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PERFORMANCE MEASUREMENT
WITH HIGH-PERFORMANCE COMPUTER
USING
HW-GA ANOMALY-DETECTION ALGORITHMS
FOR STREAMING DATA

Abstract Anomaly detection for streaming real-time data is very important; more signifi-
cant is the performance of an algorithm in order to meet real-time requirements.
Anomaly detection is very crucial in every sector because, by knowing what is
going wrong with data/digital systems, we can make decisions to help in every
sector. Dealing with real-time data requires speed; for this reason, the aim of
this paper is to measure the performance of our proposed Holt–Winters genetic
algorithm (HW-GA) as compared to other anomaly-detection algorithms with
a large amount of data as well as to measure how other factors such as visuali-
zation and the performance of the testing environment affect the algorithm’s
performance. The experiments will be done in R with different data sets such
as the as real COVID-19 and IoT sensor data that we collected from Smart
Agriculture Libelium sensors and e-dnevnik as well as three benchmarks from
the Numenta data sets. The real data has no known anomalies, but the ano-
malies are known in the benchmark data; this was done in order to evaluate
how the algorithm works in both situations. The novelty of this paper is that
the performance will be tested on three different computers (in which one is
a high-performance computer); also, a large amount of data will be used for our
testing, as will how the visualization phase affects the algorithm’s performance.
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1. Introduction

Performance measurement is one of the main mechanisms for testing one algorithm
for its speed; this is crucial when dealing with real-time big data. Anomaly detec-
tion in real time requires speed to detect anomalies; to deal with this, we test the
algorithm on different computers with different performance levels to improve the
speed of HW-GA. In research that was completed earlier [7], we proposed HW-GA
for detecting anomalies with large amount of real-time data. We tested the accuracy
of the algorithm by comparing it to several other algorithms that we singled out from
previous research (such as ARIMA [9], moving average [1], and Holt-Winters [3]).
Also, the performance of this algorithm is tested in this research [6]; however, there
is no research that measures the performance of HW-GA with a high-performance
computer in order to see if it affects the execution time and CPU usage. In addition,
we did not test how the visualization process of the algorithm affects the execution
time, and we did not test the algorithm with a large amount of data (more than
270,000 records) for its performance and accuracy. The contributions of this paper
are numerous:
1) It shows how the performance of the algorithm is affected by the computer’s
performance on which the algorithm is tested.

2) It compares the algorithm with other algorithms.
3) It tests with a larger amount of data to see whether the amount of data that is
used for testing affects the algorithm’s performance.

4) It tests how a visualization of the results of this algorithm affects the execution
times of the other algorithms.

In addition to our previous work [7], we tested the proposed algorithm against other
selected algorithms with high-performance computers in this paper in order to see
whether the performance of the algorithm was affected by the performance of the
devices where the algorithms are tested.
When dealing with large amounts of data, it should be kept in mind that this is

characterized by three basic characteristics: the volume, veracity, and variety of the
data (hence, the need for performance testing in order to meet the speed characteri-
stics of large amounts of data). This is a vast field of research, as it involves algorithms
from different disciplines. First, it is important to specify the data to be analyzed in
order to know how we make the algorithm selection.
This research used qualitative and quantitative research methods. Qualitative

research methods were used in this research for an existing literature review, where
theories and concepts that are related to the performance measurement of anomaly-
detection algorithms in big data were reviewed. On the other hand, a quantitative
research method was used for the experiments that will be conducted in order to
measure the evaluation time and CPU usage of HW-GA as compared to the other
algorithms. The research was carried out by using several specific methodological
procedures and research techniques: analysis, classification, comparison, synthesis,
induction, deduction, and experimentation.



Performance measurement with high-performance computer using HW-GA... 397

First of all, the characteristics of the massive data streams that are created as a re-
sult of events in complex computer systems and business transactions were analyzed.
The study then analyzed the corresponding existing methodologies and algorithms for
detecting anomalies over such a stream type, whereby the anomalies were expected
to be of a contextual and collective type. The methodologies for measuring the per-
formance of the anomaly-detection algorithms that we used are the execution time of
the algorithm and the CPU usage during the phase when the algorithm was running.
Comparison methods were used because the testing will be done for different amo-
unts of data in order to see whether the amount of data affected the performance of
the algorithms. In addition, three computers with different levels of performance were
used to do the experiments in order to compare whether a high-performance computer
reduced the execution times and CPU usage of the algorithms. Also, another analysis
that we performed was to test whether HW-GA’s execution time was affected from
the last part of the algorithm’s execution (which was a visualization of the results
and how much it increased the execution time).
The induction and deduction method was used to lock in the possibilities of using

HW-GA for detecting anomalies in real time in large amounts of data or more-specific
massive data streams. Free software environment R1 was used for doing the experi-
ments as well as the statistical analyses and visualizations of the results. Benchmarks
and real-time data were used to test the algorithm, as were the Numenta bench-
mark [10] database, real-time data from the e-dnevnik application2 (which is an elec-
tronic education system in North Macedonia), Libelium sensor data for air-quality
measurement, and the COVID-19 data set [11].
The remaining chapters of this paper are as follows. The second chapter shows

related works, then the third chapter presents the benchmark and real data that
was used for the experiments. A brief introduction to the algorithms used for these
experiments is given in the fourth part, then the fifth section describes the comparison
of performance of the algorithms. Finally, the sixth chapter discusses the results and
conclusions from this research.

2. Related work
In research that was completed earlier [7], we proposed HW-GA for detecting anoma-
lies in large amounts of real-time data. We tested the accuracy of the algorithm there,
comparing it to several other algorithms that we singled out from previous research
(such as ARIMA [9], moving average [1], and Holt-Winters [3]). Also, the performance
of these algorithms was tested in this research [6]; however, there has been no rese-
arch that measures the performance of HW-GA with a high-performance computer in
order to see whether it affects the execution time and CPU usage. The experiments
were done with real data from e-dnevnik, IoT sensor data (which we collected from
Smart Agriculture Libelium sensors), COVID-19 [12], and the NAB benchmark [10].

1R Version 3.4.3. URL: https://www.r-project.org
2http://ednevnik.edu.mk

https://www.r-project.org
http://ednevnik.edu.mk
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A comparison of anomaly-detection algorithms for real-time big data was done
here [5], where we evaluated many algorithms (DBSCAN, MAD, moving average con-
trol chart, ARIMA, Twitter, etc.) in order to select the fastest methods. So, the most
important aspects that we considered in order to find an anomaly-detection algorithm
that was suitable for future implementation in an online environment was the execu-
tion time (complexity), the CPU usage, and the satisfactory quality of the algorithm
(measured through the TP-True Positive, FP-False Positive, FN-False Negative, and
TN-True Negative anomalies that were found).

The best algorithms that were selected from this research (ARIMA and mo-
ving average) were compared with HW-GA [7] and Holt-Winters, where we tested
the correctness of HW-GA in our previous research [7]. In this paper, we tested the
performance/speed and CPU usage of HW-GA and compared it with Holt-Winters,
ARIMA, and moving average in this research. The authors of [10] proposed a bench-
mark Numenta anomaly benchmark (NAB); this benchmark was used in our research.
The authors of [14] proposed an online and unsupervised anomaly-detection algorithm
for streaming data using an array of sliding windows and probability density-based
descriptors (PDDs) based on these windows. The experimental results and perfor-
mances were presented based on the Numenta anomaly benchmark. Martin et al. [2]
showed how to find anomalies in a video stream by using the Markov model. The time
intervals of the data that were used for the experiments were 1 hour, 1 day, and 3
days. The anomaly-detection method proposed by these authors controlled all of the
new streaming data that came in real time for possible anomalies.

Filipe Falcão et al. [4] experimentally evaluated a pool of 12 unsupervised
anomaly-detection algorithms on five data set attacks. Their results allowed them
to elaborate on a wide range of arguments, from the behavior of an individual algori-
thm to the suitability of a data set for anomaly detection. They identified the families
of algorithms that were more effective for intrusion detection as well as the fami-
lies that were more robust to the choice of configuration parameters. A proposal of
an anomaly-detection framework for video patches was proposed in [15]. The me-
thod they proposed is named HMOF and is characterized with low computation time
and high efficiency. They experimentally showed that their proposed method worked
better than other methods for anomaly detection in real time.

Other research in this field [13] proposed a data-stream anomaly-detection al-
gorithm that was mainly based on a self-set threshold with extreme value theory
(ESOD). The threshold in this proposed algorithm was updated in real time in order
to be adopted for real-time streams; the algorithm showed good usability and high
efficiency. One algorithm for anomaly detection in manufacturing equipment was pro-
posed in [8]. In their method, they implemented it in Java and C++; brief technical
details about how their method worked were given here.

Another algorithm for anomaly detection in both real-time and batch data was
proposed in [12]. The authors used K-Means clustering for anomaly detection. The aim
of this algorithm was to detect any potential problems of offshore rotating machinery.
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They compared their method with the signal analysis method. Having this view on
the actual research, we can see that research has not been made that measures the
performance of HW-GA with different computers of differing performance levels and
also tests the algorithm with larger data sets while analyzing how the visualization
process affects its performance.

3. Benchmark data sets and testing environments

Different databases with different sizes were used for our experiments in order to
test the performance of algorithms using computers with different performance levels
(testing environments). The experiments were performed with three computers3 with
different performance levels as follows:
1) Lenovo Legion Y520 – Intel core i7-7700HQ and 16 GB RAM.
2) MSI GL 75 Leopard – Intel (R) Core (TM) i7-10750H CPU @ 2.60 GHz, 2592
Mhz, 6 Cores(s), 12 Logical Processor(s)

3) High-performance computer – Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
(two processors) with 192 GB RAM (191 GB usable).

Real data from e-dnevnik, the IoT sensors (from the Smart Agriculture Libelium
sensors), the COVID-19 data set [12], and the NAB benchmark [10] was used in our
experiments. NAB contains data sets with real-world labeled data files from across
multiple domains as well as the associated anomaly detectors that are applicable for
the streaming data. We used three NAB data sets: HotGym (the energy consumption
from one gym center in Australia), CPU utilization, and NycTaxi (the number of rides
for NYC taxis). We also used the COVID-19 data set (this data set had everyday-
level data on the number of influenced cases, recoveries, and deaths from January 2020
to December 2020 [5] for different countries) and Libelium sensor data (containing
air-quality sensor data such as CO2, NOISE, etc.); this data was time-series data,
so the number of cases on any given day was the cumulative number. The data was
available from Jan 22, 2020, through Dec 6, 2020. The data set had eight columns
(172,480 records – rows), as did our e-dnevnik. Parts of the data sets are shown in
Table 1 below. The data sets contained two main attributes (timestamps and values),
which were generated in a log file. The first three data sets contained benchmark data
with known anomalies, and the last three from e-dnevnik, the Libelium sensors, and
the COVID-19 data set contained real data where the anomalies are unknown. We
tested HW-GA with all of them in order to see whether the algorithm could find the
anomalies; even when we did not specify the intervals of the anomalies, we followed
the logic of the training and test sets. The first two data sets contained real values, and
the last three had integer values. The following figure (Fig. 1) presents the COVID-19
data (the anomaly in this data is indicated with red circle).

3The equipment that was used for the experiments in this research was financed by “The develop-
ment and implementation of a PhD Program in ICT for the Kosovo Education System (PhDICTKES)
Project No: 609990-EPP-1-2019-1-SE-EPPKA2-CBHE-JP”
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Figure 1. Anomalies in COVID-19 data

Table 1
Part of benchmark data used for experiments

HotGym CPU utilization Nyctaxi

Timestamp
KW energy
consumption

Timestamp Metric Values Timestamp Value

7/2/2010
0:00

21.2
4/10/2014
0:04

93.1456
7/1/2014
0:00

10,844

7/2/2010
1:00

16.4
4/10/2014
0:24

94.5935
7/1/2014
0:30

8127

7/2/2010
2:00

4.7
4/10/2014
0:44

93.521
7/1/2014
1:00

6210

Rtime e-dnevnik COVID-19 Libelium SmartCityPro

Timestamp
KW energy
consumption

Timestamp Metric Values Sensor Value Timestamp

6/13/2016
0:00

6431 1/22/2020 1 CO2 –1
6/8/2021
14:55

6/13/2016
0:00

345 1/22/2020 14 PRES 96821.63
6/8/2021
14:55

6/13/2016
0:00

354 1/22/2020 6 HUM 41.6
6/8/2021
14:55

This data set had everyday-level data on the number of influenced cases, recove-
ries, and deaths from January 2020 to December 2020 (for different countries) [12].
The data is everyday data, and the number of positive cases grows (which means that,
if the number of positive cases falls very quickly for one day, this means something
has gone wrong based on the previous trend of the positive case growth).

4. Algorithms used for testing

Our proposed Holt-Winters genetic algorithm (HW-GA) [7] is an anomaly-detection
algorithm for streaming data. HW-GA was compared to ARIMA [9] and the moving
average algorithm [1] (which is used mostly for modeling univariate time series).
The comparison was done also with the existing Holt-Winters algorithm and some
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version of a modified Holt-Winters. In Figure 2, the model for the HW-GA method
is presented (which is composed of several steps). Starting from the input step where
the data set came, the annotated anomaly interval is defined as the interval where
one anomaly may occur. Then, the next stage is the computation of the anomaly-
detection parameters by using genetic algorithm. As a result, we obtain optimal values
for the algorithm parameters that are used for the algorithm evaluation and anomaly
detection [7]. The main stage is the next stage, where the detection of anomalies is
done for data streams that arrive in real time. This stage used the optimal parameters
that were computed from the second stage [7]. The fourth stage is the results that are
checked by a human and classified as TP, FP, or FN. The result taken in this step is
used again in the second stage for the further optimization of the anomaly-detection
parameters [12].

Figure 2. Model for HW-GA method for anomaly detection [7]

5. Performance measurement of
HW-GA anomaly-detection algorithm
with high-performance computer

The performance of HW-GA [7] is tested in this paper, and the algorithm is compared
with five other algorithms. The execution time and CPU usage were measured on
three different computers. The testing was done in two forms. The first three tables
show the results for the algorithms with a visualization of the results, and the last
three tables show the results of the algorithms without the visualization process. Also,
a comparison of the results is shown by the charts in Figures 3–6.

The algorithmś evaluation focus was on execution response time and CPU usage.
These two parameters were measured in the running times of the algorithms. The
algorithms were implemented in the R language; the beginnings and ends of the codes
have a time measurement code that shows us the time that each algorithm takes to
be executed. On the other side, the CPU usage is monitored in real time when the
algorithm is running.
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Figure 3. Comparison of performance for three computers
for HW-GA with visualization process

Figure 4. Comparison of performance for three computers
for HW-GA with visualization process

In Figures 5 and 6, we visually show a comparison between the performance of
HW-GA with the visualization process and without visualization. We can see that
the visualization affects the performance; for example, the maximum value for the
execution time was 15 seconds with visualization, but the maximum value was 4 se-
conds without the visualization. The same is not true for CPU usage, however; here,
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we conclude that, if the amount of data is large, the CPU usage is almost the same
with or without the visualization process.

Figure 5. Comparison of execution times for three computers for HW-GA

Figure 6. Comparison of CPU usage for three computers for HW-GA

These parameters are important for us because HW-GA will need to work in
a real-time environment. Tables 2–7 show the execution times and CPU usage for six
algorithms (which are each compared with HW-GA). The experiments were done on
real data and benchmark data as described above. What we can see from these tables
is that the execution times and CPU usage were smaller when the performance of
the computer was higher; this means that a higher-performance computer results in
smaller execution time and CPU usage.



404 Jakup Fondaj, Zirije Hasani, Samedin Krrabaj
T
ab
le
2

E
xp
er
im
en
ta
l
re
su
lt
s
fr
om
C
P
U
us
ag
e
an
d
ex
ec
ut
io
n
ti
m
e
w
it
h
co
m
pu
te
r
1
w
it
h
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

4.
80
72
9

16
.0

0.
94
00
00
1

4.
2

0.
32
87
28
9

2.
3

0.
90
73
49
6

6.
4

15
.1
70
57
92

16
.8

0.
33
01
17

1.
6

18
.1
70
57
92

19
.8

H
W
ca
lc
.
M
A
SE

5.
57
83
03

17
.1

0.
34
12
6

4.
6

0.
38
99
83
2

5.
3

2.
38
90
23

15
.7

20
.3
54

18
.6

0.
41
34
04

6.
3

23
.3
54

21
.6

H
W
de
f.
M
A
SE
(k
)

5.
28
15
88

16
.5

0.
33
70
70
9

4.
5

0.
35
29
60
1

4.
0

2.
45
76
2

15
.0

21
.1
36
86

17
.3

0.
44
55
6

5.
6

24
.1
36
86

20
.3

H
W
de
f.
M
A
SE
(k
,n
)
5.
24
92
09

17
.2

0.
33
70
98
1

4.
3

0.
37
82
69
9

2.
5

2.
39
19
95

15
.5

20
.5
80
03

17
.3

0.
40
36
06
2

6.
4

24
.5
80
03

20
.3

A
R
IM
A

0.
13
75
34
9

5.
0

0.
38
97
38
1

1.
0

0.
34
68
54

1.
2

1.
94
24
76

8.
7

17
.4
74
28

17
.4

4.
94
23
97

16
.9

21
.4
74
28

20
.4

M
A

40
.5
10
32

32
.1

0.
56
97
04
1

2.
9

0.
22
28
18
1

1.
2

6.
34
10
2

16
.8

24
.3
99
01

17
.5

0.
31
61
08

1.
2

28
.3
99
01

20
.5

T
ab
le
3

E
xp
er
im
en
ta
l
re
su
lt
s
fr
om
C
P
U
us
ag
e
an
d
ex
ec
ut
io
n
ti
m
e
w
it
h
co
m
pu
te
r
2
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

4.
02
61
23

15
.7

0.
75
09
84
9

2.
4

0.
32
87
20
9

2.
3

0.
90
24
83
7

4.
6

14
.1
09
35
71

15
.9

0.
29
49
66

2.
5

17
.1
09
35
71

18
.9

H
W
ca
lc
.
M
A
SE

4.
33
91
86

15
.5

0.
85
16
56

2.
5

0.
80
67
77

2.
7

2.
46
28
65

9.
2

15
.0
42
44

16
.3

0.
83
95
12

2.
6

18
.0
42
44

19
.3

H
W
de
f.
M
A
SE
(k
)

4.
59
97
22

15
.7

0.
78
75
40
9

2.
7

0.
80
33
64

2.
6

2.
42
09
55

9.
1

15
.3
73
23

16
.1

0.
80
67
61

2.
7

18
.3
73
23

19
.1

H
W
de
f.
M
A
SE
(k
,n
)
4.
39
22
56

15
.8

0.
78
08
65

2.
6

0.
78
52
08

2.
1

2.
22
19
19

7.
8

15
.4
71
5

16
.2

0.
82
90
34
1

2.
9

18
.4
71
5

19
.2

A
R
IM
A

3.
18
39
86

16
.1

0.
20
4

0.
1

0.
12
50
02
1

0.
9

1.
17
15
67

4.
7

10
.6
73
19

16
.2

2.
40
57
16

13
.0

13
.6
73
19

19
.2

M
A

14
.4
32
28

16
.1

0.
34
36
74
9

2.
0

0.
12
49
65
2

1.
0

3.
95
45
51
9

16
.4

14
.8
94
39

16
.2

0.
14
05
54

0.
5

17
.8
94
39

19
.2



Performance measurement with high-performance computer using HW-GA... 405
T
ab
le
4

E
xp
er
im
en
ta
l
re
su
lt
s
fr
om
C
P
U
us
ag
e
an
d
ex
ec
ut
io
n
ti
m
e
w
it
h
hi
gh
-p
er
fo
rm
an
ce
co
m
pu
te
r
3
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

2.
54
4

3.
2

0.
29
08
51
8

0.
3

0.
32
65
85

0.
3

0.
10
93
94
9

0.
3

14
.0
23

2.
6

0.
29
54
28

0.
9

17
.0
23

2.
6

H
W
ca
lc
.
M
A
SE

2.
68
1

3.
0

0.
37
47
46
8

0.
3

0.
39
27
39
1

0.
8

2.
69
77
17

2.
7

22
.7
95

3.
6

0.
39
20
76

0.
9

25
.7
95

5.
6

H
W
de
f.
M
A
SE
(k
)

2.
78
87
04

3.
1

0.
35
04
99
9

0.
1

0.
33
90
37
9

0.
9

2.
83
15
5

3.
0

25
.2
19
61

3.
7

0.
40
10
22

1.
0

28
.2
19
61

5.
7

H
W
de
f.
M
A
SE
(k
,n
)
2.
69
66
58

3.
2

0.
36
25
24

0.
3

0.
35
23
51
9

0.
6

2.
85
05
1

3.
1

24
.9
6

3.
5

0.
35
47
50
9

1.
0

27
.9
6

5.
5

A
R
IM
A

2.
30
14
31

2.
3

0.
43
73
88
9

0.
5

0.
33
63
27
1

0.
3

2.
38
85
46

2.
5

18
.3
56
16

3.
7

0.
34
36
61
1

0.
1

21
.3
56
16

5.
7

M
A

6.
13
36
97

3.
5

0.
74
98
15

0.
6

0.
30
50
26
1

0.
1

7.
01
92
66

3.
4

1
m
in

3.
7

0.
35
92
83

0.
1

1.
1
m
in

5.
7

T
ab
le
5

E
xp
er
im
en
ta
l
re
su
lt
s
fr
om
C
P
U
us
ag
e
an
d
ex
ec
ut
io
n
ti
m
e
w
it
h
co
m
pu
te
r
1
(l
en
ov
o)
w
it
ho
ut
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

4.
02
61
23

15
.7

0.
75
09
84
9

2.
4

0.
71
02
41

2.
3

0.
90
24
83
7

4.
6

2.
10
93
57
1

17
.9

0.
77
49
66

2.
5

3.
10
93
57
1

18
.9

H
W
ca
lc
.
M
A
SE

4.
33
91
86

15
.5

0.
85
16
56

2.
5

0.
80
67
77

2.
7

2.
46
28
65

9.
2

2.
55
93
18

17
.3

0.
83
95
12

2.
6

3.
55
93
18

18
.3

H
W
de
f.
M
A
SE
(k
)

4.
59
97
22

15
.7

0.
78
75
40
9

2.
7

0.
80
33
64

2.
6

2.
42
09
55

9.
1

2.
52
03
35

17
.1

0.
80
67
61

2.
7

3.
52
03
35

18
.1

H
W
de
f.
M
A
SE
(k
,n
)
4.
39
22
56

15
.8

0.
78
08
65

2.
6

0.
78
52
08

2.
1

2.
22
19
19

7.
8

2.
52
12
7

17
.7

0.
82
90
34
1

2.
9

3.
52
12
7

18
.7

A
R
IM
A

3.
18
39
86

16
.1

0.
20
4

0.
1

0.
12
50
02
1

0.
9

1.
17
15
67

4.
7

10
.6
73
19

16
.2

2.
40
57
16

13
.0

11
.6
73
19

17
.2

M
A

14
.4
32
28

16
.1

0.
34
36
74
9

2.
0

0.
12
49
65
2

1.
0

3.
95
45
51
9

16
.4

7.
93
28
33

17
.0

0.
14
05
54

0.
5

8.
93
28
33

18
.0



406 Jakup Fondaj, Zirije Hasani, Samedin Krrabaj
T
ab
le
6

E
xp
er
im
en
ta
l
re
su
lt
s
w
it
ho
ut
re
su
lt
vi
su
al
iz
at
io
n
fr
om
C
P
U
us
ag
e
an
d
ex
ec
ut
io
n
ti
m
e
w
it
h
co
m
pu
te
r
2
w
it
ho
ut
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

1.
24
51
21

10
.9

0.
15
95
99
1

3.
3

0.
16
30
22

0.
4

0.
19
18
1

1.
9

2.
21
24
04

13
.4

0.
15
69
82
9

3.
0

3.
21
24
04

14
.4

H
W
ca
lc
.
M
A
SE

0.
71
10
80
1

12
.8

0.
17
54
94
2

4.
2

0.
17
75
04
1

0.
9

0.
37
08
83

2.
7

2.
59
02
35

17
.4

0.
18
74
75
9

.1
3.
59
02
35

18
.4

H
W
de
f.
M
A
SE
(k
)

0.
83
05
30
9

10
.7

0.
17
46
39

4.
0

0.
17
35
62

0.
5

0.
38
93
73
1

4.
0

2.
72
96
38

17
.1

0.
17
26
42
9

3.
4

3.
72
96
38

18
.1

H
W
de
f.
M
A
SE
(k
,n
)
0.
69
14
44
2

9.
5

0.
17
90
64

2.
9

0.
19
16
46
1

2.
0

0.
37
22
1

4.
2

2.
72
26
28

17
.1

0.
18
18
11
8

4.
2

3.
72
26
28

18
.1

A
R
IM
A

0.
13
75
34
9

5.
0

0.
38
97
38
1

1.
0

0.
34
68
54

1.
2

1.
94
24
76

8.
7

17
.4
74
28

17
.4

4.
94
23
97

16
.9

18
.4
74
28

18
.4

M
A

40
.5
10
32

32
.1

0.
56
97
04
1

2.
9

0.
22
28
18
1

1.
2

6.
34
10
2

16
.8

6.
39
90
1

17
.5

0.
31
61
08

1.
2

7.
39
90
1

18
.5

T
ab
le
7

W
it
h
hi
gh
-p
er
fo
rm
an
ce
co
m
pu
te
r
3
w
it
ho
ut
vi
su
al
iz
at
io
n
pr
oc
es
s

E
-d
ne
vn
ik

>
40
,0
00

N
Y
cT
ax
i-
14
41

H
ot
G
Y
M
-1
69

C
P
U

us
ag
e-
36
53

C
O
V
ID
-1
9
–

17
2,
48
0

C
O
V
ID
-1
9
–

fo
r
on
e
co
un
tr
y
26
4

L
ib
el
iu
m

Sm
ar
tC
it
yP
ro
-2
75
,0
00

A
lg
or
it
hm
s

E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on

ti
m
e
[s
]

C
P
U

us
ag
e
[%
]
E
xe
cu
ti
on
ti
m
e

[s
]

C
P
U

us
ag
e
[%
]

H
W
G
A

1.
15
58
29

1.
9

0.
17
18
29
9

0.
3

0.
16
08
31
8

0.
3

0.
10
93
94
9

0.
3

2.
08
76
78
9

2.
6

0.
14
74
61
9

0.
9

3.
08
76
78
9

3.
6

H
W
ca
lc
.
M
A
SE

1.
96
73
61
1

2.
3

0.
18
01
25

0.
3

0.
21
86
95
9

0.
8

0.
49
34
95
9

0.
9

3.
07
73
89

3.
6

0.
21
86
91
8

0.
9

4.
07
73
89

4.
6

H
W
de
f.
M
A
SE
(k
)

1.
16
58
54

2.
6

0.
20
30
74
9

0.
1

0.
18
74
53

0.
9

0.
46
86
31

0.
8

3.
68
08
16

3.
5

0.
20
30
65
9

1.
0

4.
68
08
16

4.
5

H
W
de
f.
M
A
SE
(k
,n
)
1.
04
66
13

2.
1

0.
20
30
71
8

0.
3

0.
20
99
21
6

0.
6

0.
54
79
25

1.
1

3.
58
10
17

3.
5

0.
20
30
72
1

1.
0

4.
58
10
17

4.
5

A
R
IM
A

2.
30
14
31

2.
3

0.
43
73
88
9

0.
5

0.
33
63
27
1

0.
3

2.
38
85
46

2.
5

18
.3
56
16

3.
7

0.
34
36
61
1

0.
1

19
.3
56
16

4.
7

M
A

6.
13
36
97

3.
5

0.
74
98
15

0.
6

0.
30
50
26
1

0.
1

7.
01
92
66

3.
4

7.
5

3.
7

0.
35
92
83

0.
1

8.
5

4.
7



Performance measurement with high-performance computer using HW-GA... 407

6. Result discussion

Measuring the performance of algorithms is not an easy task; however, by doing this,
we can come up with many conclusions and comparisons. For these experiments, we
used three computers with different performance levels where the CPU usage and
execution time are measured for each algorithm. We analyzed how the visualization
phase of an algorithm affects its performance and how the amount of data also affects
its performance by using different-sized data sets.
From our results, we can see that the execution time was 2.544 seconds faster

in HW-GA on the third computer using e-dnevnik data with more than 40,000 data
bits; it was 17 seconds faster with a larger data set of more than 270,000 items. Also,
the CPU usage was smaller when using real data. The execution time also depends
on the amount of data to be tested; this also affects CPU usage. However, when this
was compared to HW-GA, it showed better results.
With the real data, the last algorithm (MA) showed greater CPU usage 20.5% for

the first computer; in the third computer, this value was more than 50% smaller 5.7%.
This was not the same situation with the benchmark data; this happened because the
amount of data from the IoT sensor that we collected from the Smart Agriculture
Libelium Sensors’ real data was greater than 270,000, whereas this amount was much
smaller in the others (NYcTaxi – 1441 records; HotGYM – 169 records; CPU usage
– 3653 records).
The testing showed that the execution time and CPU usage was more than

50% greater with the visualization results; this means that it affected the algorithm’s
execution time. For this reason, we concluded that, if we need to find just one anomaly,
we can do so without visualization. If we need to analyze where an anomaly is in
more detail, we need to visualize the results. This means that we may know when to
use visualization and where/when not to. For example, we may automatically check
whether one anomaly is found – if so, a visualization should be be performed; if not,
then it is not necessary.
Also, we found that the performance of the computer affected the CPU usage as

well as the execution time, which means that a computer with greater performance
abilities results in lower CPU usage and execution time. The results and comparisons
from the experiments are visualized in Figures 3–6. What differs is the algorithm
execution time, which increases when the amount of data is large; however, what is
important is that a high-performance computer reduces the execution time of the
algorithm. These results allow us to conclude that we can improve HW-GA’s perfor-
mance by increasing the computer’s performance. We can conclude that we need to
modify HW-GA by adding more parameters in the process of finding optimal para-
meters in order to see whether it affects the algorithm’s execution time. Based on
these facts that are described here, we can say that our algorithm outperforms the
others algorithm in both measurement parameters (execution time and CPU usage);
also, better results are shown with a large amount of data, which is very important
for big data.
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7. Conclusion

Measuring the performance of anomaly detection in a real-time big-data algorithm is
very important because it needs to be fast to deal with real-time data. The aims of
this paper were many.

First of all, the performance of the algorithm was tested on three different com-
puters with different performance levels to analyze how it affected the performance
of HW-GA. Then, the amount of data that was used for the testing was larger for
more than 270,000 records to see how the algorithm’s performance would be affected
by increasing the amount of data. Third, we analyzed how the visualization process
in this algorithm affected the algorithm’s execution time.

Based on this research we can conclude that HW-GA is efficient in regards to the
algorithm’s execution time and CPU usage. Also, the performance of the computer
affects positively the performance of the algorithm by reducing the execution time
and CPU usage. HW-GA shows better results based on the measurement parameters
(execution time and CPU usage) with a large amount of data, which is very important
for big data. In all of our testing environments, the algorithm showed less CPU usage
and lower execution times when compared to the other algorithms. These results are
shown in the tables above.

We also conclude that the visualization of HW-GA’s results affects more than
50% of its execution time. For this reason, we recommend that visualization should
be performed only when one anomaly is found in order to better analyze where it
happens. In other cases where one anomaly is not found, visualization should not be
performed. The proposed method is meant for time-series log data and has not yet
been tested on other types of data to see whether the results would be the same. This
is a limitation of our method and will be tested in the future; based on the results,
we will adapt it for other types of data.

In our continuous work, we will modify the algorithm by adding more parameters
in the optimization process with a genetic algorithm in order to see whether it affects
the algorithm’s performance.
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