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Abstract This paper presents a hybrid meta-heuristic algorithm that uses the grey wolf
optimization (GWO) and the JAYA algorithm for data clustering. The idea
is to use the explorative capability of the JAYA algorithm in the exploitative
phase of GWO to form compact clusters. Here, instead of using only one best
and one worst solution for generating offspring, the three best wolves (alpha,
beta and delta) and three worst wolves of the population are used. So, the best
and worst wolves assist in moving towards the most feasible solutions and simul-
taneously it helps to avoid from worst solutions; this enhances the chances of
trapping at local optimal solutions. The superiority of the proposed algorithm
is compared with five promising algorithms; namely, the sine-cosine (SCA),
GWO, JAYA, particle swarm optimization (PSO), and k-means algorithms.
The performance of the proposed algorithm is evaluated for 23 benchmark
mathematical problems using the Friedman and Nemenyi hypothesis tests. Ad-
ditionally, the superiority and robustness of our proposed algorithm is tested
for 15 data clustering problems by using both Duncan's multiple range test and
the Nemenyi hypothesis test.
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1. Introduction

The field of machine learning that is used to organize unlabeled data items into sim-
ilar groups and dissimilar objects into different groups is known as data clustering.
In contrast to supervised machine-learning algorithms, clustering algorithms have no
idea about data labels to extract meaningful information from a huge volume of data.
Additionally, clustering algorithms can be classified into two categories; namely, par-
titional and hierarchical. Due to the increase in complexity with the increase in data
volume, hierarchical clustering algorithms have not become more popular as com-
pared to partitional clustering algorithms. Partitional clustering algorithms consider
similarity measures to group similar data items into the same groups. Therefore,
the inter-cluster and intra-cluster distance measures are used in order to maximize
the similarity among the data items in a partitional clustering algorithm. Moreover,
separate groups are formed based upon some criterion known as the fitness func-
tion. Once an appropriate fitness function is chosen, the clustering algorithm can
be converted into an optimization problem that minimizes the intra-cluster distances
(compactness) and maximizes the inter-cluster distances (separability). Additionally,
a partitional clustering algorithm can handle a large volume of data, which leads to
more applications toward the field of research for grouping patterns for example, med-
ical data analysis (for classifying positive and negative symptoms uniquely [46, 47]),
social network analysis (for identifying fake and real information or users), robotics
(for classifying items or humans based on their body shape or activities), and market
basket analysis (for classifying consumers according to their purchasing behaviors,
etc.). In all of these applications, the nature of data items that are available as
patterns are different from each other. Additionally, there has been no optimum opti-
mization algorithm invented as of yet (as per the “No Free Lunch Theorem” [NFL]).
Therefore, the user must select an appropriate algorithm based on the clustering
problem in hand that resolves the above problem.

Most traditional clustering algorithms are computationally simple but generally
get stuck in local optimal solutions due to their hill-climbing approaches. On the
other hand, these clustering problems are multi-modal in nature; therefore, they have
a higher chance make them get trapped in local optimal solutions. Additionally,
nature-inspired algorithms have the capability of escaping from local optimal solutions
with the help of their stochastic operators. This also ensures global search with the
help of a set of random search agents with a few stochastic operators. These play vital
roles in solving most multi-modal problems that are similar to the clustering task to
convergence fast. It also helps in escaping from the local optimal solutions. Therefore,
it enhances the probability of reaching near-optimal solutions. On the other hand it
also reducea the time of search to obtain near optimal solutions. Most specifically,
the stochastic operators and the algorithmic behavior of nature-inspired computing
help to escape the algorithms from trapping at multiple local optimal solutions by
maintaining a trade-off between the exploration and the exploitation.
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The first nature-inspired algorithm was proposed in 1975 by Holland and his
team; this is popularly known as the genetic algorithm (GA) [21]. The recent litera-
ture reports that most of the meta-heuristic-based optimization algorithms are able
to solve real-life optimization problems and those algorithms are such as: grey wolf
optimization (GWO) [34], teaching learning-based optimization (TLBO) [44], bacte-
ria foraging optimization (BFO) [17], the whale optimization algorithm (WOA) [33],
the JAYA algorithm [43], ant colony optimization (ACO) [10], the sine cosine al-
gorithm (SCA) [32], simulated annealing (SA) [29], the spotted hyena optimization
algorithm (SHOA) [9], ant lion optimization (ALO) [31], particle swarm optimiza-
tions (PSO) [28], chemical reaction optimization (CRO) [30], differential evolution
(DE) [50], etc. In recent times, most researchers have received immense interest
in applying such nature-inspired algorithms on clustering problems [46–49]. Simi-
larly, Jafer and Sivakumar [25] published a review article on a nature-inspired-based
meta-heuristic optimization algorithm on ant-based clustering. Hruschka et al. [23]
published a review article on an evolutionary algorithm for data clustering. Hatallou
et al. [19,20] proposed a data-clustering algorithm that used the gravitational search
algorithm (GSA). Hatallou et al. [18] applied the Big Bang-Big Crunch algorithm
(BB-BC) to address clustering problems [20]. Similarly, Nanda and Panda [38] pub-
lished a research review on nature-inspired algorithms and their applications toward
data-clustering problems.

Most partitional clustering algorithms are heuristic in nature. Additionally, hy-
bridizing two or more nature-inspired algorithms increases the performance to a cer-
tain level by maintaining a better trade-off between exploration and exploitation [49].
Aljarah et al. [2] presented a hybrid approach of GWO and a trajectory search (TS)
for clustering. This approach balances the exploratory and exploitative behavior
of the GWO algorithm. Compared to the previously proposed algorithms, this hy-
brid algorithm had a more substantial exploration capability for avoiding the local
optimal stagnation problem of the GWO algorithm. However, this algorithm had
a higher computational time as compared to GWO (with the side effect of TS).
Niknam and Amiri proposed a hybrid algorithm by combining PSO, ACO, and k-
means algorithm [39] to overcome the issues of a traditional k-means algorithm.
Shelokar et al. [45] proposed an ant colony-based algorithm to address clustering
problems. Niknam et al. [40] proposed a hybrid algorithm using k-means, simulated
annealing (SA), and ACO algorithms for selecting near-optimal cluster centers for par-
titional clustering algorithms. Moreover, the GWO algorithm showed better results
when compared to the other meta-heuristic-based algorithms that have been presented
in the literature for solving multiple fields of research problems; e.g., image segmen-
tation [36], conceptual-based text mining [51], the load dispatch problem [26], and
feature subset selections [12]. Additionally, the recently proposed JAYA optimization
algorithm has gone through several modifications due to its more accurate and reliable
performance and simple mathematical logic. This showed its superior performance
over other optimization algorithms for solving engineering optimization problems such
as the team formation problem [11], the traveling salesman problem [16], and iden-
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tifying the reliable parameters of photo voltaic models [56]. Motivated by this, we
propose a hybrid GWO and JAYA algorithm that uses the benefits of both the al-
gorithms that are complementary to each other. Therefore, it maintains a trade-off
between exploration and exploitation for achieving near-optimal solutions for a set of
clustering problems.

The key contributions of this paper are summarized as follows:
• formulated initial solutions of GWO using randomly chosen cluster centers in

order to incorporate randomness into initial solution;
• incorporated three worst solutions into GWO algorithm along with existing three

leader wolves into its search strategy;
• hybridized JAYA algorithm with GWO for improving performance of proposed

algorithm and to maintain better trade-off between exploration and exploitation,
where

1) mean best and mean worst are decided based on gray wolf hierarchy of GWO
algorithm using three best wolves and three worst wolves, respectively;

2) obtained mean best wolf and mean worst wolf are mutated stochastically
using JAYA algorithm;

• applied proposed algorithm for 23 mathematical benchmark functions and 15
benchmark data-clustering problems;

• superiority of proposed algorithm was established by comparing it with existing
GWO, JAYA, PSO, SCA, and traditional k-means for data-clustering problems
by considering four different performance metrics;

• applied statistical tests such as Friedman and Nemenyi hypothesis test and
Duncan's multiple range test to draw decisive conclusions from mean simula-
tion results.

The remainder of the paper is structured as follows: Section 2 presents a brief
overview of preliminary works on clustering task and optimization algorithms; Sec-
tion 3 presents the proposed methodology; Section 4 presents a performance eval-
uation on meta-heuristic algorithms using benchmark functions; Section 5 presents
a performance evaluation on clustering benchmark problems; and finally, Section 6
concludes the paper.

2. Preliminaries

2.1. Partitional clustering
Among the many clustering algorithms, partitional clustering has achieved maximum
attention by researchers because of its simplicity, lower computational complexity,
and easy implementation procedures. Partitional clustering algorithms can handle
a large volume of data; hence, it has become more popular nowadays in the field of
image processing [54], data mining, pattern recognition [6], social network analysis,
etc. However, the main limitation of the algorithm is that it is highly dependent on
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initial cluster centers and has more chances of getting trapped in local optimal solu-
tions. The problem of partitional clustering has been tackled in numerous research
works (as presented in the literature [2, 3, 19, 20, 23, 25, 38–40, 42, 45]). Addition-
ally, several research works have been carried out to overcome the above issues in
partitional clustering algorithms. In recent years, partitional clustering algorithms
that employ nature-inspired algorithms have gained tremendous interest among re-
searchers [2, 19, 20, 23, 25, 38–40, 42, 45–49]. Basically, these algorithm divides a set
of data points into separate groups based on some fitness values. To obtain the fit-
ness values, several fitness measure are used. Additionally, in some cases the fitness
measures aims at either minimizing the fitness values or maximizing it that, directly
affects the formation of quality clusters. So, the problem of partitional clustering can
be considered to be an optimization problem that is used to minimize intra-cluster
distances and maximize inter-cluster distances. Among all optimization algorithms,
population-based meta-heuristic algorithms play an important role in finding optimal
cluster centers by maintaining a good trade-off between intra-cluster and inter-cluster
distances that produces better-quality clusters. Although a single meta-heuristic can
achieve better results in its own principles, it still cannot achieve the true aspect of
exploration and exploitation in a given search space. To improve the performance
and to maintain a proper balance between exploration and exploitation two or more
algorithms are hybridized.

There are several partitional clustering algorithms, including k-means, k-medoid,
and fuzzy c-means. Among these algorithms, the k-means algorithm is widely used
and has gone through several modifications by researchers due to its simple mathe-
matical model and its capability of handling a large volume of data. However, the
algorithm has several drawbacks such as: (i) high dependency on initial solutions,
(ii) inability to effectively produce solutions of multi-modal data, its need for prior
information about the number of clusters that are present in a data set, (iii) ease of
being trapped in local optimal solutions, (iv) inability to guarantee the exploration
of an entire search space, and (v) constant production of spherical clusters, etc. [24].
Additionally, the k-medoid algorithm is more expensive than k-means, as it computes
all pairwise distances. The time complexities of k-medoid is O(n2 ·K ·i) and k-means is
O(n·K ·i), where n denotes the number of observations, K – the number of cluster cen-
ters, and i – the number of iterations to complete. Additionally, meta-heuristic-based
partitional clustering algorithms handle such local convergence issues by using their
stochastic operators, that ensures to adapt the global searches [7,13,48] for achieving
near-optimal solutions. The traditional partitioning algorithms rely on some strict
rules or mathematical logic for achieving optimal solutions, whereas meta-heuristic al-
gorithms approach towards the optimal solutions by maintaining cooperation among
population members with a few randomness [58]. Additionally, the performance of
the hybrid algorithms has been proven to be better and more effective than single
standalone algorithms as given in the literature [1, 4, 55]. Therefore, in this research,
we have hybridized two meta-heuristic algorithms, i.e. GWO and JAYA, to achieve
superior performance.
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2.2. JAYA algorithm
Most meta-heuristic algorithms have some common parameters, such as (i) number of
iterations, (ii) number of generations, and (iii) population sizes, etc. In addition, they
have some special parameters, such as mutation factor (f), crossover probability (Cr)
for DE [50,55], inertia weight, an acceleration coefficient for PSO [53], a few random
parameters for the SCA (in order to move the position of a search agent toward a near-
optimal solution [32]), etc. The quality of any meta-heuristic or heuristic algorithm
is highly dependent on its initial parameters and its stochastic behaviors. Moreover,
the fine-tuning of these parameters acts as a major challenge for researchers in order
to apply it in a real domain with unknown search-space information. However, the
JAYA algorithm is one of the simplest algorithms that does not need any such special
parameter; therefore, it is considered to be a parameter-free algorithm. The main
motivation behind the JAYA algorithm is to move the omega wolves close toward the
best solution while maintaining a sufficient gap from the worst solution. Initially,
the algorithm was proposed by Rao [43] in 2016 and gained tremendous interest
among several researchers due to its motivational characteristics. Additionally, the
algorithm is more flexible, simple, and easy to implement. It also does not require
any derivative information in its initial population in order to reach at near-optimal
solution. Due to the simple concept and easy-to-implement steps of the algorithm,
several other traditional and meta-heuristic algorithms have been hybridized with this
algorithm in order to improve its performance with the hybrid approaches [15, 52].
However, the JAYA algorithm generally gets trapped in local optimal solutions for
complex optimization problems due to the insubstantial consideration of population
information in its search strategy [58]. Moreover, Zhang et al. [58] proposed an
algorithm that was known as EJAYA that incorporates more exploration potential to
the existing algorithm with the consideration of population information (population
mean) to enhance the performance of the JAYA algorithm. Mathematically, the
population updation process of the algorithm can be illustrated as shown in Eq. (1):

X
(t+1)
i = Xt

i + r1 · (Xt
best − |Xt

i |) − r2 · (Xt
worst − |Xt

i |) (1)

where, the Xt+1
i vector is the new probable search agent for search agent Xt

i , the Xt
best

and Xt
worst vectors are the current best and current worst solutions, respectively, in

the search space, and r1 and r2 are chosen randomly from the uniform distribution
within interval [0-1]. Adding term r1 · (Xt

best − |Xt
i |) will attract the solution to move

toward the best candidate solution, and subtracting r2 ·(Xt
worst −|Xt

i |) from the whole
term will establish a tendency to stay away from the worst candidate solution. Here,
the new solution (Xt+1

i ) will survive in the upcoming (t + 1)th generation based on
a greedy-selection strategy. In this case, subtracting the third term will bring most of
the worst solutions toward the best solutions but not exactly replicate the candidate
solutions that are similar to the best solution. This helps maintain high diversity
among the population members. Additionally, this term allows us to improve the
exploration and exploitation capabilities of the algorithm by allowing each candidate
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solution to search in the neighborhood region of the best solution. The second term
in Eq. (1) will allow the candidate solutions to move towards the best solution. How-
ever, the algorithm has certain limitations, i.e. stagnation to local optimal solutions
due to the loss of diversity. It so happens due to the unique approach of the JAYA al-
gorithm i.e. consideration of only two candidate solutions. To tackle the above issues
of the JAYA algorithm (i.e., the inadequate consideration of population information
during its course of iterations), Zhang et al. [58] proposed an enhanced JAYA algo-
rithm that improves the performance by incorporating population information using
the mean population that is represented by M (as in Eq. (2)). Additionally, they in-
troduced two attract points (upper and lower) in order to use population information
effectively, where the upper and lower attract points are calculated by using the best
and worst candidate solutions, respectively. Mathematically, the upper and lower
attract points are calculated from the population (as shown in Eq. (3) and Eq. (4)):

M = 1/N

N∑
i=1

Xi (2)

Here, Xi represents a candidate solution in the population, and N is the number of
candidate solutions:

Pu = λ3 · Xbest + (1 − λ3) · M (3)

where Pu is the upper local attract point, λ3 is a random value within interval [0–1],
Xbest represents the best fit solution in the population, and M represents the mean
of the population in the current iteration:

Pl = λ4 · Xworst + (1 − λ4) · M (4)

where Pl is the lower local attract point, λ4 is a random value within interval [0–1],
Xworst represents the worst fit solution in the population, and M represents the mean
of the population in the current iteration. Mathematically, term M is calculated as
shown in Eq. (2).

Considering the above upper local attract point, lower local attract point, and
mean population information, the exploitation of each candidate solution can be ex-
pressed as shown in Eq. (5):

Vi = Xi + λ5(Pu − Xi) − λ6(Pl − Xi) (5)

where λ5 and λ6 are two random numbers, Vi is the newly obtained solution for
updating the current candidate using greedy selection. The above approach uses
population information in order to improve the exploitation capability. Furthermore,
the strategy improves the solution by generating a next-generation population by
using the population information in the current generation; this helps to overcome
the local convergence issue. However, a higher number of control variables are used
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in this algorithm, which contradicts the simplicity and parameter-free nature of the
algorithm. Additionally, the performance of the JAYA algorithm is directly related
to the problem of dimensionality; i.e., with increase in the number of problem vari-
ables, the performance decreases. Several machine-learning approaches handle such
problems in order to yield more-efficient results by using dimensionality reduction,
scaling, and transformation methods. However, due to such an inherent property of
the JAYA algorithm, the GWO algorithm outperformed the performance of the JAYA
algorithm. Additionally, the superior performance of GWO over JAYA is due to its
lower suceptibility for the problem of dimensionality. Therefore, we have incorporated
the classical JAYA algorithm and GWO algorithm in our proposed hybrid algorithm
to enhance the strength of the GWO algorithm that improves the performance with
the benefit of both algorithms that are complementary to each other.

2.3. Standard grey wolf optimization algorithm
2.3.1. Inspiration of GWO

GWO is a nature-inspired meta-heuristic algorithm that mimics the hunting behav-
iors of gray wolves. According to the food chain, these animals are ranked at the
top of the food-chain hierarchy. Australian scholar Mirjalili [34] proposed the grey
wolf optimization algorithm in 2014 by considering the behaviors of gray wolves dur-
ing their encircling, hunting, and attacking processes. According to Mirjalili, grey
wolves live together and generally follow a social hierarchy among themselves dur-
ing the above activities. This algorithm mimics the process of mutual cooperation,
the leadership hierarchy, and the teamwork of gray wolves during their hunting pro-
cesses. The searching and hunting processes of the gray wolf are always guided by the
leader wolves in the hierarchy. During the searching process, the hypothesized prey
is surrounded by the leader wolves, whereas during the hunting process, the prey is
encircled by the wolves.

2.3.2. Social hierarchy

Basically, the algorithm classifies the wolves in the pack into four categories during
the searching and hunting phases: alpha (α), beta (β), delta (δ), and omega (ω).
Here, the alpha wolf is considered to be the leader among the wolves in the pack and
is the most dominant wolf in the hierarchy. The beta wolf stands the second-best
fit solution after α and, similarly, the delta wolf stands third. Interestingly, all of
the remaining wolves in a wolf pack are considered to be ω; these are guided by the
three leader wolves during the entire process of searching and hunting. Moreover,
the overall process of hunting is summarized into three basic steps: (1) searching for
prey; (2) encircling the prey; and (3) attacking the prey.

2.3.3. Hunting mechanism

At the beginning when prey is found, the first iteration begins with the process of
encircling by the gray wolves with the leadership of the leader wolves. Mathemati-
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cally, the encircling process can be formulated by using the distance measures that
are shown in Eq. (6). Subsequently, random parameter C (as in Eq. [7]) helps to
stochastically emphasize or deemphasize the weight of the prey in order to overcome
the local convergence issues. Initially, it is assumed that the leader wolves have bet-
ter knowledge about the location of their prey (Xp(t)). Therefore, the simulation is
carried out by considering the leader wolves’ location as the most-probable location
for the prey to be searched. The searching and encircling behavior of each omega wolf
can be mathematically represented by using Eq. (8), Eq. (9), and Eq. (10) for the α,
β, and δ wolves, respectively:

D = C.Xp(t) − X(t) (6)

C = 2.r1 (7)

X1 = Xα(t) − A1.|C1.Xα(t) − X(t)| (8)

X2 = Xβ(t) − A2.|C2.Xβ(t) − X(t)| (9)

X3 = Xδ(t) − A3.|C3.Xδ(t) − X(t)| (10)

Here, X1, X2, and X3 are calculated by considering the leader wolves’ positions
individually with respect to the α, β, and δ wolves, respectively. Supporting the above
practice among the leader wolves, α will guide each single omega wolf to the next
probable location for the grey wolf from its original position to X1; similarly, β and δ

will guide them to X2 and X3, respectively. Parameters A1, A2, and A3 are obtained
by using Eqs. (11) and (12). Additionally, these three parameters vary in the interval
of [−2a to +2a]. The values of these three parameters change with a change in the
random value of parameter r2 for each leader wolf separately (as shown in Eq. (11)):

A = 2 · a · r2 − a (11)

a = 2 · (1 − t

T
) (12)

In the initial phase, the value of a is maintained at a high level; this declines with
a change in the iteration toward convergence. The high value helps to enhance an
explorative search, which helps to improve the global search capability. Similarly,
a low value enhances the exploitative search of the algorithm to search in the local
region more deeply. Therefore, the algorithm allows for a more local search for A > −1
and A < +1; on the other hand, the algorithm makes a more global search when
A < −1 and also when A > +1. Finally, the average of all of the predicted positions
is obtained by using Eq. (13), which calculates the most-probable position for a single
ω wolf:

Xt+1 = X1 + X2 + X3

3 (13)

The position updation is purely based on the the fitness function: if the fitness of Xt+1

is better than Xt, then the newly obtained position will be considered for the next
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iteration; otherwise, the current generation solution will remain unaltered for the
next generation. Additionally, Gao and Zhao [14] proposed an improved version of
these position updations by considering variable weights for each leader wolf to reduce
the chance of getting trapped in local optimal solutions. Here, they considered an
increasing order of weights for the α, β, and δ wolves (the highest weight is assigned
to α as compared to β and δ). Similarly, the next-highest weight is assigned to β,
and according to the leadership hierarchy, δ is assigned with the lowest weight among
the leader wolves. However, the cumulative sum of the variable weights is equal to 1
in each iteration (as shown in Eq. (14)):

w1 + w2 + w3 = 1 (14)

where, w1, w2, and w3 are assigned weights for the α, β, and δ leader wolves, re-
spectively. Mathematically, the relationship among w1, w2, and w3 is formulated
as shown in Eq. (15). Subsequently, with a change in the iteration, the w2 and w3
weights are increased with a gradual decrease in the weight of α in order to encir-
cle the prey. However, the weight updation always follows Eq. (15) to maintain the
proper teamwork among the leader wolves while guiding a number of ω wolves:

w1 ≥ w2 ≥ w3 (15)

The two control parameters in Eq. (11) and Eq. (12) help control the movement
direction while stochastically maintaining a sufficient gap from the best solution that
has been found so far. Simultaneously, it also helps to approach the prey stochastically
due to such stochastic behavior. Additionally, parameter a declines linearly in order
to improve the exploitation capability while reducing the exploration potential of the
algorithm. However, the maximum number of iterations that are required to converge
the algorithm is not known in advance in most real-life problems. Therefore, Gao
and Zhao [14] proposed an exponential declined equation in order to improve the
convergence speed by incorporating a maximum number of permissible errors and
an exponentially declined equation (as shown in Eq. (16)). Here, the controlling
parameter is expected to decline very fast during the initial iterations; therefore,
it converges to near-optimal values quickly as compared to the previous approach.
Additionally, Eq. (16) also helps select a few wolves for global-searching purposes in
order to avoid local optimal solutions [4]:

a = amax · (e− t
T ) (16)

where, amax is the maximum value of a, T is the maximum number of iterations, and
t denotes the current iteration number. Here, parameter T helps the algorithm to
stop at some finite time (mostly based on the current computing facilities that are
available).

Additionally, Yu et al. [57] proposed an opposition-based learning strategy to
overcome the local convergence issues of the grey wolf optimization algorithm. Ac-
cording to this algorithm, an opposite vector that corresponds to a gray wolf search
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agent is obtained by using a mathematical equation (as shown in Eq. (17)). The
authors also proposed a modified transition parameter in order to optimize complex
problems by modifying Eq. (12) into a nonlinear equation (as shown in Eq. (16)):

X̂pq = Upq + Lpq − Xpq (17)

here, a candidate solution in the initial population is represented by Xp, where Xp =
Xp1, Xp2, Xp3, ..., Xpd has d dimensions. Considering the above assumptions, Upq and
Lpq are termed as the upper and lower bounds, respectivly, for a data point p with
a dimension of q. Similarly, X̂pq is calculated as the opposite solution with respect
to Xpq. Here, a random guess and the opposite solution can improve the chances
of moving toward the near-optimal solution. The hybrid algorithm of the initial po-
pulation selection selects a set of better candidate solutions from the initial random
population and opposite solutions in order to speed up the convergence process (which
saves computational overhead):

a = 2 − 2 ·
(

t
T

)u

(18)

where t is the current iteration, u is a nonlinear operator, and T is the maximum
iteration. The above approach improves the search process by converging faster.
However, the improved GWO algorithm is guided by the α, β, and δ wolves in order
to achieve better performance. Therefore, the algorithm is likely to get trapped in
local optimal solutions due to the only consideration of best three leader wolves.
Additionally, the author also introduced a probability factor Jr to overcome the
local convergence issue, which generates opposite solutions at each iteration based
on the probability factor. Therefore, Jr is also considered to be a mutation factor
that helps the algorithm to jump out of the local convergence issue. However, the
algorithm maintains a large population (i.e., two times the initial population) due to
the incorporation of opposite solutions.

Additionally, half of the iterations are devoted to exploration and the other half
to exploitation in the classical GWO algorithm. Most generally, a higher exploration
level can overcome the local convergence issue. Among the various possibilities of en-
hancing the chances of exploration, one such possibility is to use exponential functions
instead of linear functions in order to decrease the value of a over the course of the
iterations. Mittal et al. [35] proposed an exponential decay function that decreases
the above parameter exponentially over the course of the iterations. Therefore, pa-
rameter A helps maintain the trade-offs between exploration and exploitation, with
the devotion of most of the iterations toward exploration and a comparatively lower
number of iterations toward exploitation (at a ratio of 70:30). The exponential decay
function can be mathematically represented as shown in Eq. (19):

a = 2
(

1 − t2

T 2

)
(19)
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Moreover, an improved grey wolf optimization algorithm (IGWO) was proposed
to maintain a proper trade-off between exploration and exploitation and to address
the global optimization problem [37]. The algorithm mostly benefits from dimension
learning-based strategy (DLH) hunting. The approach uses the neighboring informa-
tion of each wolf, which improves the diversity. The movement strategy of IGWO is
to select the candidate solution from either the GWO search strategy or DLH search
strategy based on the quality of the solutions that were obtained by each algorithm.
The cooperation between these two algorithms helps IGWO improve the global and
local search capabilities of the algorithm. The convergence analysis of I-GWO was
found to have superior performance for unimodal problems with higher dimensions
and was found to have faster convergence than the comparative algorithm. When com-
pared to other algorithms, the IGWO also shows its competitive performance while
solving the mathematical benchmark functions in most of the multi-modal problems.
The reason behind the enhanced performance is the hybrid behavior of the GWO and
DLH search strategies that are complementary to each other. Therefore, it maintains
good trade-offs between exploration and exploitation in order to avoid local optima.
However, the algorithm has been used to address only a single objective optimization
problem and needs to be modified to address large-scale global optimization problems.

Similarly, Hau et al. [22] proposed a novel initial-wolf-position-initialization
strategy by using improved chaotic tent mapping. Second, a Gaussian-distribution
variation-based convergence factor is used to improve the search capability. Addition-
ally, a dynamic-weight strategy is used to improve the speed of the convergence of
the algorithm. The performance algorithm was tested on mobile-robot-path planning
to verify the practical aspect of its superiority among other variants of GWO. The
dynamic proportional-weighting strategy is mathematically illustrated in Eq. (20):

Xt+1 = V1 · Wα + V2 · Wβ + V3 · Wδ

3 (20)

where V1, V2, and V3 are obtained from Eq. (21), Eq. (22), and Eq. (23), respectively,
as shown below:

V1 = |Xα| + |Xβ | + |Xδ|
|Xα|

(21)

V2 = |Xα| + |Xβ | + |Xδ|
|Xβ |

(22)

V3 = |Xα| + |Xβ | + |Xδ|
|Xδ|

(23)

Similar to the above mathematical equations, the Wα, Wβ , and Wδ are also
calculated using Eq. (24), Eq. (25), and Eq. (26), respectively where fα, fβ , and fδ

denote the current adaptions of α, β, and δ, in their respective equation as given below:

Wα = fα + fβ + fδ

fα
(24)
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Wβ = (fα + fβ + fδ)
fβ

(25)

Wδ = (fα + fβ + fδ)
fδ

(26)

The test result on the above modification of the GWO algorithm shows that the
algorithm has enough competence when compared with the test result of 15 bench-
mark functions with varieties of complexity and a wide variety of dimensions. When
compared to eight other algorithms, the results confirmed its superiority in terms of
solution accuracy and convergence speed.

Even though the test results confirm its superiority in most of the single-modal
test functions, it still cannot reach its optimal value for maximum multi-modal prob-
lems. The results on mobile-robot-path planning show significant performance im-
provement in cost consumption and also in its convergence speed when compared
with other algorithms. However, to incorporate more population information into the
steps of the JAYA algorithm and to maintain the trade-off between the exploration
and exploitation behavior of GWO the algorithm, we have hybridized both of the
meta-heuristic algorithms.

3. Methodology for meta-heuristic based on data clustering

Data clustering is a multi-modal search problem that is also considered to be an
NP-hard problem. The problems of data clustering have been solved by using several
conventional techniques; however, these techniques have more chances to converge to
local optimal solutions due to the multi-modal nature of the problems.

Therefore, to avoid local minima problems, most researchers have solved similar
types of multi-modal problems such as time series forecasting [41], the FOPID-based
damping controller [27], data-clustering problems [46, 47, 49], etc. by using nature-
inspired meta-heuristic algorithms. Primarily, the aim of clustering is to minimize the
intra-cluster distance and maximize the inter-cluster distance in order to form com-
pact clusters. So, we considered Euclidian distance measures between data points (as
shown in Eq. (27)) to access the similarities between them. The two-point Euclidian
distance measure is worth mentioning here (as shown in Eq. (27)):

Distance(pm − pn) =

√√√√ d∑
i=1

(
pi

m − pi
n

)2
(27)

where pi
m and pi

n are the ith-dimension information of the pm and pn data points,
respectively.
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3.1. Problem formulations
Given a dataset (D) with n-data points (p1, p2, p3, . . . , pn), the dimensions (features)
of all data points are represented by:∣∣∣∣∣∣∣

p1
1 p2

1 . . . pd
1

... . . . ...
p1

n . . . . . . pd
n

∣∣∣∣∣∣∣
• The aim is to find the K number of non-overlapping compact groups from the

given data set that satisfy the following mathematical illustrations (as shown in
Eq. (28) and Eq. (29)): k∑

i=1

k∑
j=1

(Ci

⋂
Cj) = ϕ (28)

where, i ̸= j; and
k
i=1

⋃
Ci = n (29)

• In order to achieve the above objective, we considered sum squared errors as
shown in Eq. (30):

k∑
j=1

n∑
i=1

Mij ·

√√√√ d∑
q=1

(
pq

i − Cj
q

)2
(30)

where pq
i represents the qth dimension of the ith data point and, similarly, Mij repre-

sents the membership value for data point i with respect to cluster center j. Cq
j rep-

resents the qth dimensional information of cluster center C.

3.2. Motivation
Given a data set that has D with n instances and d dimensional information in each,
the aim is to form K distinct groups by comparing the data points by using a distance
measure such that the similar points belong to the same cluster and the dissimilar
points belong to different clusters. Finding the best initial cluster centers that can
represent the centers of the K cluster is an NP-hard problem. Additionally, obtaining
K near-optimal cluster centers from n d-dimensional data points is a combinatorial
optimization problem with an exponentially increasing search space. Here, addressing
the above problem using conventional algorithms may lead to local optimal solutions.
To overcome this problem, most researchers used meta-heuristic algorithms. Even
though meta-heuristic algorithms purely depend on the exploration and exploita-
tion behavior of the algorithm, they still need certain parameters to be well-tuned
in advance to achieve near-optimal solutions. To improve the performance of such
algorithms, most researchers therefore prefer to use algorithms with only a few param-
eters. The JAYA algorithm is one such meta-heuristic algorithm that has only two
control parameters to obtain a near-optimal solution. On the other hand, the GWO
algorithm obtains near-optimal solutions by following the leader wolves and uses only
a few control parameters to maintain a trade-off between exploration and exploita-
tion. Additionally, GWO algorithm does not consider the worst candidate solutions to
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achieve near optimal solutions whereas JAYA algorithm considers both best and worst
candidate solutions. On the other hand, when both the complementary algorithms
are hybridized, the GWO gets a better opportunity to avoid identical population in-
formation in the search process when all three leader wolves are approaching towards
single local optimal solution. Additionally, the hybrid approach also helps the poor-
performing omega wolves of the GWO algorithm to come close to prey in a faster way
by avoiding all these local optimal solutions, which improves the exploration skills
of GWO. Therefore, the GWO algorithm maintains a better trade-off between ex-
ploration and exploitation. With the internal strength of both the GWO and JAYA
algorithms and their combined efforts, the GWO can maintain a trade-off between
exploration and exploitation that helps it to achieve better performance.

When compared to the mutation operator of the existing GWO algorithm, the
hybrid GWO approach with JAYA improves the mutation quality by considering both
the best and worst solutions with the help of the leader-wolf strategy of the GWO algo-
rithm. To achieve this, three leader wolves and the three lowest-quality omega wolves
(and their respective combined efforts) are considered. Here, the proposed hybrid al-
gorithm considers the leadership hierarchy of the GWO algorithm and the strategy of
the JAYA algorithm. In the proposed algorithm, the three worst-performing wolves
also take part in the search process to add some information that helps the other
omega wolves to avoid getting trapped in local optimal solutions. Moreover, these
worst-performing wolves generally do not participate in the encircling process but help
the others in order to stay away from worst-quality solutions. The combined effort
of the GWO and JAYA algorithms improves the performance by utilizing the explo-
ration and exploitation skills of both algorithms. Additionally, this helps the GWO
algorithm minimize the maximum interference of the leader wolves while updating the
positions of any omega wolves. It also incorporates the consideration of maximum
population information in the search space.

3.3. Proposed hybrid algorithm

The main steps of our proposed hybrid algorithm are presented in Figure 1; basi-
cally, it operates with three steps (initialization, iteration, and the final steps). In
the first step, the parameters are initialized; e.g., the number of gray wolfs (n), the
maximum number of iterations (Tmax), the number of variables to be optimized (d),
the lower (l) and upper (u) bounds, and the initial population (X). In the iterative
step, each omega wolf’s position is updated with the help of three leader wolves, three
worst-fit wolves, and JAYA operators. Then, a greedy-selection approach is followed
to update the solution with the consideration of the fitness function. This iterative
step is repeated for each omega wolf until the termination condition is satisfied. The fi-
nal step selects the alpha wolf (α) as the best-fit solution for the optimization problem.

The proposed algorithm generates non-overlapping clusters using the hybrid grey
wolf optimization and JAYA algorithm. Initially, the algorithm starts by a set of
initial parameters such as the number of clusters (k), population size (Maxpop), and
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maximum iterations (MaxIter). Subsequently, a Maxpop number of candidate solutions
are selected randomly (one from each cluster) to form a candidate solution of a size
of k × D.

Figure 1. Flowchart of proposed hybrid algorithm

Thereafter, the fitness of each candidate solution is calculated in order to select
the best candidate solution. Due to the random selection of data points in the ini-
tial population, the fittest candidate solutions in the whole population have greater
chances to converge toward local optimal solutions. In order to search for better can-
didate solutions for data clustering, these candidate solutions are given as input to
our hybrid clustering algorithm, which will produce a better population by using the
strength of both the GWO and JAYA algorithms with their inherent exploration and
exploitation capabilities.
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Therefore, our algorithm is comprised of three steps: 1) population initialization;
2) fitness calculation; and 3) iterative steps for successive position updation, fitness
calculation, and promising candidate selection for next generation. Algorithm 1 gives
a brief idea about our proposed algorithm for data clustering.

Algorithm 1: Proposed hybrid algorithm for data clustering
Data: Input: Input Data Set (D), Number of Clusters (K)
Result: Output: Set of (K) Cluster Centers
Step 1: Initialization Step Initialize number of clusters (K), generation counter

gen = 0, t = 0, Maxgen = 100, i = 0, Maxiter = 1000, Maxpop = 20. Randomly select
data points from Data Set D and initialize initial wolf pack (Rgen with random cluster
centers (Rgen = Rgen

1 , Rgen
2 , Rgen

3 ...Rgen
n ) size n ∗ K where Rgen

j = Cgen
1 ,...,Cgen

K ,
where C

(gen,l)
r is lth feature of rth wolf

Calculate fitness of each wolf of Rgen

Sort wolf pack (Rgen) with respect to fitness
Determine best-three solutions as αb, βb, and δb (best three wolves) and determine αw,

βw, and δw as three worst wolves
while gen < Maxgen do

Step 2: Iteration Step
while t < Maxiter do

Reinitialize i = 0
Sort wolf pack with respect to fitness
Calculate fitness of all solutions of population and determine best-three solutions

as αb, βb, and δb (best three wolves) and determine αw, βw, and δw as three
worst wolves

Compute a = 2 − (2∗iter)
Maxiter

while i < Maxpop do
Generate two random numbers r1 and r2
Set A1 = 2 ∗ a ∗ rand − a
Set A2 = 2 ∗ a ∗ rand − a
Set A3 = 2 ∗ a ∗ rand − a
Set C1 = 2 ∗ rand, C2 = 2 ∗ rand , C3 = 2 ∗ rand
Compute Y best

1 = αb − A1 × |C1 × αb − Xt
i |

Compute Y best
2 = βb − A2 × |C2 × βb − Xt

i |
Compute Y best

3 = δb − A3 × |C3 × δb − Xt
i |

Compute best = Mean(Y best
1 , Y best

2 , Y best
3 )

Set A = 2 ∗ a ∗ rand − a
Compute Y worst

1 = αw − A × |C × αw − Xt
i |

Compute Y worst
2 = βw − A × |C × βw − Xt

i |
Compute Y worst

3 = δw − A × |C × δw − Xt
i |

Compute worst = Mean(Y worst
1 , Y worst

2 , Y worst
3 )

Calculate X
(
i t + 1) = Xt

i + rand ∗ (best − Xt
i ) − (worst − Xt

i )
Update i = i + 1
if fitness(Cgen+1

i ) < fitness(Cgen
i ) then

Set Cgen+1
i = Cgen

i

Update t = t+1
Step 3: Final Step
Use K seeds of αb as near-optimal cluster centers
Form K clusters
gen = gen + 1
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The initialization of control parameters (including the parameter setting and
candidate-solution selection for the initial population) is done in the initial step of our
proposed algorithm. In Step 2, the fitness for each candidate solution is calculated
by considering the accuracy-performance metric. In Step 3, the hybrid approach
of GWO and JAYA is used with the current population in order to improve the
performance of the existing candidate solutions. In this step, the fitness is calculated
and, accordingly, the promising candidate solutions are selected in order to update the
candidate solution in the population in every iteration. Then, the hybrid approach
tries to update the position of each candidate solution. The process of candidate
selection, position updation, and fitness calculation are performed until maximum
iteration is achieved. In order to simulate the behavior of GWO for optimization,
the best-three-fittest solutions are termed alpha (α), beta (β), and delta (δ) wolves,
and the remaining solutions are termed omega (ω) wolves. Considering the fitness
of each wolf, these three wolves are expected to have better knowledge about the
prey’s location. Therefore, the omega (ω) wolves are guided by these three wolves (as
represented mathematically in Eq. (13)). When facing more-complex or multi-modal
problems, however, these leader wolves may lead toward local optimal solutions; this
in turn gives the wrong guidance to the remaining wolves. However, these could have
received better results from their own localities or from more-diversified locations by
using a better search strategy. Therefore, we have hybridized the GWO algorithm
with the JAYA algorithm to update the positions. Additionally, we introduce six new
wolves; these includes the three leader wolves (Y best

1 , Y best
2 , and Y best

3 ) and their mean
effort as the best search agents for the JAYA algorithm. Similarly, the worst three ω

wolves (Y worst
1 , Y worst

2 , and Y worst
3 ) and their mean effort as the worst search agents

for the JAYA algorithm. The best three wolves and their corresponding representation
of each omega wolf (xi) is calculated by Eq. (32), Eq. (34), and Eq. (36) for αb, βb,
and δb, respectively. The mean result of these three leader wolves calculates the best
solution for the JAYA algorithm. Similarly, the representation of the worst three
omega wolves is obtained by using Eq. (39), Eq. (40), and Eq. (41). The mean result
(as shown in Eq. (42)) for these calculated three worst omega wolf representations
is termed as the worst solution for the JAYA algorithm. Finally, the most-probable
solution (xt+1

i ) is obtained from Eq. (42). Subsequently, greedy selection is applied
to select the best solution among the newly calculated solution and the solution that
was obtained from the previous iteration:

A1 = 2 · a · r2 − a (31)
Y best

1 = αb − A1 · (C · αb − xi) (32)
A2 = 2 · a · r2 − a (33)

Y best
2 = βb − A2 · (C · βb − xi) (34)

A3 = 2 · a · r2 − a (35)
Y best

3 = δb − A3 · (C · δb − xi) (36)
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best = Y best
1 + Y best

2 + Y best
3

3 (37)

A = 2 · a · r2 − a (38)

Y worst
1 = αw − A · (C · αw − xi) (39)

Y worst
2 = βw − A · (C · βw − xi) (40)

Y worst
3 = δw − A · (C · δw − xi) (41)

worst = Y worst
1 + Y worst

2 + Y worst
3

3 (42)

xt+1
i = xi + r1(best − xi) − r2(worst − xi) (43)

where r1and r2 are two different random numbers within interval (0–1).

4. Performance evaluation of meta-heuristic algorithms
using benchmark functions

To evaluate the performance of our proposed hybrid GWO and Jaya algo-
rithm, we considered 23 mathematical benchmark functions. These function are
f1, f2, f3, ..., f23 and can be classified as unimodal, flexible-dimensional multi-modal,
fixed-dimensional multi-modal, etc. To evaluate the performance of our proposed
hybrid algorithm, we compared it with the GWO [34], JAYA [43], PSO [28], and
SCA-based meta-heuristic algorithms [32] using the above 23 mathematical functions.
The parameter settings for the experimental work is presented in Table 1.

Table 1
Parameter settings

Number of search agents 50
Maximum number of Iterations 1000
Number of independent executions 30

The mean and standard deviation results are presented in Tables 2, 3, and 4
for the unimodal, multi-modal flexible-dimension, and multi-modal fixed-dimension
benchmark functions, respectively.

Moreover, to effectively evaluate the performance of our proposed algorithm,
we conducted a non-parametric-based Freidman and Nemenyi hypothesis test. The
mean-rank results that were obtained from the test are presented in Figure 2, and the
results are analyzed at p-value = 0.000 and critical distance = 1.3. One can see from
the results that the proposed algorithm obtained the best mean rank (value = 63.79)
while minimizing 23 mathematical benchmark functions.
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Table 2
Mean and standard deviation of fitness values obtained in 30 independent simulations

by meta-heuristic algorithms on unimodal functions

Proposed
Mean ±

Std. Dev.

SCA
Mean ±

Std. Dev.

GWO
Mean ±

Std. Dev.

JAYA
Mean ±

Std. Dev.

PSO
Mean ±

Std. Dev.

f1 4.9E-108 ±
8.2E-108

2.8E-85 ±
1.5E-84

3.6E-176 ±
0.0E+00

2.9E-02 ±
5.9E-02

1.3E+00 ±
4.2E-01

f2 9.6E-54 ±
2.0E-53

3.4E-64 ±
1.8E-63

2.4E-110 ±
1.3E-109

4.4E-07 ±
2.1E-07

2.1E-03 ±
3.1E-03

f3 2.7E-107 ±
1.0E-106

2.7E+03 ±
2.3E+03

5.3E+00 ±
9.0E+00

6.2E-01 ±
3.9E-01

1.5E-11 ±
6.3E-11

f4 7.2E-52 ±
1.1E-51

1.5E+01 ±
1.8E+01

1.2E-41 ±
4.6E-41

8.7E-06 ±
3.5E-06

9.7E-03 ±
8.7E-03

f5 8.8E+00 ±
1.4E-01

8.9E+00 ±
1.7E-01

7.7E+00 ±
5.4E-01

9.1E-05 ±
4.4E-04

3.0E-01 ±
9.9E-01

f6 1.5E-06 ±
4.9E-07

8.0E-02 ±
7.6E-02

5.4E-02 ±
5.6E-02

4.7E-03 ±
2.1E-03

6.3E-14 ±
3.4E-13

f7 2.0E-04 ±
1.1E-04

3.4E-04 ±
4.3E-04

3.3E-04 ±
3.3E-04

3.9E-03 ±
2.4E-03

8.0E-04 ±
4.9E-04

Table 3
Mean and standard deviation of fitness values obtained in 30 independent simulations

by meta-heuristic algorithms on flexible-dimension multi-modal functions

Proposed
Mean ±

Std. Dev.

SCA
Mean ±

Std. Dev.

GWO
Mean ±

Std. Dev.

JAYA
Mean ±

Std. Dev.

PSO
Mean ±

Std. Dev.

f8 -3.9E+01 ±
1.1E+00

-3.9E+01 ±
5.7E-01

-3.9E+01 ±
1.8E-01

-3.9E+01 ±
7.1E-15

-3.9E+01 ±
1.5E-13

f9 6.5E-01 ±
3.5E+00

0.0E+00 ±
0.0E+00

4.0E+00 ±
7.5E+00

2.4E+01 ±
6.7E+00

1.2E+01 ±
4.3E+00

f10 1.1E-15 ±
8.9E-16

8.9E-16 ±
9.9E-32

3.7E-15 ±
1.4E-15

6.5E-08 ±
3.3E-08

3.9E-02 ±
2.1E-01

f11 0.0E+00 ±
0.0E+00

0.0E+00 ±
0.0E+00

5.4E-03 ±
2.9E-02

2.8E-01 ±
1.1E-01

9.3E-02 ±
5.7E-02

f12 1.8E-03 ±
4.8E-03

2.5E+00 ±
7.6E+00

1.4E-02 ±
1.8E-02

4.8E-03 ±
2.5E-03

1.0E-02 ±
5.6E-02

f13 1.8E-01 ±
1.1E-01

9.0E-01 ±
2.9E+00

8.1E-02 ±
5.3E-02

4.9E-16 ±
8.6E-16

1.1E-03 ±
3.3E-03
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Table 4
Mean and standard deviation of fitness values obtained in 30 independent simulations

by meta-heuristic algorithms on fixed-dimension multi-modal functions

Proposed
Mean ±

Std. Dev.

SCA
Mean ±

Std. Dev.

GWO
Mean ±

Std. Dev.

JAYA
Mean ±

Std. Dev.

PSO
Mean ±

Std. Dev.

f14 1.0E+00 ±
4.6E-08

1.0E+00 ±
4.6E-07

2.3E+00 ±
1.7E+00

1.0E+00±
5.1E-05

3.2E+00 ±
2.2E+00

f15 3.1E-03 ±
6.8E-03

7.3E-04 ±
5.0E-04

1.9E-03 ±
5.3E-03

3.9E-04±
2.8E-04

3.1E-04 ±
2.1E-05

f16 -1.0E+00 ±
4.9E-08

-1.0E+00 ±
6.2E-06

-1.0E+00 ±
1.1E-08

-1.0E+00 ±
1.2E-05

-1.0E+00 ±
6.7E-16

f17 4.0E-01 ±
7.1E-05

4.0E-01 ±
2.0E-03

4.3E-01 ±
1.6E-01

4.0E-01 ±
3.2E-04

4.0E-01 ±
1.1E-16

f18 3.0E+00 ±
1.2E-07

3.0E+00 ±
6.8E-02

3.9E+00 ±
4.8E+00

3.0E+00 ±
2.9E-04

3.0E+00 ±
4.4E-16

f19 -3.9E+00 ±
5.3E-08

-3.9E+00 ±
5.2E-04

-3.9E+00 ±
2.9E-05

-3.9E+00 ±
1.3E-15

-3.9E+00 ±
1.3E-15

f20 -3.3E+00 ±
6.1E-02

-3.2E+00 ±
1.3E-01

-3.3E+00 ±
7.8E-02

-3.3E+00 ±
5.9E-02

-3.3E+00 ±
4.8E-02

f21 -1.0E+01 ±
9.2E-01

-6.2E+00 ±
2.2E+00

-9.2E+00 ±
1.9E+00

-1.0E+01 ±
1.8E-15

-5.8E+00 ±
3.6E+00

f22 -9.8E+00 ±
1.7E+00

-5.6E+00 ±
2.0E+00

-8.2E+00 ±
2.8E+00

-1.0E+01 ±
9.5E-01

-7.3E+00 ±
3.7E+00

f23 -1.0E+01 ±
1.5E+00

-6.3E+00 ±
2.3E+00

-7.8E+00 ±
2.9E+00

-1.1E+01 ±
8.9E-15

-7.8E+00 ±
3.7E+00

Figure 2. Mean Rank of meta-heuristic algorithms for 23 benchmark functions
with p-value = 0.000 and critical distance = 1.3
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4.1. Convergence analysis
To make a visual comparison among the meta-heuristic algorithms, we plotted the
convergence curve for each benchmark function separately; these are shown in Figures
3, 4, and 5 for the unimodal, flexible-dimension multi-modal, and fixed-dimension
multi-modal test functions, respectively.

a) b)

c) d)

e) f)

g)

Figure 3. Unimodal mathematical benchmark functions: a) Sphere; b) Schwefel 2.22;
c) Schwefel 1.2; d) Schwefel 2.21; e) Rosenbrock; f) Step; g) Quartic with noise;



A nature-inspired hybrid partitional clustering method. . . 383

Due to the change in the behaviors of the convergence curves in different simula-
tions, we have considered the mean simulation results of 30 independent simulations
on each meta-heuristic algorithm for each benchmark function separately.

a) b)

c) d)

e) f)

Figure 4. Flexible multi-modal benchmark functions: a) Schwefel 2.26; b) Rastrigin;
c) Ackley; d) Griewank; e) Penalized 1; f) Penalized 2
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a) b) c)

d) e) f)

g) h) i)

j)

Figure 5. Fixed-dimension benchmark functions: a) Shekel’s Foxholes; b) Kowalik;
c) Six-hump camel back; d) Branin; e) Goldstein-Price; f) Hartman’s family;
g) Hartman’s family; h) Shekel’s family; i) Shekel’s family; j) Shekel’s family

5. Performance evaluation of benchmark clustering problems

5.1. Data set

In order to measure the performance of the proposed algorithm as compared to the
GWO, JAYA, PSO, SCA, and k-means algorithms, we considered 15 benchmark data
sets (as depicted in Table 5) from the UCI machine-learning repository.

Initially, the data sets were pre-processed by replacing the missing values with
mean values of the same attribute. Similarly, those attributes that had more than
two categories were simply removed from the data set. Some attributes that had
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binary categorical information were replaced with either zero or one. Additionally,
some data sets were balanced by using an up-sampling algorithm to overcome the
class-imbalance problem. The experiment was carried out after removing the class
label attribute from each data set. Subsequently, the performance was measured by
comparing the predicted class labels with the original class labels.

Table 5
Data set description

Data set Instances No of Attributes Attribute Characteristics Classes
Appendicitis 106 07 Real 02
Breast Cancer 699 09 Real 02
Bupa Liver Disorder 345 06 Integer, Real 02
Ecoli 336 07 Real 08
Haberman’s Survival 306 03 Real 02
Hepatitis 155 19 Categorical, Integer, Real 02
Indian Liver Patient 583 10 Integer, Real 02
Ionosphere 351 34 Integer, Real 02
Iris 150 04 Real 03
Lung Cancer 32 56 Integer 03
Mammographic Mass 961 06 Integer 02
Mushroom 8124 21 Integer 02
Seeds 210 07 Real 03
WDBC 569 30 Real 02
Zoo 101 16 Integer 07

5.2. Performance metrics
Accuracy is the most-used performance metric for evaluating the performance of clas-
sification and clustering algorithms. The accuracy performance metric is calculated
from the confusion matrix (as shown in Eq. (44)). However, if the input dataset
is highly imbalanced, the accuracy does not measure the performance perfectly [5].

Accuracy = TP + TN

TP + TN + FP + FN
(44)

Consider the scenario of an imbalance data set that has 90 negative instances and 10
positive instances; for example, if a classifier is able to classify all positive instances
perfectly and zero instances from the negative class. If we only consider accuracy
as a performance metric, then the overall performance will be calculated as 90%.
Unfortunately, this classifier is useless, as the main intention is to classify the positive
instances. In these types of data sets, the accuracy performance metric is not sufficient
for measuring the performance of the classification model. Several methods have been
proposed to address the above issue (which arises from the imbalanced nature of data
sets). One such method is to assign a high cost for misclassifying minority class
instances in order to minimize the error. Additionally, sampling is such a technique
to overcome the imbalance issue – either by increasing the minority class instances
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or by reducing the majority class instances by using up-sampling or down-sampling
methods, respectively. Most importantly, we cannot apply a sampling method to a real
problem for which classification is required; therefore, it is the job of researchers to
select the appropriate performance metric for the domain of the classification.

Moreover, to maintain a trade-off between false negatives and false positives, sev-
eral measures have been proposed [8]. Additionally, Matthew’s correlation co-efficient
(MCC – as shown in Eq. (45)) is such a measure that calculates the performance of
classification models by considering the above two cases using a confusion matrix.
The range of MCC lies between –1 to +1, where +1 denotes better performance,
–1 denotes worse performance, and 0 means a coin-tossing classifier. Moreover, this
performance metric is least influenced by the class-imbalance problem. MCC can be
calculated as follows:

TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(45)

On other hand, sensitivity accesses the instances of minority classes (true positive) in
order to calculate a model’s performance. Similarly, specificity (as shown in Eq. (46))
accesses negative class instances (false positives) in order to effectively measure per-
formance. Additionally, precision is another such performance metric that mea-
sures a model’s exactness; higher precision indicates better performance. From an
information-retrieval point of view, precision calculates performance by checking for
positive instances in a corpus. For instance, it checks a model’s exactness by check-
ing how well the classifier is able to classify the positive instances from the model’s
performance:

Specificity = TN

TN + FP
(46)

F-score is another commonly used performance metric that maintains a trade-off
between precision and recall (sensitivity); an F-score will be zero if either precision
or recall is evaluated as zero. The performance metric can be calculated as shown in
Eq. (47):

F -score = 2 · precision · recall

precision + recall
(47)

However, the F-score measure is sensitivity toward class-swapping problems. For
instance, if positive class instances are swapped with negative class instances, then
F-score will produce varying results. Despite the several flaws in F-score, it is still
considered to be one of most widely used metrics among researchers.

5.3. Performance evaluation on individual data sets
The effectiveness of our proposed algorithm was accessed by using the accuracy, speci-
ficity, F-score, and MCC performance metrics. The results that were obtained after
100 independent simulations were used to make a comparative analysis with the GWO,
JAYA, PSO, SCA, and traditional k-means algorithms. Additionally, we considered



A nature-inspired hybrid partitional clustering method. . . 387

15 machine-learning data sets from the UCI machine-learning repositories; also, we
conducted a statistical test on the aforementioned algorithms using Duncan's multi-
ple range test and the Friedman and Nemenyi hypothesis test at a 95% confidence
interval to effectively measure the performance of our proposed algorithm. The above
statistical analysis was comprised of two steps: (i) a result analysis using individual
data sets; and (ii) considering all of the data sets together. In each table, ∗ means that
the same alphabets within a single column are statistically equivalent to each other
with a 95% significance level (using Duncan's multiple range-based statistical test).

Table 6 demonstrates the mean and standard deviation statistical results of 100
independent simulations with 1000 iterations each for all of the algorithms on the
Appendicitis data set. The results showed that the proposed algorithm provided
the best mean result across all performance metrics as compared to the comparative
algorithms. Moreover, the statistical test also confirmed the superior statistical per-
formance of our proposed algorithm when compared to the JAYA, PSO, SCA, and
k-means algorithms with respect to all of the performance metrics.

Table 7 demonstrates the mean and standard deviation results that were obtained
for 100 independent simulations with 1000 iterations each for all of the algorithms
on the Breast Cancer data set. The results showed that the proposed algorithm
achieved the highest mean result across all of the performance metrics than all of the
other algorithms. Moreover, the statistical test also showed that the GWO algorithm
provided the second-best mean result across all of the performance metrics.

Table 8 demonstrates the mean and standard deviation results that were obtained
for 100 independent simulations with 1000 iterations each for all of the algorithms on
the Bupa data set. The result showed that our proposed algorithm achieved the best
mean result among the comparative algorithms. However, the GWO, JAYA, and SCA
algorithms also showed statistically superior results that did not differ significantly
from our proposed algorithm with respect to the accuracy and MCC performance met-
rics. Similarly, our algorithm also achieved statistically equivalent performance with
the superior mean results that were obtained by the SCA and k-means algorithms
with respect to the specificity and F-score performance metrics.

Table 6
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Appendicitis data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 84.1198 ± 0.3451a 0.7480 ± 0.0263a 0.8545 ± 0.0043a 0.6952 ± 0.0068a

GWO 83.0049 ± 0.2638b 0.7229 ± 0.0238b 0.8465 ± 0.0019b 0.6764 ± 0.0035b

JAYA 79.1217 ± 0.6563e 0.7237 ± 0.1132b 0.8027 ± 0.0183e 0.6027 ± 0.0112e

PSO 80.2758 ± 3.5350d 0.6924 ± 0.0986c 0.8227 ± 0.0270c 0.6269 ± 0.0563d

SCA 81.3237 ± 1.1710c 0.7340 ± 0.0643ab 0.8266 ± 0.0129c 0.6391 ± 0.0197c

K-means 77.6500 ± 0.2781f 0.00399 ± 0.0004d 0.8082 ± 0.0028d 0.5861 ± 0.0071f
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Table 7
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Breast Cancer data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 97.8300 ± 0.2057a 0.9932 ± 0.0045a 0.9780 ± 0.0021a 0.9571 ± 0.0041a

GWO 97.6846 ± 0.1363b 0.9896 ± 0.0038b 0.9766 ± 0.0014b 0.9541 ± 0.0026b

JAYA 96.9629 ± 0.8921d 0.9733 ± 0.0235c 0.9696 ± 0.0084d 0.9397 ± 0.0176d

PSO 97.1975 ± 0.6005c 0.9892 ± 0.0126b 0.9715 ± 0.0061c 0.9448 ± 0.0118c

SCA 97.6731 ± 0.2670b 0.9895 ± 0.0060b 0.9764 ± 0.0027b 0.9539 ± 0.0054b

K-means 94.3100 ± 0.0000e 0.9103 ± 0.0000d 0.9449 ± 0.0000e 0.8881 ± 0.0000e

Table 8
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Bupa data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 63.1775 ± 2.8151a 0.6294 ± 0.1252a 0.6296 ± 0.0382ab 0.2701 ± 0.0575a

GWO 62.5075 ± 2.7603a 0.5925 ± 0.1429a 0.6329 ± 0.0421ab 0.2586 ± 0 .0530a

JAYA 62.3525 ± 3.4787a 0.6164 ± 0.1605a 0.6187 ± 0.0668b 0.2587 ± 0.0705a

PSO 57.9850 ± 3.5242b 0.5479 ± 0.2379b 0.5716 ± 0.1193c 0.1764 ± 0.0639b

SCA 62.9175 ± 2.6813a 0.6375 ± 0.1080a 0.6231 ± 0.0411ab 0.2635 ± 0.0545a

K-means 52.8050 ± 1.6390c 0.2070 ± 0.1097c 0.6406 ± 0.0309a 0.0767 ± 0.0368c

Table 9 demonstrates the mean and standard deviation results that were obtained
for 100 independent simulations with 1000 iterations each for all of the algorithms
on the Ecoli data set. The results showed that the proposed algorithm achieved the
second-best mean result among all of the algorithms in all of the performance metrics
except for F-score. Additionally, the SCA algorithm achieved the best mean and
statistically superior results as compared to the remaining algorithms with respect to
all of the performance metrics. Moreover, the results that were obtained by the JAYA
algorithm did not differ from our proposed algorithm; hence, both were considered to
be statistical equivalent to each other.

Table 9
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Ecoli data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 67.9217 ± 4.5816b 0.9542 ± 0.0066b 0.6656 ± 0.0519b 0.6397 ± 0.0541b

GWO 64.8940 ± 6.3598c 0.9499 ± 0.0091c 0.6324 ± 0.0664c 0.6109 ± 0.0669c

JAYA 67.6909 ± 5.6294b 0.9538 ± 0.0080b 0.6657 ± 0.0591b 0.6407 ± 0.0630b

PSO 50.4691 ± 8.2351d 0.9292 ± 0.0118d 0.5044 ± 0.0909d 0.4700 ± 0.1023d

SCA 73.1541 ± 5.1768a 0.9616 ± 0.0074a 0.7176 ± 0.0586a 0.6973 ± 0.0585a

K-means 22.5647 ± 6.7946e 0.8894 ± 0.0097e 0.2173 ± 0.0725e 0.2490 ± 0.0690e
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Table 10 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Haberman’s Survival data set. The results showed that our proposed
algorithm achieved the best mean result for the F-score performance metric. With
respect to the same performance metric, the next-best performance was achieved by
GWO (67.2772); this shows a statistically equivalent result whose performance was not
statistically different from the best result. With respect to the accuracy, specificity,
and MCC performance metrics, GWO similarly showed the best results. However, the
statistical results showed that the performance of GWO was not statistically different
from our proposed algorithm.

Table 10
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Haberman’s Survival data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 67.0021 ± 2.3571a 0.5725 ± 0.0933a 0.6975 ± 0.0343a 0.3518 ± 0.0422ab

GWO 67.2772 ± 3.0389a 0.5873 ± 0.1188a 0.6960 ± 0.0398a 0.3585 ± 0.0539a

JAYA 64.0913 ± 2.8222c 0.5497 ± 0.1124a 0.6647 ± 0.0666b 0.2956 ± 0.0547c

PSO 58.3416 ± 4.6764d 0.5506 ± 0.2693a 0.5513 ± 0.1867c 0.1999 ± 0.0919d

SCA 66.0758 ± 2.4604b 0.5641 ± 0.1006a 0.6866 ± 0.0550ab 0.3349 ± 0.0451b

K-means 56.7232 ± 3.8905e 0.2828 ± 0.0869b 0.6608 ± 0.0456b 0.1737 ± 0.0983e

Table 11 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the al-
gorithms on the Hepatitis data set. The results showed that the JAYA algorithm
had the best mean results across all of the performance metrics except F-score. More-
over, the GWO algorithm showed its best mean result in the F-score performance
metric. However, the mean results that were obtained by our proposed algorithm
did not statistically differ from the most-promising GWO and JAYA algorithms with
respect to all of the performance metrics.

Table 11
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Hepatitis data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 62.0991 ± 3.4906ab 0.5891 ± 0.1570ab 0.6223 ± 0.0805a 0.2555 ± 0.0702a

GWO 62.02883 ± 0.8488b 0.5393 ± 0.1469d 0.6403 ± 0.0762a 0.2553 ± 0.0780a

JAYA 63.1504 ± 3.7773a 0.6157 ± 0.1338a 0.6255 ± 0.0928a 0.2735 ± 0.0716a

PSO 57.8790 ± 3.9376d 0.5864 ± 0.2424abc 0.5342 ± 0.1721b 0.1845 ± 0.0801c

SCA 62.3564 ± 3.5145ab 0.5829 ± 0.1451abc 0.6283 ± 0.0818a 0.2590 ± 0.0702a

K-means 60.2482 ± 2.9155c 0.5511 ± 0.1058bc 0.6128 ± 0.0792a 0.2131 ± 0.0609b
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Table 12 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the al-
gorithms on the Indian Liver Patient data set. The results showed that the GWO
algorithm had the best mean result and was statistically superior as compared to
the others across all of the performance metrics except specificity. However, our
proposed algorithm achieved statistical superior performance only in F-score perfor-
mance metric.

Table 12
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Indian Liver Patient data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 68.6980 ± 1.3679b 0.7637 ± 0.0458bc 0.6600 ± 0.0256a 0.3799 ± 0.0251b

GWO 69.7212 ± 1.1622a 0.7827 ± 0.0332ab 0.6679 ± 0.0271a 0.4015 ± 0.0188a

JAYA 67.4790 ± 1.9574c 0.7638 ± 0.0620bc 0.6383 ± 0.0621c 0.3590 ± 0.0266c

PSO 65.1085 ± 3.0997e 0.7285 ± 0.1240d 0.6112 ± 0.0883b 0.3159 ± 0.0512e

SCA 68.3283 ± 1.1186b 0.7494 ± 0.0387c 0.6598 ± 0.0260a 0.3711 ± 0.0192b

K-means 66.6675 ± 2.2640d 0.7853 ± 0.0460a 0.6187 ± 0.0522c 0.3449 ± 0.0397d

Table 13 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Ionosphere data set. The results showed that GWO achieved the highest
means for the accuracy and MCC performance metrics, whereas JAYA achieved the
highest mean in the specificity measure. Moreover, our proposed algorithm achieved
statistically equivalent results with the most-promising results except the F-score
performance metric. However, it achieved the second-highest significant result when
compared to the remaining algorithms.

Table 13
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Ionosphere data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 70.2854 ± 4.1247a 0.7435 ± 0.1464ab 0.6853 ± 0.0619b 0.4217 ± 0.0815a

GWO 70.7856 ± 4.6489a 0.7544 ± 0.1167ab 0.6921 ± 0.0527b 0.4258 ± 0.0972a

JAYA 69.5900 ± 4.7908a 0.7677 ± 0.1457a 0.6633 ± 0.0929c 0.4113 ± 0.0884a

PSO 67.5961 ± 5.1558b 0.7187 ± 0.1395b 0.6511 ± 0.1046c 0.3650 ± 0.0982b

SCA 70.5022 ± 4.7309a 0.7145 ± 0.1387b 0.6994 ± 0.0576ab 0.4213 ± 0.0928a

K-means 67.2112 ± 6.9085b 0.5378 ± 0.2271c 0.7133 ± 0.0214a 0.3679 ± 0.1079b

Table 14 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Iris data set. The results showed that the highest mean result was
achieved by our proposed algorithm across all of the performance metrics. Addition-
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ally, the GWO, JAYA, and SCA algorithms showed statistically equivalent results
with our proposed algorithm.

Table 15 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Lung Cancer data set. The results showed that the JAYA algorithm
achieved the highest mean result across all of the performance metrics. However, our
proposed algorithm showed a statistically equivalent result with the most-promising
JAYA algorithm across all of the performance metrics except MCC. Similarly, GWO
also achieved a statistically equivalent result with the most-promising results across
all of the performance metrics.

Table 14
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Iris data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 96.8800 ± 1.4108a 0.9844 ± 0.0071a 0.9687 ± 0.0142a 0.9538 ± 0.0208a

GWO 95.0800 ± 1.6383a 0.9754 ± 0.0082a 0.9507 ± 0.0165a 0.9274 ± 0.0241a

JAYA 96.5196 ± 1.8118a 0.9826 ± 0.0091a 0.9651 ± 0.0182a 0.9486 ± 0.0265a

PSO 77.7929 ± 10.7622b 0.8890 ± 0.0538b 0.7407 ± 0.1367b 0.6985 ± 0.1445b

SCA 95.9595 ± 2.5065a 0.9798 ± 0.0125a 0.9595 ± 0.0252a 0.9404 ± 0.0369a

K-means 67.6793 ± 21.6234c 0.8384 ± 0.1081c 0.6513 ± 0.2364c 0.6342 ± 0.2158c

Table 15
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Lung Cancer data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 66.0248 ± 6.3476ab 0.8301 ± 0.0317ab 0.6307 ± 0.0719a 0.5097 ± 0.0903bc

GWO 67.4868 ± 7.7042a 0.8374 ± 0.0385a 0.6399 ± 0.0871a 0.5349 ± 0.1110ab

JAYA 67.8965 ± 7.3476a 0.8395 ± 0.0367a 0.6471 ± 0.0858a 0.5396 ± 0.1032a

PSO 55.3584 ± 7.5928c 0.7768 ± 0.0380c 0.5005 ± 0.0831c 0.3775 ± 0.1001d

SCA 65.0763 ± 5.9857b 0.8254 ± 0.0299b 0.6066 ± 0.0746b 0.5028 ± 0.0841c

K-means 39.9762 ± 2.7303d 0.6999 ± 0.0136d 0.3407 ± 0.0547d 0.2337 ± 0.0447e

Table 16 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Mammographic Mass data set. The results showed that, for all of the
performance metrics except specificity, our proposed algorithm achieved the highest
mean result and was statistically superior to the other algorithms. However, our
proposed algorithm achieved the second-highest mean rank in the specificity perfor-
mance metric. Additionally, the GWO, JAYA, and SCA algorithms were statistically
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equivalent to our proposed algorithm in the specificity performance metric. Further-
more, the SCA algorithm showed statistically equivalent results with our proposed
algorithm in the accuracy, F-score, and MCC performance metrics.

Table 16
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Mammographic Mass data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 75.6877 ± 4.0665a 0.7959 ± 0.1034b 0.7445 ± 0.0515a 0.5247 ± 0.0797a

GWO 72.4648 ± 4.1258b 0.7900 ± 0.1026b 0.7019 ± 0.0552b 0.4625 ± 0.0829c

JAYA 74.5636 ± 4.1091a 0.7703 ± 0.0972b 0.7359 ± 0.0549a 0.5010 ± 0.0812b

PSO 64.4080 ± 4.8593d 0.8444 ± 0.1335a 0.5227 ± 0.1687c 0.3342 ± 0.0625e

SCA 75.0362 ± 4.4172a 0.7820 ± 0.0856b 0.7396 ± 0.0555a 0.5085 ± 0.0875ab

K-means 68.1900 ± 1.3207c 0.6395 ± 0.0455c 0.6942 ± 0.0185b 0.3667 ± 0.0279d

Table 17 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Mushroom data set. The results showed that our proposed algorithm
had the highest mean results and was statistically significant in the accuracy and
specificity performance metrics. Moreover, GWO showed higher mean results than
the proposed algorithm in both the F-score and MCC performance metrics. How-
ever, our proposed algorithm showed a statistically equivalent result with the GWO
algorithm (except in the case of F-score).

Table 17
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Mushroom data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 73.8688 ± 2.6607a 0.6552 ± 0.1314a 0.7562 ± 0.0359b 0.5014 ± 0.0482a

GWO 73.7408 ± 2.8921a 0.5889 ± 0.1357c 0.7703 ± 0.0260a 0.5139 ± 0.0435a

JAYA 73.5915 ± 3.2323a 0.6308 ± 0.1373ab 0.7589 ± 0.0366b 0.4996 ± 0.0568a

PSO 69.7969 ± 2.4989c 0.4706 ± 0.0875d 0.7519 ± 0.0373b 0.4550 ± 0.0589c

SCA 72.1397 ± 2.3134b 0.5977 ± 0.1464bc 0.7484 ± 0.0383b 0.4794 ± 0.0459b

K-means 65.8667 ± 5.8492d 0.3812 ± 0.1035e 0.7332 ± 0.0406c 0.3791 ± 0.1318d

Table 18 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the al-
gorithms on the Seeds data set. The results showed that our proposed algorithm
achieved the best mean results; it can also be observed that the performance results
of the GWO, JAYA, and SCA algorithms were not statistically different than our
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most-promising proposed algorithm. Additionally, the JAYA algorithm achieved the
second-highest mean results with respect to all of the performance metrics.

Table 18
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Seeds data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 91.0237 ± 0.6098a 0.9551 ± 0.0030a 0.9103 ± 0.0059a 0.8670 ± 0.0091a

GWO 90.7475 ± 0.7325a 0.9537 ± 0.0037a 0.9075 ± 0.0072a 0.8627 ± 0.0108a

JAYA 90.9189 ± 0.8722a 0.9546 ± 0.00436a 0.9091 ± 0.0088a 0.8657 ± 0.0127a

PSO 69.7148 ± 15.2418b 0.8486 ± 0.0762b 0.6655 ± 0.1830b 0.5798 ± 0.1965b

SCA 89.8999 ± 1.5595a 0.9495 ± 0.0078a 0.8985 ± 0.0162a 0.8514 ± 0.0226a

K-means 62.4334 ± 21.2349c 0.8122 ± 0.1062c 0.6122 ± 0.2192c 0.5650 ± 0.2147b

Table 19 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the WDBC data set. The results showed that, across all of the performance
metrics, the JAYA algorithm showed the best mean results and was statistically su-
perior to its comparative algorithms. Additionally, the mean performance of the
GWO algorithm was not statistically different from the JAYA algorithm across all
of the performance metrics. Similarly, the mean performance of the SCA algorithm
was statistically equivalent to the most-promising JAYA algorithm across all of the
performance metrics except specificity.

Table 19
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on WDBC data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 89.7380 ± 1.1390b 0.8948 ± 0.0376b 0.8975 ± 0.0121b 0.7968 ± 0.0227b

GWO 90.6228 ± 0.6068a 0.9193 ± 0.0279a 0.9048 ± 0.0077a 0.8141 ± 0.0123a

JAYA 90.7250 ± 0.8613a 0.9165 ± 0.0344a 0.9061 ± 0.0104a 0.8167 ± 0.0166a

PSO 87.7152 ± 3.9506c 0.8872 ± 0.0912bc 0.8730 ± 0.0534c 0.7668 ± 0.0621c

SCA 90.1944 ± 1.2834ab 0.8749 ± 0.0507c 0.9044 ± 0.0124a 0.8083 ± 0.0239a

K-means 77.8938 ± 2.6842d 0.5602 ± 0.0563d 0.8191 ± 0.0180d 0.6209 ± 0.0403d

Table 20 demonstrates the mean and standard deviation results that were ob-
tained for 100 independent simulations with 1000 iterations each for all of the algo-
rithms on the Zoo data set. The results showed that, across all of the performance
metrics, the SCA algorithm achieved the highest mean results. Additionally, the sta-
tistical test confirms that our proposed algorithm is showing second best performance
among the remaining algorithms in all performance measures.
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Table 20
Performance of different algorithms considering accuracy, specificity, F-score,

and MCC metrics on Zoo data set

Accuracy
Mean ± Std.

Dev.

Specificity
Mean ± Std.

Dev.

F-score
Mean ± Std.

Dev.

MCC
Mean ± Std.

Dev.
Proposed 68.8963 ± 8.2976b 0.9482 ± 0.0138b 0.6719 ± 0.0824b 0.6443 ± 0.0970b

GWO 65.2430 ± 9.4536c 0.9421 ± 0.0158c 0.6436 ± 0.0895c 0.6152 ± 0.1001c

JAYA 70.0181 ± 8.1827b 0.9500 ± 0.0137b 0.6824 ± 0.0801b 0.6620 ± 0.0931b

PSO 50.7065 ± 12.9577d 0.9178 ± 0.0216d 0.4928 ± 0.1301d 0.4711 ± 0.1283d

SCA 73.0321 ± 8.7358a 0.9551 ± 0.0146a 0.7141 ± 0.0858a 0.7050 ± 0.0904a

K-means 27.7289 ± 9.4555e 0.8795 ± 0.0158e 0.2656 ± 0.0969e 0.3035 ± 0.0866e

5.4. Considering all data sets together
The effectiveness of the proposed algorithm was evaluated considering the results of
the 15 data sets with respect to the accuracy, specificity, F-score, and MCC perfor-
mance metrics. Additionally, we applied the Friedman and Nemenyi hypothesis test
on the obtained results. The mean rank results that were obtained from the statistical
test are presented in Figures 6, 7, 8, and 9 for the accuracy, specificity, F-score, and
MCC performance metrics, respectively.

Figure 6. Mean rank of meta-heuristic algorithms for clustering using 15 benchmark
data sets on accuracy as performance metric with p-value = .000 and critical distance = 1.9

Figure 7. Mean rank of meta-heuristic algorithms for clustering using 15 benchmark
data sets on specificity as performance metric with p-value = .000 and critical distance = 1.9
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Figure 8. Mean rank of meta-heuristic algorithms for clustering using 15 benchmark
data sets on F-score as performance metric with p-value = .000 and critical distance = 1.9

Figure 9. Mean rank of meta-heuristic algorithms for clustering using 15 benchmark
data sets on MCC as performance metric with p-value = .000 and critical distance = 1.9

Figure 10 demonstrates a boxplot visualization of the clustering results con-
sidering the accuracy performance metric on 15 different data sets for the differ-
ent clustering algorithms (GWO, PSO, k-means, JAYA, SCA, and our proposed
GWOJAYA). It can be seen that the majority of the good clustering results were
achieved by our proposed algorithm from among 15 different experimental works.
The good clustering results were achieved by the Appendicitis, Breast Cancer, Bupa,
Haberman’s Survival, Ionosphere, Iris, Mammographic Mass, Mushroom, and Seeds
data sets considering the accuracy performance metric only.

Figure 11 demonstrates a boxplot visualization of the clustering results consid-
ering the specificity performance metric on 15 different data sets for the different
clustering algorithms (GWO, PSO, k-means, JAYA, SCA, and and our proposed al-
gorithm). It can be seen that the majority of the good clustering results were achieved
by our proposed algorithm from among 15 different experimental works. The good
clustering results were achieved by the Appendicitis, Breast Cancer, Bupa, Haber-
man’s Survival, Indian Liver Patient, Iris, Mushroom, and Seeds data sets considering
the specificity performance metric only.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Figure 10. Accuracy metrics among GWO, PSO, k-means, JAYA, SCA, and our proposed
algorithm for 15 data sets: a) Appendicitis; b) Breast Cancer; c) Bupa; d) Ecoli;
e) Haberman’s Survival; f) Hepatitis; g) Indian Liver Patient; h) Ionosphere; i) Iris; j) Lung

Cancer; k) Mammographic Mass; l) Mushroom; m) Seeds; n) WDBC; o) Zoo
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Figure 11. Specificity metrics among GWO, PSO, k-means, JAYA, SCA, and our proposed
algorithm for 15 data sets: a) Appendicitis; b) Breast Cancer; c) Bupa; d) Ecoli;
e) Haberman’s Survival; f) Hepatitis; g) Indian Liver Patient; h) Ionosphere; i) Iris; j) Lung

Cancer; k) Mammographic Mass; l) Mushroom; m) Seeds; n) WDBC; o) Zoo

Figure 12 demonstrates a boxplot visualization of the clustering results consider-
ing the F-score performance metric on 15 different data sets for the different clustering
algorithms (GWO, PSO, k-means, JAYA, SCA, and our proposed algorithm). It can
be seen that the majority of the good clustering results were achieved by our proposed
algorithm from among 15 different experimental works. The good clustering results
were achieved by the Appendicitis, Breast Cancer, Bupa, Haberman’s Survival, Hep-
atitis, Iris, Mammographic Mass, Mushroom, and Seeds data sets considering the
F-score performance metric only.
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a) b) c)
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Figure 12. F-score metrics among GWO, PSO, k-means, JAYA, SCA, and our proposed
algorithm for 15 data sets: a) Appendicitis; b) Breast Cancer; c) Bupa; d) Ecoli;
e) Haberman’s Survival; f) Hepatitis; g) Indian Liver Patient; h) Ionosphere; i) Iris; j) Lung

Cancer; k) Mammographic Mass; l) Mushroom; m) Seeds; n) WDBC; o) Zoo

Figure 13 demonstrates a boxplot visualization of the clustering results consider-
ing the MCC performance metrics on 15 different data sets for the different clustering
algorithms (GWO, PSO, k-means, JAYA, SCA, and our proposed algorithm). It can
be seen that the majority of the good clustering results were achieved by our pro-
posed algorithm from among 15 different experimental works. The good clustering
results were achieved by the Appendicitis, Breast Cancer, Bupa, Haberman’s Sur-
vival, Ionosphere, Iris, Mammographic Mass, and Seeds data sets considering the
MCC performance metric only.
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Figure 13. Matthew’s correlation coefficient (MCC) metrics among GWO, PSO, k-means,
JAYA, SCA, and our proposed algorithm for 15 data sets: a) Appendicitis; b) Breast
Cancer; c) Bupa; d) Ecoli; e) Haberman’s Survival; f) Hepatitis; g) Indian Liver Patient;
h) Ionosphere; i) Iris; j) Lung Cancer; k) Mammographic Mass; l) Mushroom; m) Seeds;

n) WDBC; o) Zoo

6. Conclusion
In this paper, we have proposed a meta-heuristic-based hybrid clustering algorithm us-
ing the GWO and JAYA algorithms. The proposed algorithm enjoys the explorative
and exploitative skills of both algorithms in order to maintain a trade-off between
them. To check the superiority of our proposed algorithm, we conducted a non-
parametric test with 100 independent simulations and 1000 iterations each for all of
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the tested algorithms and for each data set separately. Additionally, the Friedman
and Nemenyi hypothesis mean rank test showed that our proposed algorithm achieved
the highest mean rank results across 23 mathematical benchmark functions. Addi-
tionally, the null hypothesis with no significance difference in mean was rejected with
a critical distance of 1.3. With respect to all of the performance metrics, it could
also be observed that the GWO algorithm achieved the second-highest mean rank
as compared to the comparative algorithms while evaluating performance. However,
this algorithm had a statistically equivalent mean rank to SCA in only the specificity
performance metric. To measure the exact significant differences among the algo-
rithms and to evaluate performance, we conducted Duncan's multiple range test for
100 independent simulations with 1000 iterations each and on each data set sepa-
rately. The obtained statistical results signify that the proposed algorithm achieved
statistically superior performance in the accuracy performance metric for the Appen-
dicitis, Breast Cancer, Bupa, Haberman’s Survival, Hepatitis, Ionosphere, Iris, Lung
Cancer, Mammographic Mass, Mushroom, and Seeds data sets among the remaining
data sets except for the three data sets i.e. the Indian Liver Patient, WDBC, and
Zoo. With respect to all of the performance metrics, our proposed algorithm achieved
statistically significant results for the Appendicitis, Breast Cancer, Bupa, Haberman’s
Survival, Hepatitis, Iris, and Seeds data sets. By considering a minimum of any three
performance metrics at a time among the four performance metrics, our proposed
algorithm showed statistically superior performance in 11 data sets: Appendicitis,
Breast Cancer, Bupa, Haberman’s Survival, Hepatitis, Ionosphere, Iris, Lung Cancer,
Mammographic Mass, Mushroom, and Seeds. For the remaining four data sets (i.e.,
the Ecoli, Indian Liver Patients, WDBC, and Zoo data sets), our proposed algorithm
achieved the second-highest mean rank across all of the performance metrics. The
statistical results signified the robustness and reliability of our proposed algorithm for
clustering problems; hence, a better trade-off between exploration and exploitation
was achieved. Therefore, a significant improvement in performance was achieved with
the hybridization of the GWO and JAYA algorithms. Considering the above conclu-
sive remark, we suggest some future research direction for our proposed algorithm
that can be summarized as follows:

• can be adapted to solve large-scale global optimization problems;
• introducing this algorithm for image segmentation;
• introducing this algorithm for artificial neural network weight balancing and hy-

perparameter selection of deep neural network models;
• use of this algorithm for stabilizing training of generative adversarial network.
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