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Abstract The research on intrusion-detection systems (IDSs) has been increasing in re-
cent years. Particularly, this research widely utilizes machine-learning concepts,
and it has proven that these concepts are effective with IDSs – particularly, deep
neural network-based models have enhanced the rates of the detection of IDSs.
In the same instance, these models are turning out to be very complex, and
users are unable to track down explanations for the decisions that are made;
this indicates the necessity of identifying the explanations behind those deci-
sions to ensure the interpretability of the framed model. In this aspect, this
article deals with a proposed model that can explain the obtained predictions.
The proposed framework is a combination of a conventional IDS with the aid
of a deep neural network and the interpretability of the model predictions. The
proposed model utilizes Shapley additive explanations (SHAPs) that mixes the
local explainability as well as the global explainability for the enhancement of
interpretations in the case of IDS. The proposed model was implemented by
using popular data sets (NSL-KDD and UNSW-NB15), and the performance of
the framework was evaluated by using their accuracy. The framework achieved
accuracy levels of 99.99 and 99.96%, respectively. The proposed framework can
identify the top-4 features using local explainability and the top-20 features
using global explainability.
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1. Introduction

In the domain of IDS, there are a few issues – particularly with system reliability.
Cybersecurity specialists now usually settle on IDS guidelines, so the forecasts of
the system should be comprehensible. Subsequently, their growing sophistication is
a considerable disadvantage given the imposing accuracy levels that are obtained by
such systems; they cannot include details about why they make decisions – especially
because DNNs are also employed as black-box implementations. Consequently, some
details about the causes that underly IDS forecasts must be given, and some clarifi-
cation regarding the intrusions that are found by cybersecurity professionals must be
presented. There are a few studies that describe the new developments in IDSs, yet
most of these studies have no effective platform in theory. In this article, a system
that is focused on Shapley additive explanations (SHAPs) is proposed in order to
overcome these drawbacks and provide a clearer interpretation of IDSs. SHAP has
a good theoretical basis for either shallow- or deep-trained models. This structure
will not offer some IDS interpretations. This system presents local and international
interpretations to enhance the generalizability of all IDSs. Local descriptions in this
sense may include knowledge that each function value decrements or increments the
anticipated likelihood. In this context, there are two types of global interpretations.
Most of all, the second will analyze interactions between the importance of functions
and particular forms of threats by extracting essential attributes from each IDS. The
NSL-KDD data set was utilized to illustrate the validity of this research method.

The significant contributions of this article can be mentioned as follows:

1) The framework recommends a structure to explain any IDS locally as well as
globally. This system leads to a greater comprehension of IDS forecasts and
eventually aims to create confidence in IDSs for cyber-users. This system also
allows cybersecurity professionals to better recognize cyber assaults (for example,
identifying the common aspects of individual threats).

2) The proposed framework is distinctive in the domain of IDSs due to the utiliza-
tion of SHAP methodologies for the visibility of the IDS enhancement. When
compared with other methods, the SHAP methodology has a stronger theoretical
basis.

3) The major disparities are discussed among the one-vs.-all classification mod-
els and the multi-class classification models. When two kinds of classification
models equate the interpretations of similar threats, security professionals can
refine the IDS frameworks. The configured framework will then improve the
confidence of system interaction in intrusion-detect systems.

This paper is organized into various sections: Section II discusses the related work
based on IDSs and threats; Section III discusses the methodologies that are related to
explainable AI, deep neural networks, and the proposed model; Section IV discusses
the proposed framework that is utilized for enhancing the comprehensibility of any
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IDS and illustrates the particulars of the working aspects of the system; Section V
discusses the results that were obtained from the implementation of the proposed
framework; and Section VI discusses the future aspects as well as the conclusions
based on the proposed framework.

2. Related work

As the topic that we have considered is new and unique in itself, few researchers
have explored this area using the machine-learning techniques that are discussed in
detail below.

In 2018, Holzinger [9] reviewed the process of transitioning from machine-learning
concepts to explainable AI in the healthcare domain. The disadvantages of ma-
chine learning raised the concept of explainable AI. Machine-learning models act like
a black-box kind of working, as they generate predictions but no explanations for
them, and explainable AI acts like a glass-box model as it generates predictions along
with explanations for them. In 2020, Ignatiev [3] researched the various challenges
that were related to explainable AI; this was represented by XAI. An overview of the
advancement of explainable AI is based on a rigorous logic-based methodology.

Wang et al. [27] introduced and implemented a framework that was based on
explainable AI in the domain of IDS. This framework was implemented by utiliz-
ing the NSL-KDD data set and the SHAP values that were obtained through this
model, which led to the explainability of the predictions that were obtained. In 2019,
Margaliot and Marcelloni [6] explained the mechanisms of a fuzzy system to develop
a system that attains explainable AI. In this explanation of building such a system,
four w’s were considered: why is explainable AI utilized, when is explainable AI
utilized, what is explainable AI, and to where does explainable AI lead.

In 2019, Wang et al. [26] developed and explained the theoretical directing de-
signing of a model based on explainable AI for a user-centered system. In 2020, Scott
Lundberg et al. [11] contributed many aspects such as obtaining effective explanations
depending on the domain of game theory (a novel kind of explanation that evaluates
local attribute interactions) and a modern collection of methods that integrate sev-
eral local explanations within each estimation to consider the global model structure.
In 2018, Yalei Ding and Yuqing Zhai [5] implemented the concept of IDS that was
based on a convolutional neural network (CNN) that was based on the NSL-KDD
data set. The performance of this system was compared with the various existing
machine-learning models such as the random forest, SVM, DBF, and LSTM models.
The proposed model improved the efficiency of IDS.

In 2019, Sandeep et al. [7] proposed a custom design model for IDS. It estimated
by using machine-learning methodologies such as an autoencoder for the learning
of features through unsupervised learning, and logistic classification was utilized for
classifying various threats with the aid of the NSL-KDD data set. The proposed
framework was evaluated by utilizing various evaluation metrics such as precision,
accuracy, and recall; the outcomes look promising.



100 Sagar Dhanraj Pande, Aditya Khamparia

In 2018, Shone et al. [23] proposed and implemented IDS based on deep-learning
concepts. It was modeled using a non-symmetric auto-encoder for learning attributes
through unsupervised learning, and it was implemented using the NSL-KDD data set.

In 2018, Danijela et al. [19] reviewed the various data sets that were based on
IDS; e.g., KDD CUP 99, NSL-KDD, and Kyoto 2006+. These were discussed in the
aspects of various attributes and duplicates in the data set along with categories such
as a normal, attack, and unknown.

In 2018, Amarasinghe et al. [1] designed a framework for identifying denial-of-
service threats using IDS. The framework was developed based on deep learning along
with explanations that were related to why and what a glitch was as well as its
confidence. It was implemented by utilizing the NSL-KDD data set; an accuracy of
about 97% was obtained through this framework.

In 2020, Barredo et al. [2] discussed the various concepts that were part of ex-
plainable AI and their related taxonomies. In addition to these concepts, the chances
and confrontations were part of the AI that was responsible for explainable AI.

In 2020, Pande et al. [17] proposed a framework for identifying and classifying
DDoS threats that were part of the NSL-KDD data set with the aid of the WEKA
tool. The framework was designed based on the random forest methodology and at-
tained an accuracy of 99.76%.

In 2018, Hajimirzaei et al. [8] framed a new framework that was related to an
intrusion-detection system. It was designed by utilizing methodologies such as artifi-
cial bee colony and multilayer perceptron. The artificial bee colony methodology was
utilized for the training aspect, and multilayer perceptron was utilized for classifying
the threats by using the NSL-KDD data set and Cloudsim simulator. The evaluation
metrics that were utilized for evaluating the proposed framework were MAE, RMSE,
and the Kappa statistic.

In 2018, Donghwoon et al. [10] compared a proposed framework that was based on
various variations of CNN models for studying the performance across the variations of
the CNN models depending on its depth. The proposed framework was implemented
by utilizing various kinds of CNN model. This study showed that the performance
of the model enhancement did not identify the depth of the CNN improvement. The
CNN-based models outperformed the variational auto-encoder, and these models were
not very effective when compared to the long short-term memory methodology.

In 2018, Rajesh and Deepa [25] surveyed various methodologies that were based
on machine learning while utilizing the NSL-KDD data set. Pande and Khamparia
[18] discussed the various methodologies that were related to machine-learning and
deep-learning methodologies.

The complete related work can be summarized as follows: the major design of
the considered frameworks for the major part of the research in analyzing the DDoS
threats utilized NSL-KDD as well as machine-learning and deep-learning methodolo-
gies. These models will act like a black-box model that will not provide any explana-
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tion for the predicted outcome. Obtaining an explanation of the obtained predicted
outcome can only occur through the explainable AI concept.

3. Methodology discussion

The major methodologies that have been utilized so far detect and classify various
DDoS threats by using the NSL-KDD data set with the aid of the machine-learning
methodologies of deep-learning concepts. The major drawback with this aspect is that
no user will be able to identify what is the major reason for attaining a particular
predicted value; hence, it is considered black-box modeling. So, this raises a situation
that needs some logical reason behind that expected value from the trained model.
This argument brought about a new concept called explainable AI, which is considered
to be glass-box modeling due to the logical reasoning behind the predicted value.

3.1. Explainable AI

As mentioned earlier, explainable AI generates the interpretability of a model. Inter-
pretability can be categorized into two classes: locally concentrated interpretation,
and globally concentrated interpretation. Locally concentrated interpretation can ex-
plain the logical reason for an obtained output for a corresponding input that is given
to a model. Globally concentrated interpretation can understand the structure of
a model by looking at its overall structure. The concept of SHAP [12] plays a vi-
tal role in enhancing the interpretability of IDSs. This concept of a methodology
with locally concentrated and globally concentrated interpretations in the same in-
stance has strong theoretical and mathematical support when compared with other
methodologies. The concept of SHAP [24] links the concept of LIME [21] and Shapley
values [14]. LIME (local interpretable model-agnostic explanation) [21] concentrates
more on learning a local replacement model in order to evaluate its individual fore-
casts. LIME produces a new modified data set that is composed of permutated sam-
ples and also determines the accompanying forecasts of the black-box model; then,
an interpretable model will be trained on the new modified data. Certain machine-
learning techniques such as linear regression, logistic regression, decision tree, and
random forest are utilized as interpretable models. A good local solution to black box
framework forecasts should be a local surrogate framework; this can be evaluated and
represented as follows

Ψ(a) =

(
argmin

jϵJ

){
ζ(h, j, ka) + Φ(j)

}
(1)

In the notation of Equation (1), j signifies the model of explanation for a sam-
ple of a, J signifies the possible set of explanations, ζ() signifies the loss function, h
represents the original model, and ka signifies the weight aspect between the sampled
and original data. If the correlation between the sampled and original data is higher,
this indicates that the weight will also be higher (and vice versa), and Φ(j) signifies
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the complexity of function j. As per Equation (1), the LIME model trains inter-
pretable local surrogate framework j on the newly obtained data set by decrementing
the loss function and then explores the prediction of a sample by interpreting local
framework Ψ(a). Shapley explained the evaluation methodology of obtaining Shapley
values [14]; this methodology is utilized in game theory to ascertain the proportion of
each individual of a game. This process can be more understandable by utilizing the
concepts that are related to the predictions of machine-learning methodologies. The
mean offerings of an attribute value to the prediction in all possible combinations can
be referred to as Shapley values.

ξi(g, y
′) =

∑
x′⊆(y1

′,y2
′...,yn

′)\(yi
′)

| x′ |!(N− | x′ | −1)!

N !
· [g(x′ ∪ yi

′)− g(x′)] (2)

In the notations in Equation (2), x′ represents the subset of attributes that are
utilized in the model, y′ represents the attribute values that have a vector (and the
instances of this are explained through yi

′), N represents the number of attributes
that are considered, and g(x′) represents the predictions for the attribute values in x′

(the evaluation of this prediction value involves masking out the ith attribute). By
drawing the random instances through simulation or the ith attribute′s random values
from the data set are selected. The three properties that abide by the Shapley values
are the symmetry, dummy, and additivity properties; these properties are represented
in Equations (3) through (5), respectively:

f(x′ ∪ yi
′) = f(x′ ∪ yj

′), f(x′) ⊆ (y1
′, y2

′, . . . , yn
′)\(yi′, yj ′) (3)

f(x′ ∪ yi
′) = f(x′), f(x′) ⊆ (y1

′, y2
′, . . . , yn

′)\(yi′) (4)

f(x′ ∪ yi
′) = f1(x′ ∪ yi

′) + f2(x′ ∪ yi
′), thenξi(g, y

′) = ξi(f
1, y′) + ξi(f

2, y′) (5)

High computational time is essential for evaluating Shapley values due to the
number of possible combinations of attribute values of 2k. How SHAP is designed is
suggested by S. Lundberg [12]. This illustrates a case x estimation by the estimation
of each feature’s relationship to the estimation (Fig. 1).

Figure 1. Generalized SHAP System

In connection with Shapley values, LIME methodologies can be viewed with the
explanation that can be signified by the linear model; it links the two methodologies
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(LIME as well as the Shapley values). The contribution of each feature of the model
can be explained with the help the SHAP values to classify them into positive or
negative classes. The main advantages of utilizing SHAP values are that these values
are evaluated for any model with just an effortless linear model and that each set of
data records will have its corresponding set of SHAP values. An instance of a data
set can be explained using a specific SHAP value by using the following equation as
mentioned:

f(C ′) = ξ0 +
N∑
i=1

ξiCi
′ (6)

In the notations in Equation (6), f is known as the explanation model, C
′
s is known

as the coalition vector with values of 0 and 1 for each of the instances of the data, 1
indicates that the instances in the new data set are the same as those of the original
data set, 0 indicates that the instances in the new data set are different from those
of the original data set, N indicates the size of the maximum coalition, and ξi is the
feature contribution for attribute i for an instance of the data set and xi is known as
Shapley value.

3.2. Deep neural network

In this article, a deep neural network is utilized for the model to predict the various
anomalies in the KDD-NSL data set for identifying DoS attacks. An input instance can
be represented by X (which is of the form Rn), and each instance i of the data set that
is related to an attribute can be represented as xi; thus, the data set can be represented
as X = {xi}ni=1, and the corresponding labels are represented by Y . Classification
function-based deep-neural-network mapping can be represented by g : Rn =⇒ R+.
Multiple layers are involved in the deep-learning network model, including the input,
output, and multiple hidden layers (with multiple neurons in each of these layers).
The neurons in each of these hidden layers can be activated as is represented mathe-
matically in Equation (7):

hk+1
i = f

∑
j

h
(k)
j w

(k,k+1)
ji + b

(k+1)
i

 (7)

In the notations in Equation (7), hk+1
i is the activation of the (k + 1)th layer of

the ith neuron, w
(k,k+1)
ji is the weight of the connection between the jth neuron of

the kth layer and the ith neuron of the (k + 1)th layers, b(k+1)
i is the bias of the ith

neuron of the (k + 1)th layer, and f(.) is the activation function. In this framework,
the activation function that is utilized is ReLu; it can be represented as shown in
Equation (8):

f(z) = Max(0, z) (8)
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The Softmax function is utilized for the output layer for the classification aspects
that are related to the provided inputs; this activation function can be represented as
shown in Equation (9):

Prob(Y = yi | X) =
e(hi)∑
k e

(hk)
(9)

In the notations in Equation (7), hi is the obtained value from the above-mentioned
activation function f(.). Depending on the predicted class classification, the SHAP
values and their corresponding explanations will be generated. The whole process of
explainable AI and a deep neural network is a learning model that is combined to
form an explainable AI model.

3.3. Proposed model

This section discusses the proposed framework along with its flowchart implementa-
tion for obtaining the better interpretability of an IDS framework. This interpretable
IDS framework is essential for any user – along with the accuracy of the framework.
Consequently, an IDS framework can be generated along with transparency, which is
essential at this moment in time. Figure 2 represents the flowchart of the proposed
framework in this article.

Figure 2. Proposed Framework Flowchart Overview
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This flowchart can be categorized into two segments: the left segment is the
conventional the IDS framework, and the right segment is utilized to obtain the in-
terpretability that corresponds to the prediction that is obtained by the conventional
IDS framework. A deep neural network model is utilized in the conventional IDS
framework; this is used for training as well as prediction using the KDD-NSL data
set. The predicted classifiers are utilized to compare the prediction with the expla-
nation results, which can provide guidance as well as a reference for experts who are
dealing with IDS. The concentration of the proposed work is on obtaining greater ex-
plainability for the predictions of the IDS framework. Hence, local explainability and
global explainability provide a proper explanation for the obtained predictions from
the IDS framework. The global explainability is generated by utilizing two methodolo-
gies; this is the first methodology to analyze the essential features of IDS. The second
methodology provides the relationship between the feature values and their impacts
on the obtained prediction. The local explainability generates the explanation for the
output that is generated by the IDS framework, and it provides the significance of
the input features for the predictions that are obtained from the IDS framework.

As mentioned in Figure 2, the proposed framework can be utilized for obtaining
a considerable improvement in the IDS framework’s transparency. Experts who work
on this framework will be able to validate the predictions that are obtained from the
IDS framework with the aid of local explainability as well as global explainability.
Moreover, the deep neural network is utilized in this proposed framework. By con-
sidering the differences between the explanation and the classifiers that are obtained,
experts can adjust the parameters of the model that is utilized in the IDS framework
to obtain an optimized prediction and a favorable explanation.

4. Result analysis

This section mainly deals with a discussion that is related to the data set and the
performance of the framed IDS. A discussion of the obtained results then follows from
the perspective of the proposed model in terms of local and global explainability. This
proposed framework aims to obtain an explanation that corresponds to the predicted
class from IDS.

4.1. Data set discussion

The data set that was utilized for implementing the proposed framework was the
NSL-KDD data set [22]. Before this data set, the KDD′99 data set was preferred
for various research aspects of IDS; however, it had various aspects to worry about
(e.g., unbalanced distribution, and redundancy in the data set). Due to this, NSL-
KDD is preferred, as it is comparable with KDD′99 with a well-structured form. The
data set is divided into training and testing data sets (KDDTrain+ and KDDTest+,
respectively). The number of classes in the data set was 5, the number of attacks
in the training data set was 21, and the number of attacks in the testing data set
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was 37 [4,20]; this represents that the number of additional novel attacks in the testing
data set was 16 [16, 28]. There were about 41 attributes for each record of the data
set; the comprehensive report of the attributes are mentioned in [13,15].

4.2. Performance evaluation

The evaluation metrics that were considered for the performance of the proposed IDS
framework were accuracy, precision, recall, and F1 score. Accuracy can be defined
as the ratio of those instances that were identified correctly to the complete test set.
Precision can be defined as the ratio of those instances that were identified as attacks
to all of the instances that were classified as attacks. Recall can be defined as the
ratio of the instances that were identified as attacks to all of the instances that were
of the class of attacks. The F1 score was measured by considering both the precision
and recall. The proposed framework training model utilized a deep neural network
with a learning rate of 0.001, epochs of 20, and a batch size of 36. This framework
achieved an accuracy of 99.99%, a precision of 94.28%, a recall of 100%, and an F1
score of 97.05%.

Figure 3. Distribution of SHAP Values

The summary of the SHAP values that were obtained through the proposed IDS
framework can be represented as mentioned in Figure 3. The interpretation of the
obtained results can be explained based on the obtained graph that can be found in
Figure 4. The interpretation of the obtained results can be explained based on the
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obtained graph that can be found in Figure 4 (this graph helps identify the essential
features; the identified top-four essential features were src_bytes, flag_S0, count,
and service_private).

Figure 4. Interpretation of Deep Neural Network Classifier

The global explanation for the obtained results can be represented as mentioned
in Figure 5 (this figure gives information regarding the top-20 essential attributes that
were identified for DoS threat and their corresponding attribute values). The colors
represent the attribute values from low to high depending on the Shapley values. In
Figure 5, the Shapley values are considered on the x-axis, and attributes are considered
on the y-axis. The attribute value increases as the red color’s intensity increases; on
the other hand, the attribute value decreases as the blue color’s intensity increases.
In the y-axis direction, the overlap points are pulsated; this represents the distribution
by the function of the Shapley values. The attributes are organized accordingly.

Figure 5. Top-20 attributes of DoS attack
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To justify the significance of the proposed technique, the model was implemented
on a real-time IOT-based UNSW 2015 data set. This data set was comprised of a sum
of 175,341 rows and 45 attributes. In the data set preprocessing step, any missing
values were dropped at first. Because of this, the data set was changed over to close to
half of its size. Furthermore, label-encoding methods were used in order to deal with
the textual values. For performing the scaling, the standardization method was later
applied. For creating the effective aftereffects of the proposed model, the execution
was performed with a high setup that contained an AMD RYZEN 9 processor with
8 cores, the 64-digit Windows 10 operating system, 16 GB of RAM, and a 6 GB
GTX 1660 TI GPU. Specifically, four different types of attacks were available in this
data set (R2L, U2L, Probe, and DDOS). In this paper, we specifically focused on the
distributed denial of service attacks. In Table 1, the results that were obtained by
using various existing models along with proposed model are depicted (for which the
NSL-KDD data set was used), whereas Table 2 depicts the results that were obtained
using the UNSW-NB-15 data set.

Table 1
Results obtained using various deep-learning algorithms on NSL-KDD data set

Sr. No. Algorithm Accuracy
1 XGboost Classifier 0.963
2 Adaboost Classifier 0.924
3 Extra Trees Classifier 0.927
4 Random Forest Classifier 0.978
5 Proposed Methodology 0.999

Table 2
Results obtained using various deep-learning algorithms on UNSW-NB15 data set

Sr. No. Algorithm Accuracy [%]
1 Convolutional Neural Network 92.71
2 Deep Neural Network 94.08
3 Gated Recurrent Neural Networks + Recurrent Neural Network 96.92
4 Artificial Neural Network 99.76
5 Proposed Methodology 99.96

5. Conclusion and future work

When researchers analyze and predict various aspects based on a considered data set
but there is no reason that exists for that particular prediction to be made based on
all the features of the dataset. It is a similar case while dealing with machine learning,
computer vision, and natural language processing. It is essential to identify the reason
for a particular prediction that enhances the explainability of a model. It is very
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crucial while dealing with security-related data aspects. Considering this context, the
model that was proposed based on the NSL-KDD data set enhances the explainability
of the prediction. The performance of the model was evaluated by using various
evaluation metrics such as accuracy, precision, recall, and F1 score. The accuracy
of the proposed model is promising compared to the existing techniques. Besides
the prediction, the proposed model enhanced the interpretability of the obtained
predictions by using local explainability as well as global explainability; this will
be helpful for experts who deal with IDS. The analysis that is currently ongoing can be
strengthened. First of all, further data sets could be utilized to show the feasibility
of the model for network IDSs. Second of all, while SHAP has quick calculations to
explicitly translate the machine-learning model relative to the Shapley estimate, it
still is not feasible to operate in real-time. Finally, more complicated threats such as
advanced persistent threats (APTs) can be investigated by the SHAP process. This
research gives useful insight into IDS interpretability. In future aspects, additional
analysis will concentrate on testing with additional databases, operating on a system
in real-time, and describing advanced threats.
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