COMPUTER SCIENCE e 24(1) 2023 https://doi.org/10.7494 /csci.2023.24.1.4605

SUHAIL AHMAD
Ajaz HussAIN MIR

SECURING CENTRALIZED SDN CONTROL
WITH DISTRIBUTED BLOCKCHAIN
TECHNOLOGY

Abstract | Software-Defined Networks (SDN) advocate the segregation of network control
logic, forwarding functions and management applications into different planes
to achieve network programmability and automated and dynamic flow control in
next-generation networks. It promotes the deployment of novel and augmented
network-management functions in order to have flexible, robust, scalable, and
cost-effective network deployments. All of these features introduce new rese-
arch challenges and require secure communication protocols among segregated
network planes. This manuscript focuses on the security issue of the south-
bound interface that operates between the SDN control and the data plane.
We have highlighted the security threats that are associated with an unpro-
tected southbound interface and those issues that are related to the existing
TLS-based security solution. A lightweight blockchain-based decentralized se-
curity solution is proposed for the southbound interface to secure the resources
of logically centralized SDN controllers and distributed forwarding devices from
opponents. The proposed mechanism can operate in multi-domain SDN deploy-
ment and can be used with a wide range of network controllers and data plane
devices. In addition to this, the proposed security solution has been analyzed in
terms of its security features, communication, and re-authentication overhead.

Keywords | SDN, SDN security, blockchain, southbound interface, TLS, threats in SDNs

Citation | Computer Science 24(1) 2023: 5-30

Copyright | © 2023 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.



https://doi.org/10.7494/csci.2023.24.1.4605
https://creativecommons.org/licenses/by/4.0/

6 Suhail Ahmad, Ajaz Hussain Mir

1. Introduction

The extensive efforts of researchers over the years to transform the Internet to a more
reliable, programmable, open, manageable, and secure infrastructure have resulted
in SDN. SDN introduces a novel networking architecture that segregates network in-
telligence from packet forwarding by placing network control logic into an external
software-based controller. Software-based SDN controllers form the SDN control pla-
ne and provide a birds-eye view of an entire network at a single central point. This
centralized network control simplifies network management and enables dynamic and
automated flow control. Besides the centralized network control, SDN fosters the con-
cept of network programmability, wherein diverse network functions are implemented
as software applications — either on top of the SDN controller or as independent
data-analysis functions.

The triple-layered SDN architecture that was proposed by the Open Network
Foundation (ONF) is shown in Figure 1.

Management Plane

=}
1 Y
L(—L[ Applications ]

AP1 API

Network Operating System

Various Modules for flow management,
link detection, topology manager,
statistics collection, ete.

APl APl

Forwarding Plane

Control Plane

Figure 1. SDN Architecture

The bottom layer (or the data plane) includes simple forwarding devices that
are called switches; these match any received packet headers against the flow rules or
instructions that are issued by the SDN controller. The middle layer (or the control
plane) comprises SDN controllers, which may implement a specific network operating
system (NOS) to abstract low-level control logic details from management applications



Securing centralized SDN control with distributed blockchain technology 7

and convert high-level network policies into flow rules to properly configure and mana-
ge the entire data plane infrastructure [33]. The top layer (or the management plane)
involves various SDN applications that implement specific network-control functions
like load balancing, routing, firewalls, etc. The applications in the management plane
can be implemented by using either controller-specific programming languages or high-
level SDN programming languages (like Frenetic [23], Pyretic [42], Procera [55], etc).

The information exchange among the three layers/planes in SDN takes place
over the southbound, northbound, and eastbound/westbound interfaces. The mana-
gement applications use the northbound interface to exchange information with the
SDN control plane. It can be compared with the POSIX or win32 standard of ope-
rating systems, which provide the necessary abstractions to ensure controller and
programming language independence. The primary goal here is to conceal complex
network-wide configurations and state management to simplify the roles of network
administrators by providing suitable high-level abstractions.

The eastbound interface is used to exchange information between SDN control-
lers, while the westbound interface enables information exchanges between centra-
lized SDN controllers and traditional distributed control plane. Neither the east-
bound nor the westbound interface has been standardized, and various controllers
[13, 22, 32, 44, 49, 51] use diverse approaches for inter-controller communication and
to communicate with legacy distributed control [28-30]. On the other hand, the open
vendor agnostic interface between the data and the control plane is called the south-
bound interface (SBI); in this manuscript, our main goal is to secure the information
exchange at this interface.

In brief, the SDN paradigm is a promising architecture that is still in its early
stage of development and requires further advancements in all of the three planes, and
more importantly, in the inter-plane communication protocols in order to realize its
full benefits in production and realistic deployments. The two key aspects that act as
impediments in widespread SDN acceptance are interfacing with legacy distributed
controls and SDN security. The former has received much attention from the research
community, and numerous hybrid SDN controllers and data plane devices (DPDs)
have been proposed (which we analyzed in our previous work [3]). The security aspect
of SDN requires more consideration in terms of the development and testing of secure
and protected SDN layers and inter-communication mechanisms in order to withstand
diverse real-world security threats.

1.1. Contributions

The primary focus of this manuscript is to protect SDN control traffic from adversaries
and malicious devices. To the best of our knowledge, this is first time a blockchain-
based multi-domain authentication and key-exchange mechanism has been proposed
to secure a centralized SDN control. The proposed lightweight blockchain-based decen-
tralized security mechanism for the southbound interface provides additional security



8 Suhail Ahmad, Ajaz Hussain Mir

features as compared to the existing approaches. In this manuscript, the major con-
tributions that are made are as follows:

e We provide an overview of key resources in different DPDs and SDN controllers.

e We highlight how an insecure southbound interface jeopardizes the resources of
both the control and data planes.

e We summarize various security threats or attacks that are plausible over an
unprotected SBI.

e We emphasize the various vulnerabilities and limitations of the most prominent
TLS-based security solution for the SBI.

e We describe our proposed robust, secure, and distributed mechanism for SBI
security.

e We analyze the proposed security mechanism in terms of its security features,
communication overhead, and re-authentication cost.

1.2. Paper outline

The manuscript is organized as follows: Section 2 provides background information
regarding the southbound interface and blockchain technology. Section 3 highlights
southbound interface security vulnerabilities/threats/attacks, and Section 4 presents
related works and the challenges in the existing approaches. Section 5 presents the
proposed approach, and Section 6 elaborates the security features and analyzes
the proposed mechanism. Finally, the paper is concluded in Section 7.

2. Background: Southbound Interface (SBI)
and blockchain technology

The three distinguishing features of the SDN paradigm are dynamic traffic-flow con-
trol, centralized network visibility, and network programmability. Such features have
revolutionized the overall network control and basic packet forwarding. However, these
features have also introduced new security challenges and threat vectors into the ne-
twork architecture. The separation of the forwarding infrastructure, control functions,
and management applications into three planes have introduced new threat interfa-
ces and vulnerable targets. The information exchange among the SDN planes require
secure communication channels that necessitate the use of cryptographic mechanisms
in order to ensure message integrity, confidentiality, and source authentication. In this
paper, our goal is to authenticate devices in the SDN domain and secure the traffic
between the control and data planes. Therefore, we first elaborate the services that
are offered and resources that are involved in these two planes; in the next section, we
highlight how an insecure SBI can be exploited by opponents to disrupt such services
and resources.



Securing centralized SDN control with distributed blockchain technology 9

2.1. SDN control plane

The SDN control plane usually involves general-purpose hardware that executes
NOS [3]. NOS is comprised of basic control programs that are necessary to mana-
ge DPDs. It hides the intricate network control logic from applications and presents
a simplified and comprehensive view of the network devices to the applications (which
is analogous to the operating system of a PC). More specifically, NOS encompasses
the necessary control programs for topology detection and network traffic manage-
ment. The core control modules that are commonly observed in the majority of NOSs
are shown in Figure 2.

Along with the topology-manager module, the link-detection module provides
conversant topology information. The controller discovers switches, hosts, and links
in the network with the help of an initial handshake process, packet_in messages, and
LLDP protocol, respectively [31]. Using this topology information, traffic flow paths
are defined across the network by the decision-making module. Two other important
core modules are the flow and storage managers. The former uses the SBI to express
and alter traffic-flow rules in DPDs, whereas the latter manages the network state
information. In addition to these, the SDN controller usually involves other supple-
mentary modules like a statistic-collector module, a dedicated queue-manager module,
and a module manager for flow-statistic collection, the management of various queues,
and the orchestration of information exchanges between different controller modules,
respectively.

-

Figure 2. SDN Controller Modules

In short, the intelligence of the entire network resides in the SDN control plane.
Logically or physically centralized SDN controllers enable dynamic network control
and vibrant network monitoring. In dynamic network control, the forwarding devices
are programmed as per the policy directives that are expressed by the applications in
the management plane and can be reconfigured as per the changing network state. In



10 Suhail Ahmad, Ajaz Hussain Mir

network monitoring, on the other hand, SDN controllers retrieve flow-statistic infor-
mation from the forwarding devices that can be analyzed by numerous applications
in the management plane (like load balancing, security, etc.). If traffic congestion or
other anomalies like security attacks are detected, the SDN control plane dynamically
reprograms the flow rules so that the network traffic is diverted to under-utilized pa-
ths or an intrusion-detection system (IDS). The network traffic-statistic information
is also beneficial for network provisioning in order to meet future traffic demands.
Both of these control functions involve bi-directional information exchanges between
the control and data planes via the SBI. Therefore, it necessitates a reliable informa-
tion exchange at the SBI in order to determine the correct network state and detect
anomalies like congestion, attacks, or faults in the network. To prevent opponents
or malicious devices from accessing the network state information and disturbing the
smooth functioning of the network necessitates protecting the communication channel
between the control and data plane. However, most SDN controllers do not use secure
SBIs except for a few (like OpenDayLight [44], ONOS [13], and Rosemary [51]).

2.2. SDN data plane

The SDN paradigm emerged with a notion of simple and dumb forwarding devices
that are managed by centralized SDN controllers. Immediately after the introduction
of OpenFlow [37], numerous network-programming proposals [23, 42, 55] promoted
this two-tier programming model wherein the entire network intelligence and stateful
processing are assigned to the SDN controller, and stateless DPDs forward packets
as per the forwarding rules that are communicated by the remote controller. This
centralized network intelligence is suitable for those network deployments where the
forwarding state changes does not have stern real-time requirements and mostly de-
pend on the global network state. However, it can become a bottleneck for various
applications wherein wire-speed reactions are required for various events like simple
port/flow state changes. Consequently, researchers have proposed numerous appro-
aches over the last few years for offloading some control tasks and stateful packet
processing inside DPDs/switches in order to address the control latency issue of the
two-tier programming model. Here, we first present the traditional SDN data plane
using OpenFlow; then, an overview of a stateful SDN data plane is provided.

2.2.1. Conventional SDN data plane using OpenFlow

The main aim of OpenFlow designers was to promote low-cost and high-performance
network implementations that can provide flexible and adaptable innovations [37].
The authors of OpenFlow proposed an abstract model of a programmable flow table
that is commonly termed as “match/action” abstraction. This match/action abstrac-
tion is comprised of the following three main parts (as shown in Figure 3a): (i) rule —
a combination of header fields that range from Layer 2-Layer 4; (ii) action — one or
more actions that specify the further processing of received packets; and (iii) stats —
counters for statistic collection that is relevant to the matching rule.



Securing centralized SDN control with distributed blockchain technology 11

a)

Switch | MAC MAC  |Ethemnet | VLAN S 1P TCP Source| TCP Dest,
Port | Source | Destination | Type 1D Destination Port Port

Version 1.2 Version 1.3 Version 1.4 Version 1.5
2011 [6] 2012 [7) 2013 (8] 2015 [9]

: w-ﬁln"’ « Table Miss = Synchronized = Egress Table
. M Illwf.‘l troll Entry Table = Extended
s * Meter Table * Bundle support bundle

Figure 3. Flow rule — Match, Action, Stats in OpenFlow (a); OpenFlow evolution (b)

Since its inception, OpenFlow has gone through a brisk evolution. The basic
version 1.0 [45] provided only a single flow table with 12 fixed header fields, whereas
the latest version 1.5 [46] introduced a number of advanced functions along with 41
matching fields. The evolution of OpenFlow is shown in Figure 3b, along with the most
prominent features that were added with each version. After the standardization of
version 1.0, it immediately became evident that it was very restraining; subsequently,
three important advances (flexible match/action, multiple flow tables, and tailored
stateful extensions) were made to OpenFlow in the advanced versions.

The most important extension in OpenFlow is group tables, which provide ele-
mentary stateful operations in the DPDs. For instance, the original OpenFlow specifi-
cation required remote controller intervention to instantiate a new flow rule in case of
a link/port failure. Such controller dependence will result in delayed responses; in the
intervening period, those packets that were destined to a failed port would be lost.
The fast failure group table contains multiple action buckets to address this issue.
Another group table is select that enables load balancing in the data plane. Gro-
up tables are quite suitable for handling such situations, but they are still optional
and loosely specified in the latest OpenFlow specification. Also, these extensions in
the OpenFlow evolution approve the essence of stateful operations inside the DPDs.



12 Suhail Ahmad, Ajaz Hussain Mir

2.2.2. Stateful SDN data plane

Initially, OpenFlow proved to be quite pragmatic, as it opened doors for programma-
bility that was well beyond what was realizable at that time with closed commercial
switches. It provided more flexibility with immediate deployability by a simple firm-
ware upgrade. However, the increased control latency due to the continuous data and
control plane signaling that is required in OpenFlow made the research community
consider other options like offloading limited control tasks and stateful flow processing
inside the DPDs. The initial breakthrough in this direction was provided by P4 [18],
OpenState [16], and FAST [43], which defined switch-level primitives inside the DPDs
to handle the flow states. Their basic idea was to allow the programmer to define sta-
teless flow tables in the switches (like OpenFlow) and also those flow rules that were
termed as stateful rules that changed as per the state of a particular flow. Since then,
new switch architectures [17, 53], stateful data plane platforms [16, 48, 59], compilers,
programming languages, and frameworks [24, 25, 27, 52] have been proposed.

The stateful SDN data plane overcomes the limitations of OpenFlow by provi-
ding more-significant programming abstractions in the data plane that simplify the
configuration and stateful operations inside the DPDs. The overall processing of the
stateful data plane can be summarized as follows:

i) state storage: per-flow state information is stored inside DPDs (including distri-
buted state storage);
ii) state transition: allows one to perform programmatically formalized in-switch
state transitions upon receiving packet or occurrence of event in data plane;
iii) autonomous decisions: capability to perform autonomous decisions inside DPDs
based on locally stored state information without involving SDN controller.

Therefore, the stateful DPDs store historical information (reflecting the current
state of a flow) of incoming and outgoing packets as per the instructions that are
received from the remote controller. The state information of a particular flow changes
either due to sending/receiving packets or the occurrence of an event like a link/port
change. This stateful data-plane processing does not violate the basic SDN principle
of separate control and data planes, as the centralized SDN controller still controls
(i) which states to be offloaded to the switch (keeping in view the performance) and
(ii) how the states will be managed by the switch.

2.3. Blockchain technology

A blockchain is basically a distributed collection of data-elements wherein each ele-
ment is termed a block. All such blocks are interlinked chronologically to form a chain
that is secured by cryptographic measures [58]. The existing blockchain systems are
broadly classified into three types: public, private, and consortium blockchains. In this
manuscript, we have used the consortium blockchain, which is a semi-decentralized
system wherein only a limited set of nodes are used to validate a block through con-
sensus. The read permissions of the blockchain records are either public or restricted.



Securing centralized SDN control with distributed blockchain technology 13

In the last decade, numerous domains have employed blockchain-based solutions
ranging from production to IoT. Various studies [6, 35, 38] have also advocated the use
of blockchain technology in SDNs. The primary motivation to develop a blockchain-
based authentication mechanism for the SDN environment is its distributed nature
and reduced communication overhead among domains/datacenters/regions. These fe-
atures are very useful in SD-WANs and multi-tenant data-center networking,.

3. Motivation: SBI security vulnerabilities

All of the SDN layers and interfaces are susceptible to different types of security
attacks, which can either compromise the target elements of a specific layer or launch
an assault from one layer to subvert another layer [19]. Some vulnerabilities and
security threats can be leveraged by using conventional techniques/mechanisms that
are commonly employed in legacy networks, whereas some challenges require new
mitigation techniques/security protocols due to the different architecture.

Attacks in SDN can be classified according to the primary objective of the attac-
ker. For instance, if an attacker eavesdrops at the SBI, the main goal of the attacker
can be to access and tamper with critical data plane information; therefore, it can
be classified as an unauthorized disclosure. An insecure control-data plane channel
can be easily sniffed by an adversary to retrieve topology, monitoring, or other mana-
gement information. A man-in-the-middle attack is also very likely over an insecure
channel wherein an intruder can subvert the information exchange between the SDN
controllers and the DPDs. In this section, we have highlighted various security threats
and challenges that can be confronted by the SDN control and data planes due to an
insecure SBI.

3.1. Data plane threats

Stateful or stateless SDN DPDs involve numerous resources like multiple-flow tables,
state memory, and packet processors that can be overwhelmed/exhausted by attackers
if an insecure communication exchange takes place at the SBI. The various security
threats against DPDs can be categorized as follows:

i) Flow table mutations/flooding: SDN controllers communicate flow-rules to
the DPDs over the SBI. If the control-data plane channel is not protected with
cryptographic mechanisms, an intruder/adversary can easily modify the rules or
overwrite/flush the existing traffic-management rules in the DPDs. The attacker
can disturb the flow tables and degrade the overall performance by (i) flooding
the switch tables with spurious flow rules and (ii) setting the parameters to ge-
nerate a continuous table miss, which would force devices to raise false alarms
for the installations of flows. The first case may result in a flow table flooding
attack wherein an attacker stores bogus rules in the flow tables and the legiti-
mate requests will be quite frequently forwarded to the SDN controller [57]. On
the other hand, the second case may result in a denial of service for legitimate
requests.



14 Suhail Ahmad, Ajaz Hussain Mir

ii) Fuzzing attacks: In an open control channel, an attacker can inject cleverly
crafted control packets into the data plane that contain malicious or malfor-
med headers that can expose prevailing vulnerabilities or can disturb the normal
packet flow processing. Such malformed control packets can lead forwarding swit-
ches to an undesired state that can have a detrimental effect on the overall switch
stability and performance [57].

iii) Reconnaissance attacks: Such attacks are also termed as side-channel attacks
wherein an attacker can commonly clout the resultant response of a target device
against a particular network situation to deduce certain implied information
that an attacker can subsequently use to launch other kinds of attacks. For
instance, an adversary can determine the control latency by sending specific
packets to a particular switch and later on use the same information to launch
a flow table flooding attack [57].

iv) State memory exhaustion attacks: In a stateful SDN data plane, each da-
ta plane device allocates memory for state transitions that are generated by
incoming packets or switch-level events. To save state information, data struc-
tures like array-based variables or state tables are used in different stateful
DPDs [16, 59]. With an insecure southbound channel, however, an attacker can
exploit the open channel to store unnecessary state information into the DPDs
to exhaust the state memory.

v) Switch malfunction attacks: Another threat vector that is derived from an
unprotected switch-controller channel is the possibility that an attacker may
force the execution of CPU-intensive tasks on a switch. For instance, an attacker
may impersonate the SDN controller and can send flow-status queries to the
switch, forcing a switch to incessantly compute the required information. The
other switch-related attacks are identity hijacking and spanning tree poisoning.
In the former case, an attacker may impersonate a legitimate switch to disconnect
a genuine one, whereas in the later case, an attacker can fabricate fake links by
using crafted LLDP packets to poison the spanning tree protocol.

3.2. Control plane threats

The control plane, which holds all of the network state information and regulates
the network resources in an effective manner, faces the following threats due to an
insecure SBI:

i) Packet-in flooding: Without cryptographic protection at the SBI, the attac-
ker can compromise numerous switches and can flood them with malicious flow
packets. In a conventional SDN, the DPDs transform such flow requests into
packet-in messages and send them to the controller for flow-rule information.
The controller processes such requests, resulting in a waste of its computational
power. Such an attack has a two-fold negative effect, as the resources of both the
switch and controller are wasted; in the worst case, this may result in a denial
of service for legitimate flows.



Securing centralized SDN control with distributed blockchain technology 15

ii) Topology poisoning: As discussed in the previous section, the SDN controller
discovers switches, hosts, and links in the network with the help of an initial
handshake process, packet_in messages, and LLDP protocol, respectively [31]. In
order to have up-to-date topology information at the centralized SDN controller,
the said message exchange takes place continuously over the data-control chan-
nel. An insecure message exchange can be exploited by an opponent to poison
such messages with fake information; in the worst case, this may result in ha-
ving incorrect topology information with fake links and nodes at the centralized
controller. Topology poisoning can also be used to perform a host-location hi-
jacking attack in which an attacker crafts LLDP packets to poison the topology
information in order to divert the traffic of a legitimate host toward an attacker’s
device [26]. In addition to this, an adversary may also exploit the device-learning
messages to create message-forwarding loops [1].

iii) NOS service disruption: Like a traditional PC operating system, the NOS
in the SDN control plane controls network resources to simplify the network
management and, at the same time, attempts to provide cost-effective resour-
ce utilization. However, most NOSs support limited security features except for
a few (like ONOS [13], ODL [44], and Rosemary [51]). With an open data-control
plane channel and lack of authentication mechanisms, any reprobate data plane
device can additionally exploit the SDN controller’s mis-configuration and vulne-
rabilities in order to achieve diverse objectives like executing control commands
that kill core-controller processes, redirecting information that is anticipated at
a legitimate device, tampering with and accessing controller databases, and mo-
difying internal data that may lead the SDN controller to an erratic state; in
the wort case, this can kill vital controller processes or tamper with internal da-
ta structures to achieve a denial-of-service attack or controller non-availability.

All of these security threats are summarized in Table 1. Apart from these security
threats, there are numerous other vulnerabilities in different planes and interfaces (as
reported by the researchers in [1, 5, 7, 8, 19]); however, our aim here is to highlight
only those issues that are associated with an unprotected SBI.

Table 1
Security threats in SDN Data and Control Plane due to unprotected SBI

Network Plane | Attacks Main Highlights

Flow Table Attacker modifies DPD flow table entries or
Data Plane Mutations/Flooding | can cause overflow of rules and can also flood
Threats controller with packet_in messages

Fuzzing Attacks Malformed control packet injection to expose

vulnerabilities




16 Suhail Ahmad, Ajaz Hussain Mir

Table 1 cont.

Network Plane | Attacks Main Highlights
Reconnaissance Attacker determines certain information that
attacks can be subsequently used to launch other

kinds of attacks

State memory Opponents flood stateful SDN devices with
bogus state exhaustion information to
consume state storage memory

Switch malfunction | Attacker forces execution of CPU-intensive
tasks on attacks switch to disturb normal
processing at DPD

Packet_in Flooding | Fake packet_in messages disrupt normal
processing of packets and, in worst case,
results in denial of service for legitimate flows

Topology Poisoning | To divert traffic of legitimate host toward an

1 P1 . .
Control Plane attacker’s device or create forwarding loops

Threats in data-link layer

Service disruption Without protection in place, core controller
processes and internal data structures can be
tampered with, which can have detrimental

impact on overall controller operations

4. Related work

As observed in the previous section, the SBI is highly prone to various attacks without
security protocols, and attackers can breach SDNs while remaining unobserved. The
ONF recommended TLS for securing the information exchange at the SBI. One of
the impediments for network operators when using TLS is the tedious configuration,
as both the controllers and the DPDs require certificate authority’s (CA) keys, cer-
tificates, and the signing of these certificates with the CA’s key [12]. The keys and
certificates need to be deployed prior to the actual network implementation. This
complicated configuration that is required at both ends is a major hindrance for TLS
adoption for the SBI.

On the other hand, network administrators in SDNs have the flexibility to choose
DPDs [20, 50, 54, 56] as per the requirements; accordingly, they must use security
protocols as per the availability of resources in these DPDs. TLS provides such fle-
xibility and backward compatibility by enabling distant parties to choose from diffe-
rent security algorithms and protocol versions during the initial handshake process.
However, this flexibility is a primary security concern in TLS, as it may jeopardi-
ze the network’s resources and control traffic in terms of integrity, availability, and
confidentiality. Since its inception, the TLS protocol suite has confronted numerous
practical and theoretical attacks such as collision attacks [14, 15], RACOON [39],
CRIME [9, 21], POODLE [41], Triple Handshake [40], DROWN [11], etc. Consequent



Securing centralized SDN control with distributed blockchain technology 17

to such attacks, TLS evolved from version 1.1 to version 1.3. The latest version 1.3
introduced a faster handshake process, new security features, and restricted use of vul-
nerable cipher suites. However, the authors of [36] claimed that a downgrade attack
is still feasible in TLS 1.3.

The authors of [34] proposed identity-based cryptography (IBC) for SBI securi-
ty. The proposed approach relieves the end parties from obtaining public keys from
a central authority to derive session keys. However, the authors created a simplified
set-up where the roles of the various entities were not clearly mentioned. On the other
hand, the authors of [47] deployed an intrusion-detection center (IDC) and KDC be-
tween the control and data planes to monitor SBI traffic and secure in-transit control
traffic. They did not evaluated the proposed system in terms of security features or
other performance parameters.

The authors of [2] pointed out various deficiencies in TLS-based implementa-
tions with OpenFlow and recommended certain changes in order to improve overall
network security. The highlighted issues are support for vulnerable versions, support
for vulnerable protocols, optional client verification, etc. They have necessitated mu-
tual authentication for seamless and secure network connectivity. Keeping all of these
issues in view, we present an authentication and key-exchange mechanism in the next
section that addresses most of these vulnerabilities.

5. Proposed lightweight authentication
and key-exchange mechanism

The top-level diagram of the proposed approach in a multi-domain SDN environment
is shown in Figure 4. It involves the following entities that provide reliable device
authentication and key-exchange mechanisms in the SDN environment:

e Domains: The SDN environment can be segregated into various domains, inclu-
ding SDN controllers that provide necessary services to the DPDs. Furthermore,
each domain involves many DPDs, a service manager (SM), and a witness pe-
er (WP).

¢ SDN Controller: As discussed in Section 2.1, the controller implements the
network control logic and provides all of the forwarding and traffic-regulating se-
rvices to the DPDs. When a data plane device initiates a connection with the SDN
controller, the controller initially diverts it to the service manager for the neces-
sary authentication; once authenticated, the required services are provided to
the DPDs.

e Switches or DPDs: Irrespective of stateful or stateless DPDs, the primary
function of these devices is to forward packets. The forwarding decision is based
on the flow rules that are communicated by the SDN controller. In the propo-
sed scenario controller, however, the services are only available if the DPDs are
authentic.



18 Suhail Ahmad, Ajaz Hussain Mir

e Authentication Server (AS): AS is a trusted central authority that publishes
the public parameters and cryptographic functions that are used. Furthermore, it
also registers and authenticates the DPDs and the service managers in the SDN
environment.

e Service Manager (SM): This is responsible for handling the blockchain of
a specific region and is associated with the witness peer. The SM is also authen-
ticated by the AS and, once authenticated, can establish a secure connection with
the DPD for secure service delivery.

e Witness Peer (WP): This writes the authentication outcome to the blockchain
public ledger. Together, both WP and SM form a consortium blockchain and de-
pend on PBFT (practical Byzantine fault tolerance) for consensus establishment.

son troller

Figure 4. Multi-domain SDN environment

5.1. Proposed mechanism for SBI security

The entire process of authentication and key exchange can be categorized into the fol-
lowing phases: i. Initialization; ii. Registration; iii. Authentication and Key Exchange;
iv. Consensus; and v. Service-Delivery. All of the five phases are elucidated below:
i) Initialization Phase: In this phase, the AS initializes the SDN environment for
the forthcoming phases and involves the following steps:
1. The AS uses an elliptic curve E with public parameters G and n, where G
is the base point of E with order n.



Securing centralized SDN control with distributed blockchain technology 19

2. Using elliptic curve E, the AS determines its private key (Sas) and public
key (Pag) as follows: Sas € Zp and Pas = Sas.G, where (.) represents
elliptic curve cryptographic (ECC) multiplication.

3. At the end of the initialization, the AS publishes the following pu-
blic parameters: [E,G,n, H1(), H2(), Pas], where H;() and Hz() are the
collision-resistant one-way hash functions that are used during the mutual-
authentication and key-exchange phase.

ii) Registration Phase: In this phase, all of the entities (including the switches
and SMs) register themselves with the AS over a secure channel. For source
anonymity, the identities of these entities are never communicated in clear text
(as shown in Figure 5).

(Switch); Authentication Server (AS)
e Choose IDsw; and generates time stamp TSswi
¢ Calculate Sswi, Psw; and P
e Calculates TKgy; = E [ Pas. {IDsw; |10y || Tsw: || P}]
< TKswi> >

. Decrypts TKsw; to extract IDgy;, 1y, Tsw; and P
. Validate TSgyw; and if valid calculate Sgw; and Pgyy
. Computes k = H; (Sswi || IDswi) €0 m where m =
H2 (Szﬁ H [DSWi)
<Im?>=>

..
¢ Stores m in its repository

Figure 5. Registration of Data Plane Device

Here, we have elucidated the registration of a switch; likewise, the other entities
can be registered.

1. Switch (SW;) selects an identity I Dgw; for itself and concurrently generates
a nonce or time stamp T'Sgy; that protects from replay attack. Afterwards,
it computes the private key and public key for itself as follows:

e Selects secret key, Ssy; = n1, and calculates public key, Psyw; = n1.G
e Calculates hash of following: P = H1(IDgw;||n1||TSsw:)-

2. Switch (SW;) calculates an intermediate-token, TKgw; = E[Pas,
{IDgsw||n1||TSsw||P}] and then relays it to AS.

3. The AS decrypts the received TKgw; and extracts the values of
IDgw;,n1,TSsw;, and P. The AS validates the received time stamp; if it
falls within the permissible limit, then the AS proceeds further — otherwise,
the connection is terminated. The received P ensures message integrity.

4. Like switch (SWi), the AS generates the private and public keys for switch
(SWi) as follows:

Uses received secret key Sgw,; = n1 and calculates public key Psy; = n1.G.



20

Suhail Ahmad, Ajaz Hussain Mir

5.

6.

Last, AS calculates, transmits, and stores the value of k =
Hy(SswillIDsw;) @ m in its distributed ledger, where m =
Hy(Sas||[IDsw;). Tt also transmits ‘m’to the i'" switch, which acts
as an authentication token for future correspondence.

The *" switch stores it in its repository upon receiving the value of ‘m’ .

iii) Mutual Authentication and Key-exchange Phase: In this phase, the swit-

ches

mutually authenticate with the SM via the controller and share a session

key for further communication.

(Switch); Service Manager;

Selects a random no. s; € Zp
Calculate S1=s;. G and S = Sswi. S1
Generates time stamp TSsw;
Calculates TKswi = Hi (Sswi || IDswi) B m
Calculates (AUTH)sw: = Hi (S2 || TSswil| TKswi)
< AUTHsw;. s1, TSswi, TKswi , IDswi>
¢ Validates time stamp TSgw;
e Determines TKgy; ( = k) from Blockchain
¢ Computes (AUTH)sw:’
e Determine (AUTH)sw;= (AUTH sy’
e Ifequal. switch is authentic otherwise close
the connection

e Selects a random no. s; € Zp
e Calculate S3= 5. G and S4= Ssn. S3
e Generates time stamp TSqy;
e Calculates (AUTH)sug = Hi (Sa || TSsng ]| k)
e Calculates SK = skdf (TSsw: || k || TSsay)
< AUTHs_,][j, $2. TSSMJ‘, k . ID.S]lj>
Validates time stamp TSsmj
Calculates AA\UTHSMJ* =H; (Sg.PSMj || TSSMJ' H Tngl)
Check AUTHsw;* = AUTHs;
If same, authentic SM, otherwise terminate the connection
Compme Sij = skdf (TSS\V, || TKswi || TSSMJ')

Figure 6. Authentication and Key Exchange

This process is shown in Figure 6 and explained as follows:

1.

2.

The *" switch (SWi) generates random number s; (s; € Zp) and time
stamp T Ssw;. Afterwards, it performs two ECC multiplicative operations
over s1 to compute S7 and Sy as follows:

Sl = Sl.G; and SQ = SSWz’-Sl

The switch calculates the value of token TKgwi(= k) =
Hy(SswillIDsw:) @ m. Using TKgw;, the switch calculates the au-
thentication token as follows:

(AUTH)swi = Hi(S2||TSswi||TKsw:)



Securing centralized SDN control with distributed blockchain technology 21

The values of [(AUTH )swi, s1, T'Sswi, T Kswi, I Dsw;| are securely relay-
ed to the service manager for source authentication and further processing.

3. Once the SM receives it, it validates the received time-stamp T Ssw;; upon
its successful validation, it fetches the value of T'Sgw,(= k) from the re-
gistered list of switches from the blockchain. Using k, SM determines an
authentication token to prove the truthfulness of the received (AUT H)sw;
as follows:

(AUTH)SV[M? = Hl(51~PSWi| ‘TSSW7| |k)

If the values of (AUTH )sw; and (AUTH)gw;? are the same, this proves
the authenticity of SWi to SMj; otherwise, the connection is terminated.

4. Likewise, the SMj authenticates itself to the switch by generating
a random number s, a time stamp T'Sspr; and authentication token
(AUTH)gnm;. In addition to this, it calculates a session key with the
help of a session key derivation function (skdf) to be used for further
communication as SK;; = skdf(T'Ssw;||k||TSsa ;). Finally, the values of
[AUTHsnrj, s2,T'Ssmj, k, IDgarj] are securely transmitted to the SWi for
further processing. Here, we have not described function skdf(), as any me-
chanism for key derivation can be employed by the end parties.

5. Upon receiving the values of [AUT Hgsj, s2, TSsnj, k, and IDgpj], the
switch validates the time stamp; if valid, it will proceed further to de-
termine the authenticity of SMj. The switch also determines session key
SK;; = skdf (T'Sswi||TKswi||TSsaj). Therefore, both parties mutually
authenticate each other and are now ready for secure data transmission
that is encrypted with the session key.

iv) Consensus Phase: In the proposed approach, PBFT is used to form the public
ledger, as it requires a relatively limited number of nodes to build the consensus.
The authentication outcome is transmitted to the blockchain using the following
steps:

1. In this setup, we assume ‘n’ witness peers (WPs) that can write a block
to the distributed public ledger. Out of these ‘n’ WPs, one is designated
“Speaker” while the others behave as “Congressmen” during the consensus.
The speaker ensures a smooth consensus process and cannot join the voting
process. Moreover, the speaker usually conducts ‘m’ rounds of consensus for
saving the time that is required in the speaker selection. Here, speaker ‘a’ is
nominated on the basis of following mechanism: ¢ = (h mod n) + 1, where
‘h’ denotes the current block’s height.

2. As discussed earlier, the result is broadcast to all WPs after a successful
registration. The WPs store the authentication results before they can be
updated in the distributed public ledger.



22 Suhail Ahmad, Ajaz Hussain Mir

3. After a period of ‘t’ intervals, the block that contains the authentication re-
sults is created, which is followed by the voting process. Initially, the speaker
broadcasts a request to all congressmen for vote using [Pyeq, b, W P;, blocky,,
and Sigw p;(block)], where P,., refers to the request to vote.

4. After receiving the voting request, the j** WP shares its vote using
[Pres, h, W Pj, blocky,, and Sigw pj(block)], where P,.s denotes the j" WP’s
response.

5. After receiving responses from the WPs, the speaker builds a consensus to
publish an authentication block to the public ledger.

v) Service Delivery Phase: This phase seamlessly provides DPDs with the ne-
cessary services without re-authentication if there is a change of controller or
a switch migrates to another controller. If the controller changes, the Switch
(SWI) simply sends E(PS]\/[j, ]{3) where k = Hl(SSW’L‘|IDSW'L)@H2(SAS||IDSWZ)
to the new controller. Once the new controller receives the request from a new
switch, it validates the existence from the distributed public ledger. If it is found
and not on the revocation list, the necessary services are provided to the switch
without further re-authentication.

6. Analysis and discussion

In this section, we have evaluated the proposed approach in terms of the various
security features and compared it with the TLS-based security solution. The evalu-
ation was performed on the basis of (i) the supported security features and (ii) the
communication and re-authentication overhead.

6.1. Supported security features

The proposed scheme provides confidentiality and forward secrecy by encrypting all
of the messages in an entire workflow. The hash P with the internal encryption in
the registration phase and the other hash values in the subsequent phases ensure
message integrity. The timestamps that are used in various transcripts resist replay
attacks. On the other hand, the source anonymity and impersonation is ensured, as
no message-carrying device identity is sent in clear text. Furthermore, a device can
select a pseudonym randomly and decide when it will expire during the authentication
and key-derivation phases. Therefore, the responsibility of preserving the privacy lies
with the corresponding device.

Non-interactivity ensures that the opponent has least amount of critical infor-
mation when attempting to break the implemented security mechanism. In the pro-
posed scheme, a data plane device merely sends one message (authentication/service
request) to an SM and, hence, guarantees non-interactivity. Furthermore, the re-
authentication of a DPD under a new controller requires only one message (as illu-
strated in the service-delivery phase).



Securing centralized SDN control with distributed blockchain technology 23

If there is a misbehaving DPD in a domain, it can be reported to the AS, which
will check its real identity and accordingly invalidate its public key. This ensures trace-
ability, as the AS will reveal its identity. Therefore, non-repudiation is also guaranteed
in the proposed scheme.

The various security features of the proposed lightweight scheme are shown in
Table 2. It is clear from the table that the proposed mechanism provides additional
security features with respect to the existing TLS-based solution. Furthermore, the
authentication blocks in the blockchain can be accessed by any user, and such records
are immune to tampering/modification due to the intrinsic feature of the blockchain
technology.

Table 2
Comparison of security features between TLS and Proposed Mechanism

Security Features TLS | Proposed Mechanism
Confidentiality
Integrity

Immune to Record Tampering

Resists Impersonation
Mutual Authentication
Source Anonymity

Forward Secrecy

Non-repudiation

Resists Replay
Key Exchange
MITM
Non-interactivity

Z|zZ| < | | | 2] <] ] ] <

| | | ] | | | | | <] ]

6.2. Communication and re-authentication overhead analysis

Some SDN controllers have adopted TLS-based security solutions for different SDN
interfaces [3]. The latest TLS version 1.3 has introduced a faster handshake process,
new security features, and the restricted use of vulnerable cipher suites. The initial
handshake is reduced from a four-way to three-way handshake. It begins with client -
hello (CH), which includes version negotiation (Ver.) (for backward compatibility
with older versions), client nonce (N.), and supported cipher suites (C.) (as shown
in Figure 7).

It also includes TLS extension (Ext), which contains client_supported_version
(sv.) and key_share (ks.). The client sets sv. as per its priority and its elliptic-
curve-based Diffie-Hellman key exchange (EC-DHKE) public key along with security
parameters like DHE group pairs in ks.. Upon receiving this message from the client,
the server responds with server_hello (SH) that includes selected_version (Very, for
backward compatibility), server nonce (Njy), selected cipher suite (Cs), and extension
(Ext), which includes selected supported_version (svs) and key_share (ksg). Further-
more, the server also sends encrypted_extension (EE), server_certificate (CERT), and



24 Suhail Ahmad, Ajaz Hussain Mir

certificate_verify (CERTy ). EE include extensions like signature algorithms and sup-
ported_group, which were sent as plaintext in TLS 1.2 earlier. CERT,, is one of the
major enhancements in TLS version 1.3, as it ensures strong resilience against MITM
by performing digital signatures of all of the messages that are exchanged from CH
to CERT. After CH and SH, both end parties can derive the session key by using
the DHKE algorithm. Finally, the handshake is done by exchanging the FIN message.

\
I
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
T

-~
s

CH {Ver,, N, C,, Ext [sv,, ks ]}

I )

| ]

I ]

W | 1
x | '
_g g SH {Ver,, N,, C,, Ext [sv,, ks,|} :
2| E(H,.,, [EE, Cert, Cert,, Fin]) 1
]

= !
i E(Huy, Fin) :

l\ B

Figure 7. Three-way handshake in TLS 1.3

For simplicity, we have assumed EC-DHKE and unilateral authentication (i.e.,
client authenticates a server) in the three-way handshake (as shown in Figure 7).
However, both the client and the server share various security parameters as well as
their certificates for mutual authentication and key derivation. Most SDN controllers
lack security measures [3]; those that use TLS-based security for SBI have not updated
to the latest TLS version, thereby making them prone to various attacks.

In order to compare the proposed key-exchange and authentication mechanism
with TLS, we have analyzed the TLS handshake by using the Wireshark packet-sniffer
tool. It has been observed that version 1.2 usually involved more than 5000 bytes
for a complete handshake, whereas version 1.3 involves more than 3000 bytes. In the
proposed approach, on the other hand, the mutual authentication mainly involves two
hash values: AUTH, and k/TKgw; (as shown in Figure 6). If a strong hash function
like SHA-256/SHA-384 is used, then the two messages in the authentication and key
exchange do not exceed more than 1500 bytes. Therefore, the proposed approach
reduces the overall control traffic. In addition to this, the re-authentication in the
proposed scheme only involves a single message (as discussed in the service delivery
phase), which further reduces the control traffic in SDNs.

Additionally, if we consider the fat-tree topology [4, 10] (which is very widely
used in datacenter networks), the amount of control traffic for the authentication and
key exchange increases rapidly with increased aggregation levels. So, if we are able



Securing centralized SDN control with distributed blockchain technology 25

to reduce the control traffic of the initial authentication and key exchange to half,
the overall bandwidth requirement and control latency can be reduced significantly
in such use cases.

7. Conclusion

In this manuscript, we have attempted to safeguard SDN control traffic from ad-
versaries and malicious devices. We have highlighted numerous security threats and
issues that are associated with an unprotected southbound interface and have propo-
sed a decentralized blockchain-based security mechanism for authentication and key
exchange. The proposed scheme provides the following benefits: i) it involves the le-
ast amount of control traffic for authentication and key exchange; ii) it relieves the
SDN controller from the burden of initial authentication and key determination; iii)
it ensures non-interactivity; and iv) its blockchain-based distributed ledger ensures
uninterrupted availability of authentication information and overcomes the security
issues that are faced by a central authority. The proposed mechanism is compared to
the widely used TLS-based security solution and provides adequate security with limi-
ted overhead. The security analysis of the proposed scheme shows that it is practical
to safeguard centralized SDN control with a distributed blockchain technology.

This manuscript only provides informal proof of the various security features of
the proposed scheme. In the future, we will try to investigate formal security proof
of the proposed mechanism. Furthermore, we will try to explore the possibility of
extending the proposed mechanism to the other SDN interfaces. Another possible
direction is to further reduce the authentication and consensus overhead with more
flexibility.

References

[1] Abdou A., Oorschot van P.C., Wan T.: Comparative analysis of control plane
security of SDN and conventional networks, IEEE Communications Surveys &
Tutorials, vol. 20(4), pp. 3542-3559, 2018.

[2] Agborubere B., Sanchez-Velazquez E.: OpenFlow communications and TLS se-
curity in software-defined networks. In: 2017 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 560-566, 2017.

[3] Ahmad S., Mir A.H.: Scalability, consistency, reliability and security in SDN

controllers: a survey of diverse SDN controllers, Journal of Network and Systems
Management, vol. 29(1), pp. 1-59, 2021.

[4] Al-Fares M., Loukissas A., Vahdat A.: A scalable, commodity data center network
architecture, ACM SIGCOMM Computer Communication Review, vol. 38(4),
pp- 63-74, 2008.



26 Suhail Ahmad, Ajaz Hussain Mir

[5] AlEroud A., Alsmadi I.: Identifying cyber-attacks on software defined networks:
An inference-based intrusion detection approach, Journal of Network and Com-
puter Applications, vol. 80, pp. 152—-164, 2017.

[6] Alharbi T.: Deployment of blockchain technology in software defined networks:
A survey, IEEE Access, vol. 8, pp. 9146-9156, 2020.

[7] Ali S.T., Sivaraman V., Radford A., Jha S.: A survey of securing networks
using software defined networking, IEEE Transactions on Reliability, vol. 64(3),
pp- 1086-1097, 2015.

[8] Alsmadi I., Xu D.: Security of software defined networks: A survey, Computers
& Security, vol. 53, pp. 79-108, 2015.

[9] Alupotha J., Prasadi S., Alawatugoda J., Ragel R., Fawsan M.: Implementing
a proven-secure and cost-effective countermeasure against the compression ratio
info-leak mass exploitation (CRIME) attack. In: 2017 IEEE International Con-
ference on Industrial and Information Systems (ICILS), pp. 1-6, 2017.

[10] Ashouri M., Setayesh S.: Enhancing the Performance and Stability of SDN Ar-
chitecture with a Fat-Tree Based Algorithm, 2018. https://hal.archives-ouvertes.
fr/hal-01858528 (working paper or preprint).

[11] Aviram N., Schinzel S., Somorovsky J., Heninger N., Dankel M., Steube J., Va-
lenta L., et al.: DROWN: Breaking TLS Using SSLv2. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 689-706, 2016.

[12] Benton K., Camp L.J., Small C.: OpenFlow vulnerability assessment. In:
HotSDN’13: Proceedings of the Second ACM SIGCOMM Workshop on Hot To-
pics in Software Defined Networking, pp. 151-152, 2013.

[13] Berde P., Gerola M., Hart J., Higuchi Y., Kobayashi M., Koide T., Lantz B., et al.:
ONOS: towards an open, distributed SDN OS. In: HotSDN’14: Proceedings of the
third workshop on Hot topics in software defined networking, pp. 1-6, 2014.

[14] Bhargavan K., Leurent G.: On the practical (in-) security of 64-bit block ci-
phers: Collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 456467, 2016.

[15] Bhargavan K., Leurent G.: Transcript collision attacks: Breaking authentication
in TLS, IKE, and SSH. In: Network and Distributed System Security Symposium —
NDSS 2016, 2016.

[16] Bianchi G., Bonola M., Capone A., Cascone C.: OpenState: Programming
platform-independent stateful OpenFlow applications inside the switch, ACM
SIGCOMM Computer Communication Review, vol. 44(2), pp. 44-51, 2014.

[17] Bianchi G., Bonola M., Pontarelli S., Sanvito D., Capone A., Cascone C.:
Open Packet Processor: a programmable architecture for wire speed platform-
independent stateful in-network processing, arXiv:160501977, 2016. doi: 10.
48550/ ARXIV.1605.01977.


https://hal.archives-ouvertes.fr/hal-01858528
https://hal.archives-ouvertes.fr/hal-01858528
https://doi.org/10.48550/ARXIV.1605.01977
https://doi.org/10.48550/ARXIV.1605.01977
https://doi.org/10.48550/ARXIV.1605.01977
https://doi.org/10.48550/ARXIV.1605.01977

Securing centralized SDN control with distributed blockchain technology 27

[18] Bosshart P., Daly D., Gibb G., Izzard M., McKeown N., Rexford J., Schle-
singer C., Talayco D., et al.: P4: Programming protocol-independent packet
processors, ACM SIGCOMM Computer Communication Review, vol. 44(3),
pp- 8795 2014.

[19] Chica J.C.C., Imbachi J.C., Vega J.F.B.: Security in SDN: A comprehensive su-
rvey, Journal of Network and Computer Applications, vol. 159, 102595, 2020.

[20] Chole S., Fingerhut A., Ma S., Sivaraman A., Vargaftik S., Berger A.,
Mendelson G., et al.: dRMT: Disaggregated Programmable Switching. In:
SIGCOMM’17: Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pp. 1-14, 2017.

[21] Fisher D.: CRIME Attack Uses Compression Ratio of TLS Requests as Side
Channel to Hijack Secure Sessions, ThreatPost, 2012.

[22] Floodlight Project. http://www.projectfloodlight.org/.

[23] Foster N., Harrison R., Freedman M.J., Monsanto C., Rexford J., Story A.,
Walker D.: Frenetic: A network programming language, ACM Sigplan Notices,
vol. 46(9), pp. 279-291, 2011.

[24] Gao J., Zhai E., Liu H.H., Miao R., Zhou Y., Tian B., Sun C., et al.: Lyra: A cross-
platform language and compiler for data plane programming on heterogeneous
ASICs. In: SIGCOMM’20: Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pp. 435-450, 2020.

[25] He C., Feng X.: Pomp: protocol oblivious SDN programming with automatic
multi-table pipelining. In: IEEE INFOCOM 2018 — IEEE Conference on Com-
puter Communications, pp. 998-1006, 2018.

[26] Hong S., Xu L., Wang H., Gu G.: Poisoning network visibility in software-defined
networks: New attacks and countermeasures. In: NDSS, vol. 15, pp. 8-11, 2015.

[27] Hsu K.F., Beckett R., Chen A., Rexford J., Tammana P., Walker D.: Contra:
A programmable system for performance-aware routing. In: NSDI’20: Proceedings
of the 17th USENIX Conference on Networked Systems Design and Implementa-
tion (NSDI 20), pp. 701-721, 2020.

[28] Huang S., Zhao J., Wang X.: HybridFlow: A Lightweight Control Plane for Hybrid
SDN in Enterprise Networks. In: 2016 IEEE/ACM 24th International Symposium
on Quality of Service (IWQoS), pp. 1-2, 2016.

[29] Jin C., Lumezanu C., Xu Q., Mekky H., Zhang Z.L., Jiang G.: Magneto: Unified
Fine-grained Path Control in Legacy and OpenFlow Hybrid Networks. In: SOSR
2017 — Proceedings of the 2017 Symposium on SDN Research, pp. 75-87, 2017.

[30] Jin C., Lumezanu C., Xu Q., Zhang Z.L., Jiang G.: Telekinesis: Controlling Legacy
Switch Routing with OpenFlow in Hybrid Networks. In: SOSR ’15: Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,
pp. 1-7, 2015.


http://www.projectfloodlight.org/
http://www.projectfloodlight.org/

28 Suhail Ahmad, Ajaz Hussain Mir

[31] Khan S., Gani A., Wahab A.W.A., Guizani M., Khan M.K.: Topology discove-
ry in software defined networks: Threats, taxonomy, and state-of-the-art, IEEFE
Communications Surveys & Tutorials, vol. 19(1), pp. 303-324, 2016.

[32] Koponen T., Casado M., Gude N., Stribling J., Poutievski L., Zhu M., Ramana-
than R., et al.: Onix: A distributed control platform for large-scale production
networks. In: OSDI’10: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, 2010.

[33] Kreutz D., Ramos F.M., Verissimo P.E., Rothenberg C.E., Azodolmolky S.,
Uhlig S.: Software-defined networking: A comprehensive survey, Proceedings of
the IEEE, vol. 103(1), pp. 14-76, 2014.

[34] Lam J., Lee S.G., Lee H.J., Oktian Y.E.: Securing SDN southbound and data
plane communication with IBC, Mobile Information Systems, vol. 2016, 2016.

[35] Latif S.A., Wen F.B.X., Iwendi C., Wang L.F., Mohsin S.M., Han Z., Band S.S.:
Al-empowered, blockchain and SDN integrated security architecture for IoT

network of cyber physical systems, Computer Communications, vol. 181,
pp- 274-283, 2022.

[36] Lee S., Shin Y., Hur J.: Return of version downgrade attack in the era of TLS 1.3.

In: CoNEXT’20: Proceedings of the 16th International Conference on Emerging
Networking Ezxperiments and Technologies, pp. 157-168, 2020.

[37] McKeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Re-
xford J., Shenker S., Turner J.: OpenFlow: enabling innovation in cam-
pus networks, ACM SIGCOMM Computer Communication Review, vol. 38(2),
pp. 69-74 2008.

[38] Meng W., Li W., Zhou J.: Enhancing the security of blockchain-based software
defined networking through trust-based traffic fusion and filtration, Information
Fusion, vol. 70, pp. 60-71, 2021.

[39] Merget R., Brinkmann M., Aviram N., Somorovsky J., Mittmann J.,
Schwenk J.: Raccoon Attack: Finding and Exploiting Most-Significant-Bit-
Oracles in TLS-DH (E). In: 30th USENIX Security Symposium (USENIX Se-
curity 21), pp. 213-230, 2021.

[40] Microsoft Research. https://mitls.org/pages/attacks/3SHAKE.

[41] Méller B., Duong T., Kotowicz K.: This POODLE bites: exploiting the SSL 3.0
fallback, Security Advisory, vol. 21, pp. 34-58, 2014.

[42] Monsanto C., Reich J., Foster N., Rexford J., Walker D.: Composing software
defined networks. In: 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’13), pp. 1-13, 2013.

[43] Moshref M., Bhargava A., Gupta A., Yu M., Govindan R.: Flow-level state trans-
ition as a new switch primitive for SDN. In: HotSDN’14: Proceedings of the third
workshop on Hot topics in software defined networking, pp. 61-66, 2014.

[44] OpenDayLight Project. http://www.opendaylight.org/.


https://mitls.org/pages/attacks/3SHAKE
https://mitls.org/pages/attacks/3SHAKE
http://www.opendaylight.org/
http://www.opendaylight.org/

Securing centralized SDN control with distributed blockchain technology 29

[45] OpenFlow Switch Specifications Version 1.0. https://www.opennetworking.org/
wp-content /uploads/2013/04/openflow-spec-v1.0.0.pdf.

[46] OpenFlow Switch Specifications Version 1.5. https://www.opennetworking.org/
wp-content /uploads/2014/10/openflow-switch-v1.5.1.pdf.

[47] Pandya B., Parmar S., Saquib Z., Saxena A.: Framework for securing SDN so-
uthbound communication. In: 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS), pp. 1-5, 2017.

[48] Pontarelli S., Bifulco R., Bonola M., Cascone C., Spaziani M., Bruschi V., Sanvi-
to D., et al.: FlowBlaze: Stateful Packet Processing in Hardware. In: NSDI’19:
Proceedings of the 16th USENIX Conference on Networked Systems Design and
Implementation, pp. 531-548, 2019.

[49] POX Controller. https://github.com/noxrepo/pox/.

[50] Shahbaz M., Choi S., Pfaff B., Kim C., Feamster N., McKeown N., Rexford J.: Pi-
sces: A programmable, protocol-independent software switch. In: SIGCOMM’16:
Proceedings of the 2016 ACM SIGCOMM Conference, pp. 525538, 2016.

[51] Shin S., Song Y., Lee T., Lee S., Chung J., Porras P., Yegneswaran V., et al.:
Rosemary: A robust, secure, and high-performance network operating system.
In: CCS’14: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 78-89, 2014.

[52] Sivaraman A., Budiu M., Cheung A., Kim C., Licking S., Varghese G., Balakri-
shnan H., Alizadeh M., McKeown N.: Packet Transactions: High-Level Program-
ming for Line-Rate Switches, arXiv:151205023, 2016. doi: 10.48550/arXiv.1512.
05023.

[63] Sivaraman A., Cheung A., Budiu M., Kim C., Alizadeh M., Balakrishnan H.,
Varghese G., McKeown N., Licking S.: Packet Transactions: High-Level Program-
ming for Line-Rate Switches. In: SIGCOMM’16: Proceedings of the 2016 ACM
SIGCOMM Conference, pp. 15-28, 2016.

[54] Song H.: Protocol-oblivious forwarding: Unleash the power of SDN through
a future-proof forwarding plane. In: HotSDN’13: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
pp. 127-132, 2013.

[55] Voellmy A., Kim H., Feamster N.: Procera: A language for high-level reactive
network control. In: HotSDN’12: Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, pp. 43-48, 2012.

[56] Wu X., Li P., Miskell T., Wang L.M., Luo Y., Jiang X.: Ripple: An Efficient Run-
time Reconfigurable P4 Data Plane for Multicore Systems. In: 2019 International
Conference on Networking and Network Applications (NaNA ), pp. 142-148, 2019.

[57] Yoon C., Lee S., Kang H., Park T., Shin S., Yegneswaran V., Porras P., Gu G.:

Flow Wars: Systemizing the Attack Surface and Defenses in Software-Defined Ne-
tworks, IEEE/ACM Transactions on Networking, vol. 25(6), pp. 3514-3530, 2017.


https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp- content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp- content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp- content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://github.com/noxrepo/pox/
https://github.com/noxrepo/pox/
https://doi.org/10.48550/arXiv.1512.05023
https://doi.org/10.48550/arXiv.1512.05023
https://doi.org/10.48550/arXiv.1512.05023
https://doi.org/10.48550/arXiv.1512.05023

30 Suhail Ahmad, Ajaz Hussain Mir

[58] Zhang Y., Lin X., Xu C.: Blockchain-based secure data provenance for cloud
storage. In: Information and Communications Security. 20th International Con-
ference, ICICS 2018, Lille, France, October 29-31, 2018, Proceedings, pp. 3—19,
Springer, 2018.

[59] Zhu S., Bi J., Sun C., Wu C., Hu H.: SDPA: Enhancing stateful forwarding for
software-defined networking. In: 2015 IEEE 23rd International Conference on
Network Protocols (ICNP), pp. 323-333, 2015.

Affiliations

Suhail Ahmad
University of Kashmir, Department of Computer Science and Engineering, India,
suhail.sam008@gmail.com

Ajaz Hussain Mir
National Institute of Technology, Electronics and Communication Department, Srinagar,
Jammu & Kashmir, India, ahmir@rediffmail.com

Received: 20.12.2020
Revised: 11.11.2022
Accepted: 01.01.2023


suhail.sam008@gmail.com
ahmir@rediffmail.com

	Introduction
	Contributions
	Paper outline

	Background: Southbound Interface (SBI)and blockchain technology
	SDN control plane
	SDN data plane
	Conventional SDN data plane using OpenFlow
	Stateful SDN data plane

	Blockchain technology

	Motivation: SBI security vulnerabilities
	Data plane threats
	Control plane threats

	Related work
	Proposed lightweight authenticationand key-exchange mechanism
	Proposed mechanism for SBI security

	Analysis and discussion
	Supported security features
	Communication and re-authentication overhead analysis

	Conclusion

