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Abstract The need for the scalability of an algorithm is essential when one wants to utilize
an HPC infrastructure in an efficient and reasonable way. In such infrastruc-
tures, synchronization affects the efficiency of the parallel algorithms. However,
one can consider introducing certain means of desynchronization in order to
increase the scalability. Allowing certain messages to be omitted or delayed can
be easily accepted in the case of metaheuristics. Furthermore, some simulations
can also follow this pattern and thereby handle bigger environments. The pa-
per presents a short survey on the desynchronization idea, pointing out already
obtained results, or sketching out future work focused on scaling the parallel
and distributed computing or simulation algorithms.
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1. Introduction

Since the accessibility of clusters or even HPC environments is becoming more and
more common, the scalability of the algorithms gains importance. This scalability
enables algorithms to solve huge tasks faster and simulate bigger problems.

A lot of work has been done to scale algorithms on multi-processor computers
where the issue was the slow access to the system memory, which constrains the
efficient utilization of multiple processors. An alternative way of achieving a speedup
on a single computer is to use the GPUs in order to perform fast matrix computations;
however, this requires a specific algorithm construction and data transfer between the
system and the GPU memory. Working on the scalability across the cluster encounters
a different obstacle – costly communication over the network between nodes enters
into the equation.

As the communication between nodes may easily reduce the whole system’s per-
formance, there is a need to reduce its amount and organize it in such a way that
impacts the computational efficiency as little as possible. It is rarely possible to ensure
an identical load on all computational nodes, especially in a heterogeneous environ-
ment. Inequalities in the execution time of a single algorithm step will cause the fastest
nodes to idly await the completion of the step on the slowest nodes, effectively wasting
potential computational capabilities. The concept of desynchronizing inter-node data
exchange aims to remove the synchronization points from the algorithm and replace
them with an asynchronous data exchange. This might lead to the modified behavior
of the algorithm when compared to the non-desynchronized approach.

In this paper, we review several methods of applying desynchronization to inter-
node communication in various optimization algorithms and simulations. We note
some issues that one should be aware of when applying such desynchronization to
computations. The modifications enable high scalability but might also lead to un-
satisfactory or even invalid results under some circumstances. The majority of the
discussed cases are referenced from previous works related to the topic discussed.
However, we decided it would be helpful to bridge the gap between optimization
algorithms and complex simulations by introducing a new example – a simple imple-
mentation of Conway’s Game of Life [4].

It is to note that the main aim of this paper is to present a short survey of
the findings connected with the application of desynchronization in metaheuristic
computing, also pointing out the possibility of applying the same mechanism (though
more planning is required) to simulations, thus supporting the capability to efficiently
scale the concurrent versions of the algorithms under consideration on parallel and
distributed HPC infrastructures.

In Section 2, we sum up the current research status regarding the scalability of
algorithms. Section 3 describes the concept of desynchronization in an abstract way
and proposes some example applications for simulations and optimization algorithms.
The next chapter presents example experiments regarding the desirable and unwanted
results of desynchronization. In Section 5, we sum up the whole article.
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2. Scalability in computations

As computation clusters and HPC environments become more accessible, the hor-
izontal scalability of algorithms is becoming more and more important. A lot of
articles have been published regarding the scalability of both optimization algo-
rithms [17,18] and simulations [2,13,14]. However, the majority of this research focuses
on multi-processor single-node scalability [1, 7] or, at most, dozens of computational
nodes [8, 11]. The synchronization points related to updates of global knowledge are
omnipresent. A lack of strict synchronization is treated as a risk of data loss, which
leads to invalid results.

The optimization algorithms based on a population of agents are relatively easy
to model and implement in parallel. As an example, particle swarm optimization [9]
iteratively improves a set of candidate solutions basing on the best solutions col-
lected in the previous iterations. Each solution can be handled independently, so it
is straightforward to run in parallel. The algorithm was proven to be usable in in-
verse rendering with good scalability for up to ten nodes. Unfortunately, the efficiency
drops for more computational nodes, and the tests were conducted for only up to 30
nodes [11]. The parallel implementation of PSO shown even super-linear speedups;
however, the tests utilized only a single multi-core computer [1].

Ant colony optimization [5] runs multiple independent agents constructing can-
didate solutions based on a pheromone matrix that is updated after each iteration.
The solution-construction processes are independent, so they could be run in parallel.
The parallel version of the algorithm was adapted to a waste collection vehicle routing
problem, reaching 6.8 speedup on a 24-thread processor [7]. Ilie and Bădică et al. [8]
presented an agent-based approach to ACO modeling. This article reports very good
scalability for up to 7 nodes on the gr666 problem from TSPLIB1. The algorithm
reaches solutions comparable to the standard ant system. Unfortunately, no results
were presented for large-scale TSP problems nor for larger clusters.

As we have shown in [18], ACO can reach good scalability for up to hundreds
of nodes in an HPC environment. The proposed architecture keeps the pheromone
matrix parts distributed across all nodes and uses desynchronized updates in order
to achieve good scalability without a noticeable deterioration of the result quality.
The good scalability allows for increasing the size of a colony, which improves the
achieved results [16, 17]. In [17], we have proposed many ways to efficiently employ
large ant colonies in order to outperform algorithms like MMAS in terms of solution
quality. What is more, the higher number of ants enables the faster optimization of
big problem instances.

The distributed traffic simulation system [14] was proven to be able to efficiently
utilize an HPC environment with 800 computational nodes. In the simulation, the
traffic network was distributed across nodes with a limited desynchronization, allow-

1https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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ing the processes to compute a few iterations without waiting for updates from the
neighbor crossings. The simulation achieved super-linear scalability.

Another approach to distribution and desynchronization was shown in [2]. Several
simulation models were adapted to use the signal propagation method, which was de-
signed to minimize the required communication between computational models. The
resulting framework has proven to be highly scalable, efficiently utilizing thousands
of computational cores.

The idea of desynchronization was also utilized in our publications regarding the
iterated prisoner’s dilemma with a large population of agents [13,15]. The experiments
showed that desynchronization does not affect the behavior of a big population in any
noticeable way. Moreover, the system achieved much better scalability than the version
with a standard (synchronized) communication model between nodes, especially for
environments with dense neighborhoods.

Desynchronization is a way to improve the scalability of the algorithms; however,
it requires foresight and awareness of its potential impact on the algorithm’s behavior.
In the next section, we present a discussion on the desynchronization of metaheuristic
and simulation algorithms.

3. Desynchronization in computations

One of the major issues regarding the scalability of algorithms is the access to global
information. In a large cluster, the global knowledge may be stored on a master node
and updated in a synchronous manner after each algorithm step. It takes some time
to transfer the update data (any data collected from the nodes used for updating
the global information), and the cluster is blocked from running another part of the
computations until the synchronization is done, leading to the performance regression
and lower scalability.

The basis of the desynchronization idea is to allow the algorithm to run when
the global knowledge update is still in progress. The algorithm should start another
iteration based on the old data and switch to the updated one as soon as the update
is done, even in the middle of the iteration. The computations should be parallel to
the updates of global knowledge in order to use the cluster resources more efficiently.
Depending on the algorithm type, the parallelism may lead to a loss of result accuracy
and conflicts in the global data updates, so each application should be considered
carefully and individually.

One of the possible application fields are optimization algorithms, where a small
delay of the global knowledge update will not be critical but the improvement of
scalability will be noticeable. The negative influence of non-deterministic data losses
or conflicts may be compensated by the possibilities facilitated by the high scalability.

On the other hand, the desynchronization of simulations is a substantially differ-
ent problem. One of the significant differences between simulations and optimization
algorithms is that a simulation represents a scenario in which intermediate steps might
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be as important as the final result. This is significantly different from the optimization
problems where only the final result is important in most cases. Additionally, the sim-
ulation state is often more complex and more susceptible to small changes. Therefore,
desynchronization might not only cause simulations to yield imprecise results but also
invalidate all observations made about the behavior of the system.

Fortunately, not all simulations employ deterministic mechanisms. In the case of
a simulation algorithm that relies heavily on randomness, small discrepancies caused
by the desynchronization may be less significant as compared to the variance of the
results expected to occur naturally. Moreover, the more fine-grained the simulation
is, the lesser the impact is of a single error or conflict to the whole process.

3.1. Desynchronization in optimization algorithms

In the case of optimization algorithms, we may often assume that small inaccuracies in
global information do not result in significant changes to the final results. This section
describes the application of desynchronization to various optimization algorithms.

The particle swarm optimization algorithm [9] consists of multiple independent
agents – particles. It can be easily distributed to run on a cluster where each node can
handle computations of some particles. The algorithm needs to know the global best
solution in order to find new solutions. In the standard implementation, the global
best solution should be updated after each iteration, which can reduce the system’s
scalability. The desynchronized algorithm could keep the global best solution locally
and broadcast an update to all other nodes when it finds a better one. The particles
could move independently based on the current local value of the global best solution.
This might introduce some delays in knowledge distribution but should not affect the
algorithm’s efficacy, as the knowledge will be eventually consistent.

Social cognitive optimization [19] is another meta-heuristic optimization algo-
rithm that uses global knowledge based on the data accumulated by independent
agents. This creates a solution set (social sharing library) and updates it after each
iteration with the solutions created by all agents in the system. The agents could be
easily distributed in the cluster environment; however, updating the social sharing
library requires the synchronization of all processes in the standard implementation.
The desynchronized version may allow the agents to build the next solutions based
on the current content of the sharing library and apply updates asynchronously. The
sharing library may be maintained independently on each node, and the proposed so-
lutions may be broadcasted to all nodes if they are good enough to replace one of the
solutions currently contained in the list. The process of library update is not deter-
ministic, so the content of the libraries may differ between nodes. Figure 1 presents an
example of the communication sequence; it shows that the updates from the remote
nodes are independent from the agents’ iterations.
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Figure 1. Social cognitive optimization – desynchronized social sharing library update

Evolutionary multi-agent systems [3] use the idea of islands as separated com-
putation environments and utilize migrations as a communication and knowledge-
exchange mechanism. The islands are feasible to be distributed across the computa-
tion nodes, and the desynchronized implementation should not synchronize the islands
after each iteration in order to perform migrations of the solutions. The migrations
may be handled asynchronously to increase the scalability of the system. Figure 2
presents an example of overlapping iterations and migrations.

Island 1 Island 2 Island 3

Iteration Iteration Iteration

Migration

Migration

Iteration

Migration Migration

Iteration
Migration

Migration

Figure 2. Evolutionary multi-agent systems – desynchronized migration process



Desynchronization of simulation and optimization algorithms in HPC environment 325

After each iteration, each node can send an asynchronous message with the solu-
tions to be migrated and handle such incoming messages. Sending and receiving the
messages is not synchronized and may overlap with the iterations – this also means
that the size of the population on an island can vary.

3.2. Desynchronization in simulations

In the case of simulations, discrepancies may have a significant impact on the final
results. In this section, we describe how the desynchronization ideas may be applied
to examples of simulations.

Conway’s Game of Life [4] uses a grid as the simulation environment. In the case
of a huge simulation, the grid could be distributed across the computation nodes;
however, this requires inter-node communication on the edges of the grid’s parts
during each iteration. The synchronous data exchange may reduce performance, so it
could be done asynchronously. On the other hand, the asynchronous approach requires
caching the state of the remote neighbors, which could lead to altering the simulation
results. Figure 3 presents an example of the grid distribution, with the cached rows
represented as gray. The arrows represent the migration of the statuses after each
iteration.

1 2 3 4 5* 4* 5 6 7 8

Figure 3. Conway’s Game of Life – grid distribution with data caching and updates

A simulation of social processes (like the iterated prisoner’s dilemma or a gift-
exchange game) in a big society can be organized with some kind of neighborhood;
e.g., a two-dimensional grid. To improve the scalability of the simulation, the neigh-
borhood should be distributed in such a way as to minimize inter-node pairs. In order
to further reduce the inter-node communication, the remote agents could be repre-
sented by local copies, which could asynchronously exchange their status updates with
the original agents. The local copy should behave like the original one and provide
it with updates regarding the results of the moves it made. Figure 4 presents the
idea of a local representation of the remote agent. The communication between the
nodes is replaced by the communication with local copies of the remote agents and
the periodic synchronization with the original agents. This will reduce the network’s
communication and improve scalability.
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Figure 4. Social simulations – local copy of remote agents

More-complex simulations introduce much more space for the mistakes to either
diminish or amplify. The main focus of [12] was to analyze the impact of desyn-
chronization applied to several simulations: the simple predator-prey scenario, fire
emergency evacuation, and microscopic organisms development on a seabed. The sim-
ulations represented a variety of levels of environment complexity and determinism.
Each simulation was desynchronized in a similar manner – the grid was divided into
parts and distributed among the computational nodes. The nodes were operating on
their parts of the grid and periodically sending updates to the neighboring nodes.
As a result, the algorithm had to be capable of resolving conflicts arising from the
incoming data potentially contradicting the decisions made locally.

4. Experimental results

The implications of desynchronization may be different for various applications. In
this section, we present the experimental results for some optimization algorithms
and simulations.

4.1. Ant colony optimization

In the previous publication [18], we described and tested the desynchronized version of
ant colony optimization. The idea of the algorithm was to remove the synchronization
point at the end of each iteration (when the ants update the pheromone matrix).
Instead of synchronizing the whole cluster, each ant submits its solution into a batch
and immediately starts to create another solution (without waiting for the update of
the pheromone matrix).

The main findings of the experiments conducted for the aforementioned publica-
tion are as follows. The algorithm reaches 76% efficiency on 400 computation nodes
(see Tab. 1, Efficiency = Speedup/Nodes). The scalability enables calculations
based on huge colonies, which leads to higher exploration and better final results.
Table 2 shows that the bigger colony finds better final results when the exploration
is utilized efficiently. The advantages of high scalability outweigh the drawbacks of
desynchronized pheromone matrix updates.
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Table 1
Desynchronized ACO speedup from [18]

Nodes 2 5 10 50 100 200 300 400
Distributed ACO 2.13 6.22 10.33 43.31 62.04 – – –
Desynchronized ACO 1.89 5.38 10.75 46.71 86.64 161.67 235.41 304.58

Table 2
Desynchronized ACO final results compared with MMAS from [18].

Result
Best-known solution 378,032
MMAS (25 ants) 494, 735.2± 2, 983.4
MMAS (250 ants) 489, 201.8± 1, 481.6
Desynchronized Ant System (250 ants) 463, 671± 10, 727.0
Desynchronized Ant System (500 ants) 459, 025± 10, 002.5
Desynchronized Ant System (2500 ants) 447, 427± 3, 153.9
Desynchronized Ant System (10k ants) 443, 377± 6, 392.4

4.2. Iterated prisoner’s dilemma

We have also applied the desynchronization to a simulation of the iterated prisoner’s
dilemma with a big society [13]. All agents are distributed across the computation
nodes. When the game requires communication with a remote agent, it communicates
with its local representation, which periodically synchronizes its state with the original
agent. Figure 5 presents the results of the experiment from [13].

a) b)

Figure 5. Desynchronization influence on IPD simulation from [13]:
a) without desynchronization; b) with desynchronization

It shows the level of cooperativity in the society depending on two parameters:
the probability of playing the next turn with the same opponent (continuation prob-
ability), and the probability that an agent will be paired with another with a similar
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strategy (structure). The dark color means low cooperativity, and bright yellow means
a high level of cooperation among agents.

The desynchronization enabled us to simulate much bigger societies; at the same
time, the results imply that this did not significantly influence the simulation results.

4.3. Conway’s game of life

One of the most important problems described in the previous chapter was the impact
of desynchronization on the simulation result. As an extension of the survey, we
decided to further explore this issue using Conway’s Game of Life [4] as a simple
and well-recognized example. The simulation was implemented in a single process
and emulated some conditions that are possible in a desynchronized environment
(such as latency or packet losses).

In the simulation, we used a board with 10 rows and 20 columns. In each iteration:

• any black cell with two or three black neighbors remains black,
• any gray cell with three black neighbors becomes black,
• all other black cells become gray, and all other gray cells remain gray.

We assume that there are no neighbors outside the board. The consecutive board
states in the standard simulation are presented in Figure 6a.

In order to simulate the environment with two nodes, we split the board into
two parts (as presented in Figure 3). Figure 6b presents the results with the cache
updates delayed by one iteration (simulating latency in inter-node communication).
The differences in the results appear in the center of the board and spread with each
iteration.

Figure 6c shows the results of the simulation that drops every fourth cache update
(simulating packet losses in inter-node communication). The result after 13 iterations
also differs from the standard simulation. The interruption is not as severe as in the
previous example, so the differences are smaller (but still noticeable).

The results prove that desynchronization is not suitable for applications where
deterministic and consistent results are critical. On the other hand, when an algorithm
is randomized, delays in the cache updates may be considered to be another random
factor, which is not significant in terms of interpreting the results.

4.4. Complex simulations

The results obtained in [12] varied significantly among the simulation models. Two of
the simulations – fire emergency evacuation and microorganism (foraminifera) habitat
– were successfully distributed and desynchronized. The influence of the distribution
proved to be marginal as compared to the changes caused by modifying the simulation
parameters. An example of the results presented in [12] can be seen in Figure 7: each
group of points marked on the x-axis represents one set of input parameters, while
each of the series represents the degree of distribution; i.e., the number of parts into
which the grid was divided.
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a) b) c)

Figure 6. Conway’s Game of Life simulation with two nodes:
a) simulation without delays; b) simulation with cache update delayed by one iteration;

c) simulation with every fourth cache update lost
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Distribution had some impact on the measured values, which was the total energy
among all simulated organisms in this case; however, more important was that the
differences among configuration variants were noticeably greater than the differences
between the values in each group.

default variant1 variant2 variant3

500

1000

1500

2000

2500

3000

3500
s: fortwist, m: foraminiferaTotalEnergy, a: avg

1x1 workers
2x2 workers
3x3 workers
4x4 workers

Figure 7. Simulation of foraminifera habitat: average total energy of foraminifera.
Chart from [12].

On the other hand, the simulation of the predator-prey scenario yielded results
that varied dramatically depending on the degree of distribution. The algorithm did
not handle conflicts properly, as there was no possibility to resolve them in a way that
would not violate the model. As a result, desynchronization led to the emergence of
completely different behavior and inconsistent conclusions from the simulation.

In all three cases, the distribution and desynchronization led to substantial in-
creases in the scalability of the simulations. In the two successful cases, the subtle
differences in the measured values and observed results are definitely outweighed by
the ability to assign many more computational resources. It is worth keeping in mind,
however, that the simulation must be carefully analyzed and validated to ensure that
the yielded results are useful.

5. Conclusion

In this paper, we have presented applications of the desynchronization concept to var-
ious algorithms. The concept aims to improve the scalability of the algorithms in HPC
environments. It reduces the inter-node communication and limits synchronization-
related hold-ups; however, it may affect the computational results. We have discussed
two types of algorithms: simulations and optimization algorithms.

In the case of optimization, desynchronization might be applied to many algo-
rithms with some kind of global knowledge; e.g., ant colony optimization, particle
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swarm optimization, social cognitive optimization, or evolutionary multi-agent sys-
tems. The impact of desynchronization on the results is negligible and might be con-
sidered as another randomization factor. On the other hand, the speedup of the algo-
rithm allows it to compute many more possible solutions of a problem, which leads to
increased exploration and improved final results [18]. The speedup also enables faster
optimization thanks to extensive parallelization.

Desynchronization might also be applied to simulations that involve multiple
agents communicating with each other (e.g., the iterated prisoner’s dilemma or gift-
exchange game) or neighborhood-oriented global knowledge (like the board of Con-
way’s Game of Life). The simulations require much more caution when subjected to
desynchronization, since it might be the only randomization factor that affects the
final results in an unacceptable manner. We have presented a simple experiment based
on Conway’s Game of Life, which has shown how desynchronization will significantly
affect even such a simple simulation. When we introduced some desynchronization
delays or lost updates, the results quickly became noticeably different.

On the other hand, the simulations of social processes are commonly randomized.
In this case, desynchronization enables the system to simulate much bigger societies;
however, one should be aware that the results might be affected by the specific algo-
rithm construction. In the case of more-complex simulations, desynchronization might
be successfully applied to models that heavily rely on randomness. There is no single
strategy for handling such simulations; each desynchronized approach must be care-
fully analyzed and tested before being used as a proper model for further experiments.

To sum up, desynchronization is a concept that is applicable to multiple algo-
rithms; however, it requires some caution (especially in the case of simulations where
it might noticeably affect the results). Before drawing any further conclusions from the
desynchronized version of a simulation, one should first estimate the influence of the
introduced inaccuracies on the results. In optimization algorithms, we might assume
that the introduced changes are negligible as long as we achieve comparable or better
results when compared to the standard version. Hence, it is worth considering when a
system requires high scalability in order to efficiently utilize HPC environments. One
of the research areas related to optimization algorithms that has a strong potential of
benefiting from introducing desynchronization is the domain of machine-learning al-
gorithms. For example, it could be possible to desynchronize updating neuron weight
matrices in neural networks, leading to improved efficiency and scalability.

Increasing scalability as a consequence of desynchronization actually does not
require any explanation, being a simple consequence of applying Amdahl’s or
Gustafson’s law [10] to predict the efficiency of concurrent and (in particular) dis-
tributed systems. However, one must ask the following question: to what extent does
introducing desynchronization (thus allowing for some perturbations in the commu-
nication) impair the efficacy of the computing and simulation? We would like to try
to answer this questions in one of our future works by constructing Markov chain
models of possible perturbations and simulating several computing and simulation
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cases similarly to well-known Markov-chain models of network packet loss (like the
Simple Gilbert model [6]).
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