friction on deep drawing, while Folle et al. 
(2008) investigated the impact of friction coefficient, 
ironing angles, material hardening, and punch-ironing 
clearance on pressing force. Other studies have anal-
ysed the effect of temperature, lubrication, and material 
parameters on the production process (Gao et al., 2009; 
Rękas et al., 2014a, 2014b; Schünemann et al., 1996; 
Simões et al., 2013; Venkateswarlu et al., 2010; Wędry-
chowicz et al., 2021).

However, practical analyses of the effect of work-
piece parameters on formation defects in the real techno-
logical process are currently lacking in the literature. This 
study aims to address this gap by examining two different 
approaches, deterministic and statistical, for minimizing 
defects in aluminium beverage can production.

Beverage can production lines have the capacity 
to produce a significant number of cans per minute, re-
sulting in millions of cans per day and billions per year. 
Even a small reduction in spoilage can yield substantial 
savings when considering the global scale of produc-
tion lines. However, identifying the significant factors 
or combinations of factors that contribute to defect for-
mation is a challenging task due to the numerous vari-
ables involved.

Defects can occur at various stages of the produc-
tion process, including cup operation, redrawing and 
drawing operations, and during the formation of the 
bottom of the can. One of the most common defects 
during the horizontal press operation is the loss of ma-
terial continuity known as “ironings.” This defect can 
lead to the rupture of the can wall, resulting in a “short 
can” with a  reduced height compared to a  full-value 
product (see Fig. 1).

Fig. 1. Normal can (left) and the analysed defect –  
a “short can” (right)

This study takes a different approach by compar-
ing deterministic and statistical methods for minimiz-
ing defects in aluminium beverage can production. 
The deterministic approach involves analysing the 
plasticity, microstructure, and material properties of 
aluminium sheets through tensile tests. The statistical 
approach involves processing data from the produc-
tion process using decision tree models. By compar-
ing these two approaches, the authors aim to deter-
mine which method is more effective in predicting 
and reducing defects.

The use of statistical methods in industrial pro-
cesses has gained popularity in recent years. Rodrí-
guez et al. (2016) employed decision tree models to 
predict roughness in face milling and found them to 
be more accurate than traditional regression analysis 
methods. Similarly, Baran et al. (2022) explored the 
use of a decision tree model to predict defects in alu-
minium can production. However, their study lacked 
a comparison between the decision tree model and de-
terministic methods, making it difficult to determine 
the optimal approach.

In recent years, research has focused on both 
deterministic and statistical approaches to minimize 
defects in aluminium can production.

Deterministic methods involve analysing materi-
al properties, process parameters, and microstructure 
of aluminium sheets, while statistical approaches in-
volve processing production process data using deci-
sion tree models.

The goal of this study is to compare the effective-
ness of deterministic and statistical approaches (deci-
sion tree model) in minimizing the “short can” defect in 
aluminium beverage can production. By understanding 
the complex interplay between material and process 
properties, the study aims to develop new techniques 
for defect reduction and improve the overall quality of 
aluminium beverage cans.

In summary, aluminium beverage cans play a sig-
nificant role in the beverage industry, and their manu-
facturing process has undergone continuous advance-
ments. Minimizing defects in production is crucial for 
cost savings and maintaining product quality. While 
previous studies have explored various factors and 
methods for defect reduction, practical analyses of 
workpiece parameters in the real technological pro-
cess are lacking. This study bridges this gap by com-
paring deterministic and statistical approaches, aiming 
to determine the most effective method for minimiz-
ing defects in aluminium beverage can production. By 
achieving this objective, the study aims to contribute to 
developing techniques that enhance aluminium bever-
age cans’ quality and reliability.
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2. Material and methods

2.1. Material 

To analyse the relationship between material parameters 
and jam occurrence in beverage can production, it is cru-
cial to consider the type of material used. In this industry, 
the predominant material is aluminium alloy from the 3xxx 
series, specifically the 3104 alloy in the H19 temper. This 
temper is defined as strain-hardened extra hard material ac-
cording to the PN-EN 515:1996 standard. Aluminium coils 
typically have a thickness range of 0.260–0.235 mm and 
are supplied as rolled coils. All coils must meet the speci-
fications outlined in the Draw and Wall Ironing (DWI) can 
technology norms. Table 1 shows the nominal chemical 
composition of the 3104 aluminium alloy in the H19 temper.

Table 1. The nominal chemical composition of aluminium 
alloy 3104 in the H19 temper, according to EN 573-3:2009 [%]

Si Fe Cu Mn Mg Zn Ti
0.6 0.8 0.05–0.25 0.8–1.4 0.8–1.3 0.25 0.1

2.2. Aluminium beverage cans  
production technology 

Several authors, including Wędrychowicz et al. (2021) and 
Baran et al. (2022), have described the production stages 
of aluminium beverage cans. The process begins by pull-
ing a  coil from an uncoiler, lubricating it, and feeding it 
to a cupper press. Next, a disc is cut from the coil, drawn 
into a cup using draw pad tools, and then further drawn into 
a can on the bodymaker machine. The can is then washed, 
coated with various chemicals and dried. The decorator ma-
chine is used to cover the can with lithography, lacquer, and 
dry it in a pin oven. The internal surface of the can is then 
sprayed and dried. The can is necked, flanged, and checked 
for quality, and then packed and prepared for transportation 
to the brewery. Meanwhile, on a separate production line, 
the lid is prepared, which is later closed with the can after 
cleaning and filling at the brewery plant.

This article specifically focuses on the early stag-
es of the process, specifically the bodymaker machine, 
where the tool pack is responsible for reducing the di-
ameter and side wall thickness of the cup while increas-
ing the height of the can. 

2.3. Tensile test for deterministic analysis of  
ductility 

To perform a deterministic analysis of the possibility of 
“short can” defects, tensile studies were conducted on 

samples while observing the samples fracture surfaces 
through a scanning microscope (SEM). The methodol-
ogy for conducting such experiments is elaborated in 
the work of Milenin et al. (2011). The samples used for 
this study are depicted in Figure 2. 

Fig. 2. Specimen for fracture analyses

Details of the experimental technique was de-
scribed by Milenin et al. (2011). 

2.4. Material for deterministic studies

For deterministic studies of mechanical properties, 
samples taken from three different coils were used. 
The difference between these coils was the number of 
“short can” defects per million produced cans when 
using the material of these coils as a blank. In the first 
case, this number was 357.9 pcs/mln; this variant of 
the material will be denoted by the toponym “Bad.” 
The use of second and third coil material resulted in 
127.3 pcs/mln and 79.1 pcs/mln defects. These ma-
terials in the article are designated as “Medium” and 
“Good,” respectively. 

2.5. Tensile tests 

For testing the material in tension (before failure), 
samples were used, made in accordance with the  
PN-EN ISO 6892-1 standard. The MTS Exceed 
E43.504E machine was used for this study. 15 samples 
were tested from each of the studied materials. Sam-
pling was carried out from the left, centre and right side 
of the coil (5 samples each). 

2.6. Statistical-base approach  
(decision tree model) 

Over a  three-month production period, data were 
collected on material parameters and the number of 
“short cans” for each batch of cans produced. The 



Computer Methods in Materials Science� 2023, vol. 23, no. 2

   W. Baran, K. Regulski, S. Kąc, A. Milenin

32

material parameters were obtained from certificates 
that contained information about the chemical com-
position and mechanical properties of the coils used 
for production. The production monitoring system 
was used to collect information on the supplier name, 
coil number, date and time of production, the number 
of cans produced, the number of “short cans,” and an 
indicator for “short cans” per million produced cans. 
Additionally, the results of measurements of chemical 
composition and strength parameters, such as yield 
strength (YS), ultimate tensile strength (UTS), ears 
and elongation, were entered for each coil separately. 

All the collected information was merged into a data-
base to analyse the correlation between them using the 
STATISTICA program. 

Initially, the correlation between the mechanical 
properties and chemical composition of the material 
and the number of jams was analysed to determine if 
there was any connection between them. The statistical 
significance of these connections was then determined. 
Next, a  regression (see Fig. 3) and classification tree 
(see Figs. 4 and 5) were used to determine the range of 
values for each parameter that corresponded to a spe-
cific number of jams.

 

Fig. 3. Interactive regression tree for among of “short cans,” Model C&RT
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Fig. 4. Interactive classification tree for “short cans” (2Q), Model C&RT

      

Fig. 5. Interactive classification tree for “short cans” (3Q), Model C&RT
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The interactive regression tree (Fig. 3) was used to 
predict the number of damaged cans based on the con-
tent of chemical elements and mechanical properties. 
Mutual correlations of all parameters were taken into 
account simultaneously. The division was performed 
automatically by the “Statistica” program, classifying 
the groups based on the importance of the impact of 
each parameter on the others. Red blocks represent 
last leaf of the tree and base on which rules IF-THEN 
was created. The most important variables that had the 
greatest impact on the result were selected for the sec-
ond model, which was developed with an interactive 
classification tree. This model classified the sheets into 
“Good” and “Bad” based on the number of damaged 
cans, using the labels added earlier. 

The generated trees (Figs. 4 and 5) were used to 
create a set of rules that could assign a coil with entered 
parameters to a  specific range of expected damaged 
products. The tree in (Fig. 4) represents the division 
of aluminium coils into two equal groups, where two 
quartiles (2Q) of sheets with the lowest “short can” in-
dex were classified as good. The division (3Q) (Fig. 5) 
means that three quartiles of coils with the lowest 
“short can” factor have been classified as good. This 
division was intended to isolate the group of sheets that 
pose the greatest risk during production. Software was 
developed using these rules to help operators make de-
cisions when accepting an aluminium coil for produc-
tion. This software in the form of subroutines in an Ex-
cel environment, would assist operators in determining 
the quality of the coils based on their parameters and 
expected damage levels.

3. Results and discussion 

3.1. Deterministic analysis 

The results of standard tensile tests are shown in Figure 6.
The standard elongation of samples from the 

three studied materials did not allow us to find any 
relationship between the elongation value and the 
number of defects “short cans” (Fig. 6a). Moreover, 
the standard deviation calculated for the obtained ex-
perimental data (shown by error bars in Figure 3a) 
suggests that the difference in elongation between the 
samples of the studied materials is not statistically 
significant. Analysis of strength characteristics (UTS, 
YS) suggests that fewer defects occur in less strong 
material (lower values of UTC and YS for “Good” 
coils). However, these changes are on the border of 
statistical significance.

a)

  
b)

  
c)

 
Fig. 6. Mechanical parameters, measured for “Bad”, 
“Medium” and “Good” coils: a) standard elongation;  

b) UTS; c) YS

Since the standard tensile tests failed to find a sta-
tistically significant relationship between mechanical 
properties and the number of defective cans, we con-
sider the results of tests performed for material from 
“Good” and “Bad” coils. The results of measuring the 
tensile force are shown in Figure 7. 
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Fig. 7. Load – displacement curves during tests for “Good” (a) and “Bad” (b) coils

Three samples of “Good” sheet coils and two sam-
ples of “Bad” sheet coils were taken for testing. These 
curves, however, also do not correlate statistically sig-
nificantly with the number of defective cans.

On the SEM images of the fracture surfaces of 
both samples, a  characteristic plastic deformation of 
the materials is observed. The formation of a cup and 
cone fracture is visible. The differences are not signifi-
cant, but in the case of the “Good” sample (Fig. 8a, b) 
the plastic deformation of the material is greater and 
relatively evenly distributed over the fracture surface. 
This causes the material to deform evenly throughout 
its volume.

In the case of the “Bad” sample (Fig. 8c, d), a small-
er plastic deformation of the material around the cups is 
observed on the surface of the fractures, which indicates 
less plastic deformation of the material. In addition, the 
fracture surface is more heterogeneous. There are visi-
ble areas of plastic deformation (cups and cone fracture), 
but there are also numerous areas of large volume in the 
form of faults and fractures. The presence of such ob-
jects causes uneven deformation of the material during 
plastic processing and faster tearing of the material.

Analysis of the fault image of the samples (Fig. 8) 
obtained using SEM shows that there is some difference in 
the nature of the faults, but it is very difficult to interpret. 

a)   b)

 
c) 

 

d) 

Fig. 8. Examples of microstructures of fracture surfaces for samples from the “Good” (a, b) and “Bad” (c, d) coils

a) b)
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Thus, all deterministic methods used to detect 
the correlation between mechanical properties and the 
number of defects were generally ineffective. The only 
conclusion that can be drawn is that a proportional re-
lationship has been found between the strength of the 
initial material and the number of defects “short can” 
(Fig. 6). 

3.2. Statistical analysis 

The product defect prediction software developed uses 
statistical analysis through decision tree models. In the 
current case of the “short can” defect, where the mate-
rial continuity breaks during the can’s passage through 
smaller dies to thin the side wall, both classification 
and regression trees were employed. These models are 
intuitive and transparent, making them an interesting 
tool for a thorough analysis of dependencies, even in 
cases of weak correlations (where explanatory vari-
ables have little or insignificant effects on the depen-
dent variable’s variability, known as weak learners). 
Trees do not require additional assumptions regarding 
variable distribution or dependency type. The output 
of the trees consists of IF-THEN rules that allow for 
the creation of models using discretization at different 
levels, leading to a single model output incorporating 
all the acquired knowledge.

Based on these assumptions, software was creat-
ed that provides three answers based on the input vari-
ables: chemical and strength parameters of the tested 
material. The response with priority 1 utilizes a  re-
gression tree model and returns the predicted number 
of defects along with the method error. The responses 
with priority 2 and 3 return the probability of defect 
occurrence within a  given range, taking into account 
the rule’s support, i.e., how strong the rule is.

To test the effectiveness of the program, 20 coils 
available for production were randomly selected and 
put on the production line for standard production. In-
formation about the number of actual defects was col-
lected using sensors that counted the number of jams. 

Subsequently, information about the chemical compo-
sition and strength parameters for material from each 
of the coils was entered into the program (Fig. 9) to 
predict the number of defects. 

Based on the algorithms implemented, the pro-
gram returned three answers for each sheet. The col-
lected results are summarized in Table 2.

The table shows 20 randomly selected alumini-
um coils with information on the actual number of can 
damages that have been recorded on the production line 
and answers from three decision trees. The answers 
have been prioritized according to the importance of 
the answers. Priority 1 is the most important. The re-
gression tree was chosen for this priority because it 
gives us a specific number of predicted faults. Priority 2 
and 3 are answers from classification trees. These trees 
return an answer as to whether the test sample is above 
or below a predetermined threshold for the number of 
short cans. The last column counts the number of cor-
rect answers of decision trees consistent with the actual 
number of can damages.

The program correctly predicted three answers 
for 9 out of 20 coils, meaning that the actual number 
of defects fell within limits given by the program 
for all statistical tools used. Additionally, nine coils 
were accurately classified by two out of the three 
methods, while the remaining two coils were cor-
rectly identified by the same method. No misclassi-
fications were observed. All trees predict correctly, 
but not all return answers. By creating a hybrid in-
ference model, we can replace the lack of a response 
from one tree with a response from the next tree with 
a priority one lower.

From the presented results, we can conclude that 
the program is capable of predicting well, although 
its accuracy is not particularly high. The results show 
a relatively large standard deviation, which may be due, 
among other things, to insufficient training data. To im-
prove the accuracy of the results, the statistical analysis 
should be re-run, and new rules created using a much 
larger amount of material and production data, which is 
also planned for future study. 

Fig. 9. Program for predicting the number of short cans
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4. Conclusion 

Based on the results of the study, several conclusions 
can be drawn. The deterministic methods used to detect 
the correlation between mechanical properties and the 
number of defects were generally ineffective, as no sta-
tistically significant relationship was found. When us-
ing deterministic methods to measure strength param-
eters, we cannot be sure that the measurement point is 
the place where the continuity of the material was bro-
ken during the drawing of the can. The material is not 
uniform over the entire surface, and by examining its 
properties in a random place, we can obtain results that 
differ from the actual results in the place of the defect. 
Based on a large number of damages, using statistical 

methods, it is possible to find relationships that are not 
visible in individual measurements. However, a  pro-
portional relationship was found between the strength 
of the initial material and the number of defects “short 
can.” The statistical analysis, using decision tree mod-
els, was successful in predicting the number of defects. 
The program developed correctly predicted the number 
of defects for 9 out of 20 coils, with no misclassifica-
tions observed. However, the accuracy of the program 
is not particularly high, and further studies with a larger 
amount of material and production data are planned to 
improve its accuracy. Overall, the results suggest that 
the use of statistical analysis and decision tree models 
can be an effective tool for defect prediction in indus-
trial production processes.
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