WYBRANE ASPEKTY SKALOWANIA PROFILOWAŃ GEOFIZYKI OTWOROWEJ NA POTRZEBY SEJSMIKI

Scaling of well log data for velocity models in seismics

Jadwiga JARZYNA, Maria BAŁA, Paulina KRAKOWSKA & Kamila WAWRZYNIAK-GUZ

AGH Akademia Górniczo-Hutnicza, Wydział Geologii Geofizyki i Ochrony Środowiska, Katedra Geofizyki;al. A. Mickiewicza 30, 30-059 Kraków; e-mail: jarzyna@agh.edu.pl, bala@geol.agh.edu.pl, paulina.krakowska@gmail.com, wawrzyniak@geol.agh.edu.pl

Treść: Przedstawiono wyniki matematycznych operacji filtracji i interpolacji dla dynamicznych parametrów sprężystych: czasów interwałowych fal P i S, modułu Younga i współczynnika Poissona. Parametry uzyskano w wyniku interpretacji akustycznych obrazów falowych z użyciem aplikacji FalaFWS w systemie GeoWin i na podstawie obliczeń z użyciem programu Estymacja. Przedmiotem analizy były wyniki odnoszące się do zróżnicowanych formacji litostratygraficznych w profilach kilku otworów na Niżu Polskim w interwale od powierzchni terenu do ponad pięciu kilometrów głębokości. Wykonane działania miały na celu skalowanie danych geofizyki otworowej, o wysokiej pionowej rozdzielczości, na potrzeby sejsmiki. Przedstawiono średnie wartości parametrów sprężystych jednostek wydzielonych w interpretacji geologicznej. Do analizy włączono także obliczenie współczynnika dobroci Q, będącego miarą dyspersji energii fal sprężystych w ośrodku skalnym.

Slowa kluczowe: geofizyka otworowa, profilowania, sejsmika, prędkość i tłumienie fal sprężystych, pionowa rozdzielczość, skalowanie wyników geofizyki otworowej i sejsmiki

Abstract: The results from the mathematical operations of filtration and interpolation are presented for dynamic elastic parameters such as P-wave slowness and S-wave slowness, Young modulus and Poisson ratio. The parameters were obtained by interpreting acoustic full waveforms using FalaFWS application of GeoWin system and based on calculations using the Estymacja program. The subject of the analysis were the results obtained from various lithostratigraphic formations in several Polish Lowland's borehole profiles sampled from surface to a depth of more than 5 km. The goal was to scale well log data of a high vertical resolution for seismic purposes. Average values of the elastic parameters were presented for units derived out of geological interpretation. The analysis also included calculation of the Q parameter, which is a measure of energy dispertion of elastic waves in a rock formation.

Key words: well logging, logs, seismics, velocity and attenuation of elastic waves, vertical resolution, scaling of well logging and seismic results

WPROWADZENIE

Profilowanie akustyczne (PA) w otworze wykorzystuje te same fizyczne własności skał i to samo pole fal sprężystych co metoda sejsmiczna z wyraźnym zróżnicowaniem pod względem częstotliwości i warunków wykonywania pomiarów. Obie metody, dzięki różnym częstotliwościom (15–20 kHz przy PA i 30–60 Hz w badaniach sejsmicznych), wyraźnie różnią się pionową rozdzielczością (Boyer & Mari 1997).

Zastosowano filtry i uśrednienia, dostępne w aplikacjach FalaFWS i Funmat w systemie GeoWin (Jarzyna *et al.* 2007, Górecki *et al.* 2010), do skalowania wyników interpretacji profilowań geofizyki otworowej na potrzeby sejsmiki.

Prędkość fal sprężystych, podłużnych i poprzecznych, a także fali Stoneleya w przedziale ww. częstotliwości nie wykazuje wyraźnej dyspersji. Jednak, zgodnie z równaniem Akiego i Richardsa (1980), warto wprowadzić korektę obniżającą prędkość fali akustycznej w porównaniu z prędkością fali sejsmicznej ze względu na częstotliwość i współczynnik Q.

Akustyczne obrazy falowe są materiałem pomiarowym do wyznaczenia współczynnika dobroci na podstawie badania stosunku amplitud w dziedzinie czasu lub lepiej – widm amplitudowych w dziedzinie częstotliwości (Cheng 1989). Aplikacja FalaFWS w systemie GeoWin pozwala na prowadzenie analizy widm amplitudowych sygnałów zarejestrowanych poszczególnymi odbiornikami, dostarczając materiał do wyznaczenia współczynnika dobroci *Q*. Współczynnik ten jest jedną z miar tłumienia fal sprężystych w rzeczywistych ośrodkach skalnych.

W analizowanych pomiarach akustycznych obrazów falowych spotkano wiele przykładów trudnych do wyjaśnienia wykresów amplitudy drgań fal sprężystych w funkcji czasu i równie trudnych do wyjaśnienia przykładów widm amplitudowych. Jednak wybrano odpowiednią ilość materiału pomiarowego do wykonania obliczeń współczynnika Q w formacjach litostratygraficznych wydzielonych w otworach występujących na obszarze badań.

Badania wykonano w otworach znajdujących się w pobliżu profilu sejsmicznego planowanego do wykonania w ramach projektu *Poprawa efektywności badań sejsmicznych w poszukiwaniach i rozpoznawaniu złóż gazu ziemnego w utworach czerwonego spągowca* (Górecki *et al.* 2010). Profil ten przebiega w pobliżu otworów, w których dostępne były akustyczne obrazy falowe.

UŚREDNIANIE WARTOŚCI PARAMETRÓW SPRĘŻYSTYCH WYZNACZONYCH NA PODSTAWIE AKUSTYCZNYCH OBRAZÓW FALOWYCH

Test uśredniania zilustrowano na przykładzie danych z górnego odcinka (350.2–1891.4 m) otworu Środa Wielkopolska 4 (Śr.Wielk.4). W odcinku tym przewiercone zostały utwory okresów jury i triasu (Tab. 1).

Tabela (Table) 1

Stratygrafia i litologia utworów przewierconych w górnym odcinku w otworze Śr.Wielk.4 *Stratigraphy and lithology of formations pierced in the upper section of Śr.Wielk.4 well*

Nazwa okresu Stratigraphy	Symbol <i>Code</i>	Głębokość stropu [m] <i>Depth of</i> <i>the top</i>	Głębokość spągu [m] Depth of the bottom	Litologia <i>Lithology</i>
kimeryd Kimmeridgian	Jkm	150	461	margle, wapienie margliste, iłowce wapniste marls, marly limestones, calcareous claystones
oksford <i>Oxfordian</i>	Jo	461	599	wapienie, margle, iłowce wapniste limestones, marls, calcareous claystones
jura środkowa dogger <i>Middle Jurassic</i> <i>Dogger</i>	J2	599	706	iłowce wapniste, iłołupki, wapienie, mułowce, piaskowce calcareous claystones, shaly clays, limestones, mudstones, sandstones
jura dolna – lias Lower Jurassic – Lias	J1	706	1072	piaskowce drobnoziarniste, mułowce, iłołupki fine-grained sandstones, mudstones, shaly clays
retyk Rhaetian	Tre	1072	1474	iłowce wapniste, mułowce, piaskowce różnoziarniste calcareous claystones, mudstones, diverse-grained sandstones
kajper górny Upper Keuper	Tk3G	1474	1687	górna seria gipsowa: iłowce wapniste, mułowce, gipsy, anhydryty Upper Gypsum Series: calcareous claystones, mudstones, gypsum, anhydrites
kajper górny Upper Keuper	Tk3T	1687	1731	piaskowiec trzcinowy: iłowce wapniste, mułowce, piaskowce, gipsy, anhydryty Reed Sandstone: calcareous claystones, mudstones, sandstones, gypsum, anhydrites
kajper górny Upper Keuper	Tk3D	1731	1907	dolna seria gipsowa: iłowce, mułowce, sole Lower Gypsum Series: claystones, mudstones, salts

Akustyczne obrazy falowe, będące wynikami pomiarów sondą FWS, dostarczono z krokiem głębokościowym 0.1 m. Interpretację z wykorzystaniem programu FalaFWS w systemie GeoWin wykonano także z krokiem 0.1 m. Zatem uzyskano duży zbiór wyników w postaci czasów interwałowych fal P i S oraz dynamicznych parametrów sprężystych – modułu Younga EE, współczynnika sprężystości objętości KK i postaci MI oraz współczynnika Poissona NI z krokiem głębokościowym 0.1 m. Uzyskane wyniki były obarczone wpływem warunków rejestracji i niestabilnego zachowania się sondy FWS. Stwierdzenie to nie umniejsza wysiłków pracowników firm serwisowych, które dostarczają surowych danych z pomiaru sondą FWS. Wyjaśnia natomiast, dlaczego obrazy falowe zarejestrowane kolejnymi odbiornikami (znajdującymi się między sobą w odległości 1 stopy w sondzie), przy pomiarze z krokiem głębokościowym 0.1 m, często bardzo różnią się między sobą, a także różnią się w warunkach rejestracji tym samym odbiornikiem przy przejściu kolejnego punktu głębokościowego na następny punkt, chociaż ośrodek nie jest cienkowarstwowy.

Informacja o parametrach sprężystych, otrzymywana w wyniku prowadzenia pomiaru geofizyki otworowej na potrzeby sejsmiki, nie musi być przedstawiona tak dokładnie (z krokiem głębokościowym 0.1 m). Zatem wykonano uśrednienie informacji. Uzyskano zniwelowanie pojedynczych, nieuzasadnionych geologicznie anomalii (artefaktów) oraz uzyskano mniejsze zbiory danych, łatwiejsze do dalszego opracowania (np. zredukowano 25-krotnie zbiór liczący 15 450 punktów w interwale o głębokości 150-1907 m). Aplikacja FalaFWS w programie GeoWin pozwala na uśrednienie wyniku bezpośrednio po wykonaniu automatycznej interpretacji surowych danych. Wykonano taką filtrację, obliczając średnią kroczącą dla 11 punktów (na odcinku 1 m) i dla 25 punktów (na odcinku 2.5 m). Wyniki przedstawiono na figurze 1 w postaci uśrednionego czasu interwałowego fali P (DTPsr se uśred 11p). Wartość podstawowa (DTPsr se krok 0.1 m), obliczona jest jako średnia arytmetyczna z wyników uzyskanych przy interpretacji sześciu par akustycznych obrazów falowych przez obliczanie funkcji semblance w programie FalaFWS. Wartość DTPsr se uśred 11p jest wynikiem uśrednienia 11-punktowego w aplikacji FalaFWS. Czas interwałowy fali S jest obliczony jako minimalny z sześciu wyników uzyskanych przez obliczanie funkcji semblance w programie FalaFWS (DTSmin se) (Jarzyna et al. 2011). Uśrednienie nie powoduje straty informacji, jedynie filtrację (wygładzenie danych). Wyniki uzyskane w aplikacji FalaFWS zostały poddane interpolacji z wykorzystaniem aplikacji Funmat w systemie GeoWin z krokiem głębokościowym 2.5 m. Na figurze 2 przedstawiono wykresy zmian czasów interwałowych fal P i S w funkcji głębokości dla wartości uśrednionych w aplikacji FalaFWS i interpolowanych w aplikacji Funmat.

Relacje między parametrami sprężystymi uśrednionymi w aplikacji FalaFWS i interpolowanymi w aplikacji Funmat przedstawiono na figurach 3–5. Uśrednienie w aplikacji Fala-FWS jest skutkiem zastosowania średniej kroczącej z wybraną liczbą punktów. Interpolacja w aplikacji Funmat pozwala zastąpić 25 danych uzyskanych z programu FalaFWS z krokiem 0.1 m przez jedną wartość. Dzięki temu ilość danych zmniejsza się w sposób zasadniczy.

Zależność między czasami interwałowymi fali P uzyskanymi po obu filtracjach jest bardzo dobra, współczynnik determinacji wynosi 0.93 (Fig. 3). Wynik ten uzasadnia zastosowanie interpolacji do uśrednionych wyników aplikacji FalaFWS. Zależności dla czasu interwałowego fali S i współczynnika Poissona po obu filtracjach nie mają tak wysokich współczynników determinacji (odpowiednio 0.68 i 0.65) (Fig. 4, 5), ale te wyniki nie są skutkiem filtracji, a przyczyn bezpośrednich, związanych z jakością rejestrowanych akustycznych obrazów falowych.

- Fig. 1. Czasy interwałowe fali P i S w otworze Śr.Wielk.4 w górnym odcinku, wynik interpretacji w aplikacji FalaFWS z krokiem 0.1 m, uśrednienie 11-punktowe
- **Fig. 1.** P-wave slowness and S-wave slowness in Śr.Wielk.4 well in the upper depth section, interpretation result in FalaFWS application, depth step = 0.1 m, result of 11-points averaging

Fig. 2. Wyniki uśrednienia i interpolacji czasów interwałowych fali P i S w otworze Śr.Wielk.4: A) uśrednienie 25-punktowe w programie FalaFWS; B) wynik interpolacji z krokiem 2.5 m w programie Funmat

Fig. 2. Averaging and interpolation results of P-wave slowness and S-wave slowness in Śr.Wielk.4 well: A) 25-points averaging in FalaFWS application; B) interpolation result of 2.5 m depth step in Funmat application

Fig. 3. Wartości czasów interwałowych fali P po interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uzyskanych w aplikacji FalaFWS z krokiem 0.1 m oraz wartości czasów DTP po zastosowaniu interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uśrednionych średnią kroczącą 25-punktową w aplikacji FalaFWS; otwór Śr.Wielk.4, odcinek górny

Fig. 3. P-wave slowness after interpolation of 2.5 m depth step in Funmat application for data from FalaFWS application of 0.1 m depth step vs. P-wave slowness after interpolation of 2.5 m depth step in Funmat application for the results of FalaFWS application of 2.5 m depth step filtering FalaFWS; Śr.Wielk.4 well, upper depth section

Fig. 4. Wartości czasów interwałowych fali S po interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uzyskanych w aplikacji FalaFWS z krokiem 0.1 m oraz wartości czasów DTS po zastosowaniu interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uśrednionych średnią kroczącą 25-punktową w aplikacji FalaFWS; otwór Śr.Wielk.4, odcinek górny

Fig. 4. S-wave slowness after interpolation of 2.5 m depth step in Funmat application for data from FalaFWS application of 0.1 m depth step vs. S-wave slowness after interpolation of 2.5 m depth step in Funmat for the results of FalaFWS of 2.5 m depth step filtering in FalaFWS; Śr.Wielk.4 well, upper depth section

Fig. 5. Wartości współczynnika Poissona, NI po interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uzyskanych w aplikacji FalaFWS z krokiem 0.1 m oraz wartości NI po zastosowaniu interpolacji z krokiem 2.5 m w aplikacji Funmat dla danych uśrednionych średnią kroczącą 25-punktową w aplikacji FalaFWS; otwór Śr.Wielk.4, odcinek górny

Fig. 5. Poisson ratio, NI, after interpolation of 2.5 m depth step in Funmat application for data from FalaFWS application of 0.1 m depth step vs. NI after interpolation of 2.5 m depth step in Funmat for data from FalaFWS of 25-points averaging; Śr.Wielk.4 well, upper depth section

Dalszą część testu wykonano na podstawie analizy danych ze środkowego odcinka otworu Środa Wielkopolska 5 (1951.5–2949 m) – Śr.Wielk.5. Interwał ten obejmuje utwory od triasu środkowego (wapienia muszlowego górnego) aż do permu górnego (soli najmłodszej) (Tab. 2). Utwory te różnią się pod względem litologii od tych z otworu Środa Wielkopolska 4 wybranych do testu.

Tabela (Table) 2

Stratygrafia i litologia utworów przewierconych w środkowym odcinku w otworze Śr.Wielk.5

Stratigraphy and lithology of formations pierced in the middle section of Sr.Wielk.5 well

Nazwa okresu Stratigraphy	Symbol <i>Code</i>	Głębokość stropu [m] Depth of the top	Głębokość spągu [m] Depth of the bottom	Litologia <i>Lithology</i>
trias środkowy Middle Triassic	Tm3	1989.5	2031	wapień muszlowy górny: wapienie, margle, mułowce, iłowce, piaskowce Upper Muschelkalk: limestones, marls, mudstones, claystones, sandstones

trias środkowy <i>Middle Triassic</i>	Tm2	2031	2079	wapień muszlowy środkowy: wapienie, margle Middle Muschelkalk: limestones, marls
trias środkowy Middle Triassic	Tm1	2079	2256.5	wapień muszlowy dolny: wapienie, margle, iłowce, iłołupki Lower Muschelkalk: limestones, marls, claystones, shaly clays
trias dolny <i>Lower Triassic</i>	Tp3	2256.5	2365.5	pstry piaskowiec górny (ret): iłowce wapniste, wapienie, margle, anhydryty Upper Bunter Sandstone (Roethian): calcareous claystones, limestones, marls, anhydrites
trias dolny <i>Lower Triassic</i>	Tp2	2365.5	2580	pstry piaskowiec środkowy: iłowce czerwone brązowe, margle, wapienie, anhydryty Middle Bunter Sandstone: red brown claystones, marls, limestones, anhydrites
trias dolny <i>Lower Triassic</i>	Tp1	2580	2919	pstry piaskowiec dolny: iłowce, mułowce wapniste brązowe, piaskowce, wapienie Lower Bunter Sandstone: claystones, brown calcareous mudstones, sandstones, limestones
perm górny Upper Permian	IP	2919	2933	iłowce przejściowe: iłowce, mułowce, piaskowce, gipsy, anhydryty Transitional Claystones: claystones, mudstones, sandstones, gypsum, anhydrites
perm górny Upper Permian	Na4	2933	2982.3	sól najmłodsza: sole kamienne, anhydryty Aller Salt: salts, anhydrites

Tabela (Table) 2 cd. / cont.

Na figurach 6 i 7 przedstawiono porównanie wartości współczynnika Poissona uzyskanego po zastosowaniu uśrednienia w aplikacji FalaFWS (11- i 25-punktowego) po wykonaniu interpolacji z krokiem 2.5 m w testowanym odcinku w otworze Śr.Wielk.5.

Rozrzut punktów widoczny na figurze 6 spowodowany jest obecnością większej liczby anomalii na obrazie nieuśrednionym w porównaniu z wynikiem filtracji. Relacja między NI_25 i NI_11 na figurze 7 charakteryzuje się wysokim współczynnikiem determinacji, który jest wyraźnie obarczony wpływem wartości odstającej (0.294; 0.201). Przy obliczaniu relacji prezentowanych na obu rysunkach usunięto wartości ujemne współczynnika Poissona, jako niemające wyjaśnienia fizycznego w formacji, która nie jest nasycona gazem.

Fig. 6. Współczynnik Poissona bez uśrednienia vs. wynik uśrednienia średnią kroczącą 11-punktową; obie serie danych poddano interpolacji z krokiem 2.5 m

Fig. 6. Poisson ratio without averaging vs. Poisson ratio after 11-points averaging; both data series interpolated using 2.5 m step

Fig. 7. Współczynnik Poissona po uśrednieniu średnią kroczącą 11-punktową vs. wynik uśrednienia 25-punktowego; obie serie danych poddano interpolacji z krokiem 2.5 m

Fig. 7. Poisson ratio after 11-points averaging vs. Poisson ratio after 25-points averaging; both data series interpolated using 2.5 m step

Fig. 8. Moduł Younga bez uśrednienia vs. wynik uśrednienia średnią kroczącą 11-punktową; oba zbiory danych poddano interpolacji z krokiem 2.5 m

Fig. 8. Young modulus without averaging vs. Young modulus after 11-points averaging; both data series interpolated using 2.5 m step

Fig. 9. Moduł Younga po uśrednieniu średnią kroczącą 11-punktową vs. wynik uśrednienia 25-punktowego; oba zbiory danych poddano interpolacji z krokiem 2.5 m

Na dwóch następnych figurach (Fig. 8, 9) przedstawiono zestawienie wyników dla modułu Younga analogiczne jak dla współczynnika Poissona. Obserwuje się podobne zachowanie wyników. Rozrzut punktów na figurze 8 jest mniejszy niż na figurze 6. Mniejsza jest

Fig. 9. Young modulus after 11-points averaging vs. Young modulus after 25-points averaging; both data series interpolated using 2.5 m step

też liczba wartości odstających. Taki wynik jest skutkiem zależności między dynamicznym współczynnikiem Poissona i modułem Younga a czasami interwałowymi fali P i S.

Wysokie współczynniki determinacji między wynikami uśrednionymi dla 11 punktów i 25 punktów wskazują, że można to uśrednienie (filtrację) stosować wymiennie.

ZBIORCZE ZESTAWIENIE WYNIKÓW UZYSKANYCH Z POMIARÓW SONDĄ FWS I INTERPRETACJI AKUSTYCZNYCH OBRAZÓW FALOWYCH W OTWORACH ŚRODA WIELKOPOLSKA 4 I 5, MIŁOSŁAW 3, WINNA GÓRA 1, KROMOLICE 1 I 2 ORAZ GRUNDY 2

Zestawiono wyniki interpretacji w jednostkach litostratygraficznych wydzielonych w analizowanych otworach. Wybrano powtarzające się okresy i podokresy oraz stwierdzono, że wykształcenie litologiczne jest podobne (Tab. 3). Dla tych jednostek wykonano zestawienie parametrów sprężystych, które było także podstawą do wyliczenia współczynników korelacji między wybranymi wielkościami. Dane uszeregowano wg wzrastającej głębokości występowania tych samych jednostek litostratygraficznych. W tabeli 3 zamieszczono wyniki uzyskane z interpretacji akustycznych obrazów falowych programem FalaFWS. Wartości parametrów w tabeli 3 są średnimi wybranymi z tabel przygotowanych dla wszystkich otworów (Jarzyna *et al.*, w: Górecki *et al.* 2010).

Dane w tabeli 3 wskazują na niewielką zmienność parametrów sprężystych wyznaczonych dla tych samych typów litologicznych w tych samych jednostkach stratygraficznych. Generalnie odpowiadające sobie jednostki zalegają najgłębiej w otworze Grundy 2, najpłycej w otworze Miłosław 3 lub Winna Góra 1. Odpowiadające sobie jednostki w otworze Środa Wielkopolska 4 zalegają głębiej niż w otworze Środa Wielkopolska 5, z wyjątkiem jednostek A2G i Na2.

Wartości czasu interwałowego fali P (DTP), wyznaczone w badanych otworach różnymi metodami są bardzo podobne. Wartości czasu interwałowego fali S (DTS), wyznaczone w badanych otworach często różnią się od wartości czasu interwałowego fali S uzyskanego bezpośrednio z pomiaru sondą FWS – DTSpom. W takich przypadkach wybierano najmniejszą z wyznaczonych wartości. W tabeli 3 przedstawiono różnice wartości $V_p/V_s = DTS/DTP$ wynikające ze zróżnicowania czasu fali S. Wartości parametrów sprężystych przedstawione w tabeli 3 mogą służyć jako typowe dla danej litologii w danej jednostce stratygraficznej. Zależności między parametrami obliczonymi na podstawie średnich wartości parametrów sprężystych reprezentacyjnych dla wybranych formacji litostratygraficznych przedstawiono na figurach 10–12. Rozrzut punktów jest duży, choćby dlatego, że w wybranych jednostkach stratygraficznych, wydzielonych w analizowanych otworach, skład litologiczny nie jest identyczny. Przyczyną rozrzutu jest także obecność pozornych anomalii, niezwiązanych z budową geologiczną (artefaktów), z którymi interpretatorki zmagały się podczas całej pracy. Tabela (Table) 3

Średnie wartości parametrów sprężystych w wydzieleniach stratygraficznych w analizowanych otworach Average values of elastic parameters of the stratigraphic units in the study wells

		1	1			
DTS** [µs/m]		1	1		1	496
RHOB [g/cm ³]		2.27	2.25		2.29	2.37
GR [API]		47	45		70	67
V_p/V_s		1.59	1.74		1.68/1.58	/1.63
IN		0.17	0.27		0.20	0.28
MI [GPa]		×	9		6	7
K [GPa]		6	11		13	17
E [GPa]	5	18	16	Tre aetian	21	18
DTS* [µs/m]	olna J1 Jurassi	I	604	y, retyk ssic, Rhu	I	517
DTS [µs/m]	jura d <i>Lower</i>	542	I	ias górn ver Tria:	519	496
DTP [µs/m]		343	356	tri Upt	313	304
H_{sp} [m]		1036	1072		1432.5	1402
H _{str} [m]		656	706		972	976
Litologia Lithology		mułowce, piaskowce, iłowce, iłołupki, węgle mudstones, sandstones, cłaystones, shały cłays, coals	piaskowce drobnoziarniste, mułowce, iłołupki <i>fine-grained sandstones,</i> mudstones, shały cłays		iłowce, piaskowce różnoziarniste, węgle, mułowce brązowe claystones, diverse- grained sandstones, coals, brown mudstones,	iłowce, mułowce, piaskowce claystones, mudstones, sandstones
Otwór Well		Śr.Wielk.5	Śr. Wielk.4		Miłosław 3	Winna Góra 1

DTS**	1	1		I	I
RHOB [g/cm ³]	2.39	2.25		2.45	2.44
GR [API]	70	45		LL	LL
$V_p N_s$	1.68/1.61	1.74/1.39		1.82	1.82
ĪZ	0.21	0.27		0.34	0.26
MI [GPa]	6	9		7	10
K [GPa]	14	11		23	19
E [GPa]	22	16	Tk3G euper	19	25
[m/sη] [μs/m]	I	604	kajper ıssic, Ke	I	1
[m/sμ]	513	I	s górny, per Tric	509	505
DTP [µs/m]	308	356	tria Up	280	279
H_{sp} [m]	1442	1474		1590	1631
H _{str} [m]	1036	1072		1402	1432.5
Litologia Lithology	iłowce, mułowce, piaskowce claystones, mudstones, sandstones	piaskowce drobnoziarniste, mułowce, iłołupki <i>fine-grained sandstones,</i> mudstones, shały cłays	1	górna seria gipsowa: iłowce, anhydryty Upper Gypsum Series: claystones, anhydrites	górna seria gipsowa: iłowce brązowe, mułowce szare, anhydryty, gipsy białe <i>Upper Gypsum Series:</i> <i>brown claystones, grey</i> <i>mudstones, anhydrites,</i> <i>white gypsum</i>
Otwór Well	Śr.Wielk.5	Śr.Wielk.4		Winna Góra 1	Miloslaw 3

/ cont.
cd.
able) 3
ela (Ta
Tabe

1	1		1	I	1
2.41	2.44		2.43	2.46	2.39
75	75		78	74	75
1.86	1.90		1.92	1.85	1.92
0.27	0.29		0.37	0.28	0.30
6	6		6	11	6
19	21	L 1	24	21	19
23	23	ny Tk37 r Keupe	17	27	23
I	I	jper gór c, <i>Uppe</i> ı	I	I	I
517	525	órny, ka Triassid	528	489	529
282	279	trias g Upper	275	264	277
1634	1687		1681	1677	1710
1442	1474		1590	1631	1634
górna seria gipsowa: iłowce, mułowce, gipsy, anhydryty Upper Gypsum Series: claystones, mudstones, gypsum, anhydrites	górna seria gipsowa: iłowce wapniste, mułowce, gipsy, anhydryty Upper Gypsum Series: calcareous claystones, mudstones, gypsum, anhydrites		piaskowiec trzcinowy: iłowce, piaskowce, mułowce <i>Reed Sandstone:</i> claystones, sandstones, mudstones	piaskowiec trzcinowy Reed Sandstone	piaskowiec trzcinowy: iłowce, mułowce, piaskowce, gipsy <i>Reed Sandstone:</i> claystones, mudstones, sandstones, gypsum
Śr.Wielk.5	Śr.Wielk.4		Winna Góra 1	Miłosław 3	Śr. Wielk.5

cont.
3 cd. /
[able]
oela (]
Tal

DTS** [µs/m]	I		414	1
RHOB [g/cm ³]	2.48		2.43	2.09
GR [API]	74		59	66
$V_p \mathcal{N}_s$	2.07		/1.63	1.86/1.49
IN	0.34		0.36	0.27
MI [GPa]	6		∞	6
K [GPa]	24	0 5	28	18
E [GPa]	23	ny Tk3I r Keupe	21	23
DTS* [µs/m]	I	jper gór c, <i>Uppe</i>	507	I
DTS [µs/m]	550	órny, ka • <i>Triassi</i>	414	483
DTP [µs/m]	265	trias g Upper	254	260
H_{sp} [m]	1731		1873	1889.5
H_{str} [m]	1687		1681	1677
Litologia Lithology	piaskowiec trzcinowy: iłowce wapniste, mułowce, piaskowce, gipsy, anhydryty <i>Reed Sandstone:</i> calcareous claystones, mudstones, sandstones, gypsum, anhydrites		dolna seria gipsowa: iłowce, mułowce, sole, anhydryty <i>Lower Gypsum Series:</i> claystones, mudstones, salts, anhydrites	dolna seria gipsowa: iłowce brązowe szare, mułowce, anhydryty, dolomity, sole <i>Lower Gypsum Series:</i> <i>brown grey claystones,</i> <i>mudstones, anhydrites,</i> <i>dolomites, salts</i>
Otwór Well	Śr.Wielk.4		Winna Góra 1	Miłosław 3

cont.
J. /
30
(Table)
Tabela

406	I		491	1
2.42	2.44		2.52	2.35
52	55		72	70
1.98/1.60	2.00/1.58		/1.85	1.78
0.31	0.32		0.36	0.25
10	10		7	11
24	24	r	25	19
26	26	lny Tk1 r Keupe	20	27
I	I	ajper dc c, <i>Lowe</i>	519	I
503	516	górny, k - Triassi	491	472
253	257	trias _l Upper	266	266
1898	1907		1966	2002
1710	1731		1873	1889.5
dolna seria gipsowa: iłowce, mułowce, gipsy, anhydryty, sole kamienne Lower Gypsum Series: cłaystones, mudstones, gypsum, anhydrites, salts	dolna seria gipsowa: iłowce, mułowce, sole <i>Lower Gypsum Series:</i> claystones, mudstones, salts		iłowce, mułowce, piaskowce claystones, mudstones, sandstones	iłowce wapniste szare, mułowce brązowe, piaskowce drobnoziarniste <i>grey calcareous</i> <i>claystones, brown</i> <i>mudstones, fine-grained</i> sandstones
Śr.Wielk.5	Śr.Wielk.4		Winna Góra 1	Milosław 3

cont.
s cd. /
able) 3
ela (T
Tab

DTS** [µs/m]	I	1	I		1	I
RHOB [g/cm ³]	2.49	2.44	2.41		2.71	2.75
GR [API]	73	74	65		57	47
$V_p N_s$	1.88	1.96	1.81		1.94	2.02
IN	0.29	0.30	0.25		0.30	0.32
MI [GPa]	10	10	10		20	19
K [GPa]	20	21	18		44	47
E [GPa]	25	25	25		51	49
DTS* [µs/m]	I	I	I	Tp3 assic	1	1
DTS [µs/m]	513	522	497	as dolny wer Tri	385	402
DTP [µs/m]	274	267	275	trii Lo	199	200
H_{sp} [m]	1989.5	1996	2079		2371	2365.5
H_{str} [m]	1898	1907	2000		2257	2256.5
Litologia <i>Lithology</i>	ilowce, mułowce, piaskowce claystones, mudstones, sandstones	iłowce, piaskowce, mułowce cl <i>aystones, sandstones</i> , mudstones			pstry piaskowiec górny (ret): iłowce dolomityczne szare, wapienie dolomityczne, anhydryty <i>Upper Bunter Sandstone</i> (<i>Roethian</i>): grey dolomitic claystones, anhydrites limestones, anhydrites	pstry piaskowiec górny (ret): iłowce wapniste, wapienie, margle, anhydryty <i>Upper Bunter Sandstone</i> (Roethian): calcareous claystones, limestones, marls, anhydrites
Otwór Well	Śr.Wielk.5	Śr.Wielk.4	Kromolice 2		Miłosław 3	Śr.Wielk.5

1	I		1	I
2.74	2.72		2.58	2.64
	14		85	62
1.86	1.97		1.83	1.82
0.25	0.31		0.27	0.28
52	18		18	18
37	41		34	34
55	48		46	46
I	I	Tp2 assic	1	1
375	401	as dolny wer Trii	392	394
200	203	tri Lo	214	216
2376	2458		2611.5	2580
2267	2352.5		2371	2365.5
pstry piaskowiec górny (ret): margle, iłowce, wapienie <i>Upper Bunter Sandstone</i> (<i>Roethian</i>): marls, claystones, limestones	pstry piaskowiec górny (ret) Upper Bunter Sandstone (Roethian)		pstry piaskowiec środkowy: iłowce brązowe czerwone, mułowce, piaskowce drobnoziarniste, w apienie oolitowe <i>Middle Bunter Sandstone:</i> <i>brown red claystones,</i> <i>mudstones, fine-grained</i> <i>sandstones, oolitic</i> <i>limestones</i>	pstry piaskowiec środkowy: iłowce czerwone brązowe, margle, wapienie, anhydryty Middle Bunter Sandstone: red brown claystones, marls, limestones, anhydrites
Śr.Wielk.4	Kromolice 2		Miłosław 3	Śr.Wielk.5

DTS** [µs/m]	I	I		I	405	
RHOB [g/cm ³]	2.63	2.60		2.67	2.69	
GR [API]	79	67		91	92	
V_p / V_s	1.78	1.81		1.88	1.84	
IN	0.24	0.26		0.29	0.29	
MI [GPa]	18	18		17	16	
K [GPa]	30	31		34	33	
E [GPa]	44	44		43	42	
DTS* [µs/m]	I	I	lny Tp1 Triassic	I	I	
DTS [µs/m]	392	396	trias dol Lower 7	404	408	
DTP [µs/m]	220	217		215	222	
H_{sp} [m]	2598	2662		2970	2919	
H _{str} [m]	2376	2458		2611.5	2580	
Litologia Lithology	pstry piaskowiec środkowy: iłowce, margle, wapienie margliste Middle Bunter Sandstone: claystones, marls, marły limestones	pstry piaskowiec środkowy Middle Bunter Sandstone		pstry piaskowiec dolny: iłowce wapniste brązowe, mułowce, piaskowce, anhydryty Lower Bunter Sandstone: brown calcareous claystones, mudstones, sandstones, anhydrites	pstry piaskowiec dolny: iłowce, mułowce wapniste brązowe, piaskowce, wapienie Middle Bunter Sandstone: claystones, brown calcareous mudstones, sandstones, limestones	
Otwór Well	Śr.Wielk.4	Kromolice 2		Miłosław 3	Śr.Wielk.5	

cont.
cd.
S
e
Tabl
la (
abe
Ë

1	I		433	1	I
2.68	2.67		2.57	2.57	2.52
94	78		76	73	62
1.83	1.87/1.81		1.77/1.83	1.72	1.78
0.27	0.28		0.28	0.20	0.25
16	15		15	17	16
30	30		58	23	27
41	39		38	41	40
I	I	órny IP ermian	I	I	I
407	419	perm gć Upper P	418	387	398
222	224		236	225	223
2938.5	2991		2933	2950	3015.5
2598	2662		2919	2938.5	2991
pstry piaskowiec dolny: iłowce wapniste Middle Bunter Sandstone: calcareous claystones	pstry piaskowiec dolny Middle Bunter Sandstone		iłowce przejściowe: iłowce, mułowce, piaskowce, gipsy, anhydryty <i>Transitional Claystones:</i> claystones, mudstones, sandstones, gypsum, anhydrites	iłowce przejściowe: iłowce, mułowce, anhydryty <i>Transitional Claystones:</i> claystones, mudstones, anhydrites	iłowce przejściowe Transitional Claystones
Śr.Wielk.4	Kromolice 2		Śr.Wielk.5	Śr.Wielk.4	Kromolice 2

cont.
3 cd. /
able)
ela (T
Tab

DTS** [µs/m]	I		I	409	I	I	I
RHOB [g/cm ³]	2.67		2.24	2.05	2.05	2.09	2.12
GR [API]	93		22	5	7	7	15
V_p/V_s	1.79		2.02	1.80/1.84	1.78	1.74	1.82
IN	0.25		0.29	0.27	0.24	0.23	0.26
MI [GPa]	17		11	13	13	13	12
K [GPa]	29		24	24	I	21	21
E [GPa]	42		27	33	32	33	31
DTS* [µs/m]	I	rny Na4 ⁹ ermian	I	I	I	I	I
DTS [µs/m]	399	perm gó <i>Upper H</i>	467	401	403	387	425
DTP [µs/m]	223		232	222	226	223	233
H_{sp} [m]	3632		2965.5	2982.3	2997.5	3061.5	3722.5
H _{str} [m]	3592		2890	2933	2950	3015.5	3632
Litologia <i>Lithology</i>	iłowce przejściowe: iłowce, mułowce brązowe Transitional Claystones: claystones, brown mudstones		sól najmłodsza Aller Salt	sól najmłodsza: sole kamienne, anhydryty Aller Salt: salts, anhydrites	sól najmłodsza: sole kamienne, anhydryty, iłowce Aller Salt: salts, anhydrites, claystones	sól najmłodsza Aller Salt	sól najmłodsza: sole kamienne, iłowce Aller Salt: salts, claystones
Otwór Well	Grundy 2		Kromolice 1	Śr.Wielk.5	Śr.Wielk.4	Kromolice 2	Grundy 2

cont.
cd.
Table) 3
Tabela (

	I	I	I	I		I	I
	2.44	2.36	2.40	2.3		2.12	2.22
	0.23 1.72 7 0.28 1.86 6		11	8		41	61
			1.75	1.55		1.44	1.80
			0.27	0.16		0.13	0.21
	12	13	9	14		6	10
ıy A4D ermian	17 25		I	16	-	6	17
	29	33	15	32		17	24
	I	I	623	I	perm górny I4 Jpper Permian	I	I
erm gór J <i>pper P</i>	465	406	1	415		516	458
ре Г	271	218	356	268	1	358	259
	2966.5	2983.2	2999	3724		2985.9	2993.5
	2965.5	2982.3	2997.5	3722.5		2966.5	2983.2
	anhydryt pegmatytowy Pegmatitic Anhydrites	anhydryt pegmatytowy: anhydryty, sole kamienne, ity <i>Pegmatitic Anhydrites:</i> <i>anhydrites, salts,</i> <i>claystones</i>	anhydryt pegmatytowy: anhydryty <i>Pegmatitic Anhydrites:</i> anhydrites	anhydryt pegmatytowy: sole, anhydryty Pegmatitic Anhydrites: salts, anhydrites		ił czerwony Red Claystone	ił czerwony: iły, sole, anhydryty Red Claystone: clystones, salts, anhydrites
	Kromolice 1	Śr.Wielk.5	Śr.Wielk.4	Grundy 2		Kromolice 1	Śr.Wielk.5

cont.
3 cd. /
able)
ela (T
Tab

DTS** [µs/m]	I	I		I	408	I	1
RHOB [g/cm ³]	2.17	2.32		2.10	2.07	2.05	2.07
GR [API]	27	40		10	11	7	∞
$V_p N_s$	1.77	1.68		1.79	1.83/1.80	1.87	1.74
IX	0.24	0.20		0.24	0.27	0.27	0.24
MI [GPa]	7	10		12	12	12	14
K [GPa]	1	14		20	24	I	22
E [GPa]	18	24		30	31	30	34
DTS* [µs/m]	573	I	rny Na3 ermian	I	I	I	I
DTS [µs/m]	I	476	əerm göi Upper F	421	414	421	391
DTP [µs/m]	324	284		238	227	225	225
H _{sp} [m]	3016	3746		3114	3119	3059	3832.5
H _{str} [m]	2999	3724		2985.9	2993.5	3016	3746
Litologia <i>Lithology</i>	ił czerwony: iły brązowe, sole, anhydryty <i>Red Claystone: brown</i> <i>claystones, salts,</i> <i>anhydrites</i>	ił czerwony: iły, iłowce brązowe, sole <i>Red Claystone:</i> <i>claystones, brown</i> <i>claystones, salts</i>		sól młodsza Leine Salt	sól młodsza: sole, anhydryty, iły <i>Leine Salt: salts,</i> <i>anhydrites, claystones</i>	sól młodsza: sole kamienne Leine Salt: salts	sól młodsza: sole drobnokrystaliczne, grubokrystaliczne <i>Leine Salt: fine-grained</i> <i>coarse-grained salts</i>
Otwór Well	Śr.Wielk.4	Grundy 2		Kromolice 1	Śr. Wielk.5	Śr.Wielk.4	Grundy 2

/ cont.
cd.
33
ble
Tal
abela (
Ë

perm górny A3 Upper Permian	- 421 - 49 60 18 0.35 2.30/1.74 6 2.92 -	509 - 34 79 12 0.42 2.95/1.86 6 2.93 321	. 498 - 36 - 14 0.42 2.89/1.87 6 2.94 -	. 461 - 41 76 15 0.41 2.65/1.84 7 2.88 -	perm górny I3 Upper Permian	- 493 14 3 10 1.30 52 2.34 -	420 519 22 9 9 0.25 2.09/1,56 81 2.37 420	- 652 16 - 6 0.39 2.45 45 2.41 -
	60 18	79 12	- 12	76 15		3 1(6 6	9
y A3 nian	- 49	- 34	- 36	- 41	y I3 nian	.93 14	19 22	52 16
perm górny <i>Upper Per</i> r	421	509	498	461	perm górn Upper Peri	1	420 5	
	36 184	1.5 173	49 172	8.5 174		9.5 378	7.5 269	51 266
	3114 31	3119 315	3118,5 31.	3832.5 385		3136 313	3151.5 315	3149 31
	anhydryt główny Main Anhydrite	anhydryt główny: anhydryty, sole Main Anhydrite: anhydrites, salts	anhydryt główny: anhydryty, sole Main Anhydrite: anhydrites, salts	anhydryt główny: anhydryty, sole Main Anhydrite: anhydrites, salts		szary ił solny Grey Claystone	szary ił solny: anhydryty, iły <i>Grey Claystone:</i> anhydrites, claystones	szary ił solny: anhydryty, iły
	Kromolice 1	Śr.Wielk.5	Śr.Wielk.4	Grundy 2		Kromolice 1	Śr.Wielk.5	Śr.Wielk.4

cont.
3 cd. /
able)
ela (T
Tab

Otwór Well	Litologia <i>Lithology</i>	H_{str} [m]	[m]	DTP [µs/m]	DTS [µ/sµ]	DTS* [µs/m]	E [GPa]	K [GPa]	MI [GPa]	IN	$V_p N_s$	GR [API]	RHOB [g/cm ³]	DTS** [µs/m]
Grundy 2	szary ił solny: sole, iłowce <i>Grey Claystone: salts,</i> <i>claystones</i>	3858.5	3860	183	353	I	62	57	23	0.32	1.93	21	2.80	I
					erm gór Upper F	ny A2G ermian								
Kromolice 1	anhydryt kryjący <i>Top Anhydrite</i>	3139.5	3141	204	511	I	27	47	10	0.40	2.51	6	2.81	I
Śr.Wielk.4	anhydryt kryjący: anhydryty Top Anhydrite: anhydrites	3151	3153	214	543	Ι	28	Ι	10	0.41	2.54	17	2.75	I
Śr.Wielk.5	anhydryt kryjący: anhydryty Top Anhydrite: anhydrites	3157.5	3159	268	407	I	32	14	14	0.12	1.52	33	2.79	I
Grundy 2	anhydryt kryjący: anhydryty, sole Top Anhydrite: anhydrites, salts	3860	3862.5	216	398	I	41	26	17	0.24	1.75	8	2.68	I
				1	əerm gói Upper F	rny Na2 ermian								
Kromolice 1	sól starsza Stassfurt Salt	3141	3303	224	409	I	31	23	12	0.26	1.83	8	2.06	I
Śr.Wielk.4	sól starsza: sole kamienne Stassfurt Salt: salts	3153	3170,5	228	436	I	29	I	12	0.25	1.93	6	2.05	I

407	I		I	323	I	I		I
2.04	2.33		2.96	2.55	2.94	2.97		2.80
13	×		Ś	Г	Г	Г		27
2.22/1.81	1.94		3.05/1.87	2.57/1.66	3.4/1.85	2.27/1.93		3.83/2.08
0.34	0.28		0.43	0.38	0.45	0.37		0.46
6	15		11	11	6	21		7
28	35		78	53	I	78		88
25	38		31	29	25	58		21
496	I	rny A2 ermian	526	487	597	1	ny Ca2 ermian	633
407	399	perm gó U <i>pper P</i>	323	323	323	380	oerm gói Upper P	346
224	208		173	194	175	167		166
3320	3875.5		3311	3324	3336	3896		3328.5
3159	3862.5		3303	3320	3329	3875.5		3311
sól starsza: sole kamienne Stassfurt Salt: salts	sól starsza: sole, anhydryty Stassfurt Salt: salts, anhydrites		anhydryt podstawowy Basal Anhydrite	anhydryt podstawowy: anhydryty Basal Anhydrite: anhydrites	anhydryt podstawowy: anhydryty Basal Anhydrite: anhydrites	anhydryt podstawowy: anhydryty Basal Anhydrite: anhydrites		dolomit główny Main Dolomite
Śr.Wielk.5	Grundy 2		Kromolice 1	Śr.Wielk.5	Śr.Wielk.4	Grundy 2		Kromolice 1

427

rS** s/m]	346	I	I		;21	I
13] [µ	(,)		~			
RHO [g/cm	2.7(2.75	2.68		2.41	I
GR [API]	42	32	17		42	I
V_p/V_s	2.72/1.86	2.72/1.94	2.48/1.79		2.41/1.73	I
IN	0.41	0.41	0.38		0.38	I
MI [GPa]	~	12	12		7	9
K [GPa]	68	I	58		32	26
E [GPa]	20	33	34		20	17
DTS* [µs/m]	634	485	470	lolny 'ermian	583	I
DTS [µs/m]	346	346	346	perm c	421	621
DTP [µs/m]	186	178	193		244	257
H_{sp} [m]	3333.5	3341.5	3927		3652	I
H_{str} [m]	3324	3336	3896		3540.3	3568
Litologia Lithology	dolomit główny: dolomity, łupki Main Dolomite: dolomites, shałes	dolomit główny: dolomity Main Dolomite: dolomites	dolomit główny: dolomity Main Dolomite: dolomites		czerwony spągowiec: piaskowce drobnoziarniste, średnioziarniste brązowe, czerwone <i>Rotliegend: fine-grained,</i> <i>medium-grained brown,</i> <i>red sandstones</i>	czerwony spągowiec: piaskowce drobnoziarniste białe <i>Rotliegend: fine-grained</i> <i>white sandstones</i>
Otwór Well	Śr.Wielk.5	Śr.Wielk.4	Grundy 2		Śr.Wielk.5	Śr.Wielk.4

Fig. 10. Średni czas interwałowy fali S w funkcji średniego czasu interwałowego fali P (dane z tabeli 3)

Fig. 11. Średnia gęstość objętościowa w funkcji średniego czasu interwałowego fali PFig. 11. Average bulk density vs. average P-wave slowness

Fig. 12. Średnia gęstość objętościowa w funkcji średniego czasu interwałowego fali S

Fig. 12. Average bulk density vs. average S-wave slowness

Przedstawiono także zmienność wybranych parametrów w funkcji głębokości (Fig. 13, 14). Obserwuje się spadek czasów interwałowych obu fal w funkcji głębokości w przypadku utworów młodszych od cechsztynu. Zachowanie ewaporatów, dolomitów, wapieni i iłów górnego permu wyraźnie odbiega od obserwowanej tendencji, zarówno dla DTP, jak i dla DTS.

Obserwuje się wzrost gęstości objętościowej z głębokością w interwale powyżej permu górnego i cechsztynu (Fig. 15). Linia korelacji przechodzi przez dane pomiarowe, a współczynnik determinacji jest wysoki (0.68). W strefie występowania ewaporatów (soli i anhydrytów), dolomitów i iłów obserwuje się bardzo duże zmiany gęstości. Duże zmiany intensywności naturalnej promieniotwórczości (5–94 API) w strefie występowania utworów permu obserwuje się na figurze 16. Jednak dominują warstwy o małym zaileniu (poniżej 40 API). W górnej części figury 16 anomalie GR mieszczą się w zakresie 45–94 API, co wskazuje na znacznie wyższe zailenie formacji młodszych od utworów permu.

W celu scharakteryzowania zmienności dynamicznych parametrów sprężystych w poszczególnych jednostkach litostratygraficznych wydzielonych w profilach badanych otworów zaprezentowano także wyniki obliczeń z wykorzystaniem programu Estymacja (Bała & Cichy 2006, Jarzyna *et al.*, w: Górecki *et al.* 2010). W tabeli 4 znalazły się wartości średnie, maksymalne i minimalne wybranych parametrów obliczone przy użyciu programu Estymacja w formacjach litostratygraficznych przewierconych otworami: Winna Góra 1, Golce 1, Obrzycko 1, Piła IG-1 oraz Środa Wielkopolska.

Należy zaznaczyć, że w niektórych otworach osady cechsztyńskie występujące w poszczególnych cyklotemach nie zostały rozdzielone. W takich przypadkach w tabeli zamieszczono dodatkowe wartości, zaznaczając nazwę takiego otworu.

Fig. 14. Średnia wartość DTS w funkcji głębokości

e)
p
E
\sim
3
_
G
bel
abel

Wartości średnie, maksymalne i minimalne wybranych parametrów obliczonych przy użyciu programu Estymacja w formacjach litostratygraficznych przewierconych otworami: Winna Góra 1, Golce 1, Obrzycko 1, Piła IG-1 oraz Środa Wielkopolska 4 (wartości średnie podkreślono)

lithostratigraphic formations pierced by the Winna Góra 1 well and the Golce 1 well and the Obrzycko 1 well and the Pila IG-1 Average values, maximal values and minimal values of selected parameters calculated with the Estymacja program in well and the Sr.Wielk.4 well (average values are underlined)

Określone na podstawie danych z otworów: <i>Determined on the basis</i> <i>of data from wells</i> :	Piła IG 1	Piła IG1, Winna Góra 1, Środa Wielkopolska 4	Obrzycko 1	Obrzycko 1	Obrzycko 1
NIEQ	$\frac{0.24}{0.33}$ 0.17	$\frac{0.23}{0.34}$ 0.16	$\frac{0.34}{0.35}$ 0.20	$\frac{0.33}{0.35}$ 0.21	$\frac{0.22}{0.24}$ 0.21
RHEQ [g/cm ³]	<u>2.36</u> 2.56 2.18	<u>2.30</u> 2.60 1.67	<u>2.56</u> 2.65 2.35	<u>2.58</u> 2.66 2.41	<u>2.31</u> 2.58 2.22
VPEQ/ VSEQ	$\frac{1.73}{1.99}$	<u>1.70</u> 2.04 1.57	$\frac{2.03}{2.10}$ 1.64	<u>1.99</u> 2.06 1.66	$\frac{1.68}{1.71}$ 1.64
VSEQ [km/s]	$\frac{1.64}{1.80}$ 1.05	<u>1.46</u> 2.14 0.88	$\frac{1.80}{1.98}$ 1.56	$\frac{1.93}{2.28}$	<u>1.96</u> 2.15 1.83
VPEQ [km/s]	<u>2.52</u> 2.89 2.09	<u>2.47</u> 3.45 1.43	<u>3.66</u> 3.89 3.16	$\frac{3.84}{4.50}$ 3.41	$\frac{3.28}{3.53}$ 3.12
Stratygrafia, litologia Stratigraphy, lithology	czwartorzęd: piaski, żwiry, gliny Quaternary: sands, gravels, clays	pliocen, miocen, oligocen: piaski, mułki, piaskowce, piaskowce zailone, iłowce Pliocene, Miocene, Oligecene: sands, muds, sandstones, argillaceous sandstones, claystones	kreda, santon: margle, łupki Cretaceous, Santonian: marls, shales	kreda, santon (802.5 m): margle, łupki turon: margle, wapienie <i>Cretaceous, Santonian (802.5 m): marls, shales</i> <i>Turonian: marls, limestones</i>	kreda, cenoman: margle, wapienie Cretaceous, Cenomanian: marls, limestones

/ cont.
4 cd.
Table)
labela (

Stratygrafia, litologia Stratigraphy, lithology	VPEQ [km/s]	VSEQ [km/s]	VPEQ/ VSEQ	RHEQ [g/cm ³]	NIEQ	Określone na podstawie danych z otworów: <i>Determined on the basis</i> <i>of data from wells</i> :
reda dolna: piaskowce, łupki r Cretaceous: sandstones, shales	<u>3.28</u> 4.48 2.91	$\frac{1.95}{2.30}$	$\frac{1.68}{1.95}$	2.33 2.58 2.21	$\frac{0.23}{0.32}$ 0.19	Obrzycko 1
1 (Jkm), oksford (Jo1): margle, wapienie, ienie margliste, iłowce wapniste meridgian (Jkm), Oxfordian (Jo1): marls, marły limestones, calcareous claystones	<u>3.49</u> 4.83 2.16	<u>1.81</u> 2.57 1.07	<u>1.93</u> 2.15 1.56	2.46 2.68 2.15	<u>0.31</u> 0.36 0.28	Środa Wielkopolska 4, Winna Góra 1, Obrzycko 1
[J2): iłowce wapniste, iłołupki, wapienie, mułowce, piaskowce <i>sger (J2): calcareous claystones, shaly</i> <i>timestones, mudstones, sandstones</i>	<u>2.97</u> 3.42 2.23	<u>1.78</u> 2.21 1.11	<u>1.67</u> 2.02 1.55	<u>2.43</u> 2.66 2.21	$\frac{0.22}{0.34}$ 0.14	Golce 1, Środa Wielkopolska 4, Winna Góra 1
lias (J1): piaskowce, mułowce, iłołupki, nasycenie gazem sssic, Lias (J1): sandstones, mudstones, shały clays, gas saturation	<u>3.35</u> 4.23 2.28	<u>2.04</u> 2.66 1.25	<u>1.65</u> 1.92 1.54	<u>2.41</u> 2.65 2.05	$\frac{0.21}{0.31}$ 0.13	Golce 1, Piła IG 1, Środa Wielkopolska 4, Obrzycko 1
yk (Tre): iłowce wapniste, mułowce, piaskowce Rhaetian (Tre): calcareous claystones, mudstones, sandstones	$\frac{3.41}{4.32}$ 2.20	<u>2.06</u> 2.67 1.14	<u>1.66</u> 1.97 1.53	<u>2.52</u> 2.70 2.20	$\frac{0.21}{0.30}$ 0.14	Obrzycko 1, Piła IG 1, Winna Góra 1, Golce 1, Środa Wielkopolska 4
er górny (TK3G), górna seria gipsowa: vapniste, mułowce, anhydryty, gipsy er Keuper (TK3G), Upper Gypsum Series: laystones, mudstones, anhydrites, gypsum	<u>3.35</u> 6.77 2.52	<u>2.10</u> 3.71 1.38	<u>1.69</u> 2.02 1.54	<u>2.53</u> 2.86 2.29	$\frac{0.23}{0.34}$ 0.14	Środa Wielkopolska 4, Winna Góra 1, Golce 1

J. Jarzyna, M. Bała, P. Krakowska & K. Wawrzyniak-Guz

cont.
4 cd. /
[able]
bela (]
La

2 2.56 0.22 Środa Wielkopolska 4, Piła IG 1, 1 2.81 0.34 Piła IG 1, 2 0.14 Obrzycko 1	2.43 0.24 Winna Góra 1, 2.74 0.35 Środa Wielkopolska 4, 2.05 0.13 Piła IG 1, Obrzycko 1	2 2.54 0.21 \$roda Wielkopolska 4, 2 2.69 0.33 Piła IG 1, 2 2.29 0.14 Obrzycko 1	2.62 0.28 Winna Góra 1, 2 2.89 0.36 Środa Wielkopolska 4, 2 2.14 0.11 Piła IG 1, Obrzycko 1	2.65 0.29 Winna Góra 1, Golce 1, 2.92 0.33 Šroda Wielkopolska 4, 2.23 0.11 Piła IG 1, Obrzycko 1	2.61 0.23 \$roda Wielkopolska 4, 2.76 0.34 Golce 1, Winna Góra 1, 1 2.41 0.14 Obrzycko 1, Piła IG 1	2.61 0.19 Šroda Wielkopolska 4, 2.71 0.20 Golog 1 Obravido 1
6 8 2.01 9 1.5 ²	2 <u>1.75</u> 1 2.05	2 1 1.99 3 1.55	7 8 2.12 1 1.51	8 3 2.00 4 1.52	$\frac{5}{8} \qquad \frac{1.70}{2.02}$	7 9 <u>1.62</u> 1.85
3.28	3.11	2.32 3.71 1.53	3.45	<u>2.78</u> 3.83 1.74	2.65 3.35 1.27	3.29
3.94 5.44 2.99	5.68 2.77	5.13 3.05	<u>4.91</u> 6.34 2.98	<u>4.98</u> 6.98 3.30	<u>4.45</u> 6.02 3.14	<u>4.57</u> 5.33
trias, kajper (TK3T), piaskowiec trzcinowy: iłowce wapniste, mułowce, piaskowce, gipsy, anhydryty Triassic, Keuper (TK3T), Reed Sandstone: calcareous claystones, mudstones, sandstones, gypsum, anhydrites	claystones, muastones, sanastones, gypsum, anhyarute; trias, kajper górny (TK3D), dolna seria gipsowa: iłowce, mułowce, sole Triassic, Upper Kuper (TK3D), Lower Gypsum Series: claystones, mudstones, salts	trias, kajper dolny (Tk1): iłowce, piaskowce, mułowce Triassic, Lower Keuper (Tk1): claystones, sandstones, mudstones	trias środkowy (T2), wapień muszlowy: margle dolomityczne, wapienie dolomityczne, iłowce Middle Triassic (T2), Muschelkalk: dolomitic marls, dolomitic limestones, claystones	trias, pstry piaskowiec górny ret (Tp3): margle, iłowce, wapienie, anhydryty Triassic, Upper Bunter Sandstone Roethian (Tp3): marls, claystones, limestones, anhydrites	trias, pstry piaskowiec środkowy (Tp2): iłowce, margle, wapienie, piaskowce, anhydryty Triassic, Middle Bunter Sandstone (Tp2): claystones, marls, limestones, sandstones, anhydrites	trias, pstry piaskowiec dolny (Tp1): iłowce, wapniste, piaskowce, anhydryty

cont.
cd. /
4
(Table)
Tabela

Określone na podstawie danych z otworów: Determined on the basis of data from wells:	Środa Wielkopolska 4, Obrzycko 1	Obrzycko 1	Golce 1, Obrzycko 1	Środa Wielkopolska 4, Golce 1	Obrzycko 1 (nierozdzielone) (not separated)	Środa Wielkopolska 4, Golce 1	Środa Wielkopolska 4, Obrzycko 1, Piła IG 1
NIEQ	$\frac{0.27}{0.29}$	$\frac{0.27}{0.28}$ 0.27	$\frac{0.32}{0.35}$ 0.29	<u>0.31</u> 0.35 0.27	<u>0.27</u> 0.28 0.27	$\frac{0.31}{0.35}$ 0.27	$\frac{0.30}{0.34}$ 0.26
RHEQ [g/cm ³]	<u>2.71</u> 2.93 2.34	<u>2.82</u> 2.85 2.78	<u>2.12</u> 2.40 2.03	<u>2.37</u> 2.74 2.14	<u>2.87</u> 2.91 2.78	$\frac{2.20}{2.29}$ 2.10	$\frac{2.13}{2.25}$ 1.95
VPEQ/ VSEQ	$\frac{1.78}{1.83}$	$\frac{1.80}{1.80}$ 1.79	$\frac{1.95}{2.00}$ 1.83	$\frac{1.91}{2.08}$	$\frac{1.79}{1.81}$	$\frac{1.90}{2.00}$ 1.79	<u>1.89</u> 2.01 1.77
VSEQ [km/s]	<u>2.77</u> 3.36 2.44	$\frac{3.12}{3.19}$ 3.02	<u>2.33</u> 2.73 2.14	$\frac{2.52}{3.10}$ 1.88	<u>3.12</u> 3.32 2.71	<u>2.37</u> 2.65 2.15	<u>2.48</u> 3.44 1.63
VPEQ [km/s]	<u>4.94</u> 5.99 4.29	<u>5.59</u> 5.71 5.44	<u>4.51</u> 5.20 428	<u>4.78</u> 5.65 3,78	<u>5.59</u> 5.91 4.89	$\frac{4.50}{4.75}$ 4.18	<u>4.66</u> 6.11 3.36
Stratygrafia, litologia Stratigraphy, lithology	perm, iłowce przejściowe (IP): iłowce, mułowce, anhydryty, sól Permian, Transitional Claystones: claystones, mudstones, anhydrites, salts	perm, cechsztyn, anhydryt graniczny (A4G) Permian, Zechstein,Top Anhydrite	perm, cechsztyn, sól najmłodsza (Na4) Permian, Zechstein, Aller Salt	perm, cechsztyn, anhydryt pegmatytowy (A4D): anhydryty Permian, Zechstein, Pegmatitic Anhydrite (A4D): anhydrites	perm, cechsztyn, anhydryt pegmatytowy (A4D), ił czerwony (I4), anhydryt stropowy (A3G) <i>Permian, Zechstein, Pegmatitic Anhydrite (A4D),</i> <i>Red Claystone (I4), Top Anhydrite (A3G)</i>	perm, cechsztyn, ił czerwony (14): iły, sole, anhydryty Permian, Zechstein, Red Claystone (14): claystones, salts, anhydrites	perm, cechsztyn, sól młodsza (Na3): sole kamienne <i>Permian, Zechstein, Leine Salt: salts</i>

cont.
t cd.
able) 4
bela (J
Ta

Środa Wielkopolska 4	Środa Wielkopolska 4	Środa Wielkopolska 4, Obrzycko 1	Piła IG 1 (nierozdzielone) (not separated)	Środa Wielkopolska 4, Obrzycko 1	Środa Wielkopolska 4	Środa Wielkopolska 4, Obrzycko 1, Piła IG 1	Środa Wielkopolska 4, Pila IG 1
$\frac{0.27}{0.28}$ 0.27	$\frac{0.27}{0.28}$ 0.27	<u>0.27</u> 0.27 0.27	<u>0.27</u> 0.35 0.26	$\frac{0.29}{0.31}$ 0.27	$\frac{0.27}{0.28}$ 0.27	$\frac{0.30}{0.33}$ 0.26	<u>0.31</u> 0.35 0.34
<u>2.19</u> 2.40 2.05	<u>2.08</u> 2.19 2.01	<u>2.91</u> 2.95 2.63	<u>2.76</u> 2.93 2.14	<u>2.27</u> 2.57 2.07	<u>2.87</u> 2.94 2.76	<u>2.10</u> 2.22 2.05	<u>2.14</u> 2.17 2.09
$\frac{1.79}{1.80}$ 1.79	$\frac{1.79}{1.80}$ 1.79	<u>1.79</u> 1.79 1.79	1.79 2.07 1.76	$\frac{1.84}{1.91}$	$\frac{1.79}{1.80}$ 1.79	<u>1.90</u> 2.10 1.76	<u>1.93</u> 2.08 2.07
<u>2.55</u> 2.88 2.37	<u>2.64</u> 2.80 2.47	$\frac{3.31}{3.37}$ 3.12	<u>3.39</u> 3.69 2.12	<u>2.26</u> 2.91 1.84	$\frac{3.19}{3.32}$ 3.08	<u>2.47</u> 3.67 2.07	<u>2.37</u> 2.63 2.08
<u>4.57</u> 5.16 4.25	<u>4.73</u> 5.01 4.41	<u>5.92</u> 6.03 5.57	<u>6.07</u> 6.50 4.37	<u>4.15</u> 5.23 3.33	<u>5.72</u> 5.93 5.51	<u>4.66</u> 6.47 4.27	<u>4.54</u> 4.72 4.33
perm, cechsztyn, sól potasowa (Kz3): sole potasowe Permian, Zechstein, Potash Salt (Kz3): potash salts	perm, cechsztyn, sól młodsza (Na3-2): sole kamienne <i>Permian, Zechstein, Leine Salt (Na3-2): salts</i>	perm, cechsztyn, anhydryt główny (A3): anhydryty, sole Permian, Zechstein, Main Anhydrite (A3): anhydrites, salts	perm, cechsztyn (A3, Ca3, I3, A2G), anhydryt główny, dolomit płytowy, szary ił, anhydryt kryjący <i>Permian, Zechstein, Main Anhydrite, Platy Dolomite,</i> <i>Grey Claystone, Top Anhydrite (A3, Ca3, I3, A2G)</i>	perm, cechsztyn, szary ił solny (13): anhydryty, iły, sól Permian, Zechstein, Grey Claystone (13): anhydrites, claystones	perm, cechsztyn, anhydryt kryjący (A2G): anhydryty Permian, Zechstein, Top Anhydrite (A2G): anhydrites	perm, cechsztyn, sól starsza (Na2): sole kamienne (w Piła IG1 też potasowa) <i>Permian, Zechstein, Stassfurt Salt (Na2): salts</i> (in Piła IG1 well also potash salt)	perm, cechsztyn, sól starsza potasowa (Kz2): sól potasowa Permian, Zechstein, Potash Stassfurt Salt (Kz2): potash salts

cont.
4 cd. /
able) 4
ela (T
Tab

Określone na podstawie danych z otworów: Determined on the basis of data from wells:	Środa Wielkopolska 4, Piła IG 1	Środa Wielkopolska 4,	Środa Wielkopolska 4	Obrzycko 1, Piła IG 1 (nierozdzielone) (not separated)	Środa Wielkopolska 4 (razem) (total)	Golce 1	Piła IG1, Obrzycko 1, Golce 1
NIEQ	$\frac{0.31}{0.35}$ 0.26	$\frac{0.27}{0.27}$	<u>0.28</u> 0.28 0.27	$\frac{0.27}{0.33}$ 0.26	$\frac{0.27}{0.28}$ 0.27	<u>0.29</u> 0.29 0.29	$\frac{0.32}{0.35}$ 0.26
RHEQ [g/cm ³]	<u>2.10</u> 2.19 2.06	<u>2.96</u> 2.98 2.85	<u>2.73</u> 2.88 2.62	<u>2.89</u> 2.93 2.11	<u>2.96</u> 2.99 2.75	<u>2.93</u> 2.94 2.92	<u>2.16</u> 2.29 2.06
VPEQ/ VSEQ	$\frac{1.94}{2.10}$ 1.76	$\frac{1.79}{1.79}$	$\frac{1.80}{1.81}$	<u>1.78</u> 2.08 1.76	$\frac{1.79}{1.80}$	$\frac{1.83}{1.83}$	<u>1.94</u> 2.09 1.83
VSEQ [km/s]	<u>2.40</u> 3.67 2.08	$\frac{3.37}{3.40}$ 3.26	$\frac{3.07}{3.34}$ 2.84	$\frac{3.49}{3.76}$ 2.10	$\frac{3.36}{3.42}$	<u>3.26</u> 3.27 3.25	$\frac{2.43}{3.05}$ 2.11
VPEQ [km/s]	<u>4.76</u> 6.47 4.35	<u>6.03</u> 6.07 5.84	<u>5.51</u> 5.97 5.13	<u>6.22</u> 6.86 4.38	<u>6.01</u> 6.10 5.44	<u>5.95</u> 5.97 5.93	<u>4.69</u> 5.60 4.40
Stratygrafia, litologia Stratigraphy, lithology	perm, cechsztyn, sól starsza (Na2): sole kamienne Permian, Zechstein, Stassfurt Salt (Na2): salts	perm, cechsztyn, anhydryt podstawowy (A2): anhydryty Permian, Zechstein, Basal Anhydrite (A2): anhydrites	perm, cechsztyn, dolomit główny (Ca2): dolomity, iłowce, anhydryty <i>Permian, Zechstein, Main Dolomite (Ca2): dolomites,</i> claystones, anhydrites	perm, cechsztyn, anhydryt podstawowy (A2), dolomit główny (Ca2), anhydryt górny (A1G) <i>Permian, Zechstein, Basal Anhydrite (A2), Main</i> Dolomite (Ca2), UpperAnhydrite (A1G)	perm, cechsztyn, anhydryt górny i dolny (A1G+A1D): anhydryty Permian, Zechstein, Upper and Lower Anhydrite (A1G+A1D): anhydrites	perm, cechsztyn, anhydryt górny (AIG): anhydryty Permian, Zechstein, Upper Anhydrite (AIG): anhydrites	perm, cechsztyn, sól najstarsza (Na1): sole kamienne Permian, Zechstein, Werra Salt (Na1): salts

cont.
cd.
ble) 4
a (Ta
Tabel

Golce 1, Pila IG 1, Obrzycko 1	Winna Góra 1, Środa Wielkopolska 4, Obrzycko 1, Pila IG1, Golce 1	Środa Wielkopolska 4, Obrzycko 1, Piła IG1, Golce 1	Winna Góra 1	Piła IG1	Obrzycko 1
<u>0.27</u> 0.30 0.27	$\frac{0.30}{0.32}$ 0.20	$\frac{0.19}{0.32}$ 0.11	$\frac{0.14}{0.25}$ 0.10	<u>0.20</u> 0.24 0.16	<u>0.27</u> 0.27 0.27
2.90 2.94 2.40	<u>2.72</u> 2.98 2.61	<u>2.57</u> 2.74 2.26	<u>2.39</u> 2.65 2.17	<u>2.60</u> 2.65 2.46	<u>2.81</u> 2.85 2.78
<u>1.79</u> 1.86 1.76	<u>1.88</u> 1.94 1.60	<u>1.63</u> 1.93 1.51	<u>1.56</u> 1.74 1.50	$\frac{1.63}{1.71}$	$\frac{1.79}{1.79}$
<u>3.38</u> 3.72 2.91	$\frac{3.09}{3.57}$ 2.12	<u>2.91</u> 3.56 2.02	<u>2.77</u> 3.25 2.35	<u>2.92</u> 3.16 2.50	<u>3.17</u> 3.33 2.95
<u>6.05</u> 6.54 5.42	<u>5.81</u> 6.16 4.09	<u>4.71</u> 5.94 3.40	<u>4.31</u> 4.92 3.68	<u>4.75</u> 4.98 4.19	<u>5.66</u> 5.96 5.27
perm, cechsztyn, anhydryt dolny (A1D): anhydryty, iły <i>Permian, Zechstein, Lower Anhydrite (A1D):</i> anhydrites, claystones	perm, cechsztyn, wapień cechsztyński, łupek miedzionośny (Cal + 11): dolomity, łupki <i>Permian, Zechstein, Zechstein Limestone,</i> <i>Cooper Shale (Cal +11): dolomites,</i> <i>shales</i>	perm, czerwony spągowiec, sakson (Ps): piaskowce, drobnoziarniste białe, średnioziarniste brązowe, czerwone <i>Permian, Rotliegend, Saxonian (Ps):</i> white fine-grained, brown medium-grained, red sandstone	perm, czerwony spągowiec, sakson (Ps): piaskowce, nasycenie gazem Permian, Rotliegend, Saxonian (Ps): sandstones, gas saturation	perm, czerwony spągowiec, autun (Ps): iłowce, piaskowce Permian, Rotliegend, Autun (Ps): claystones, sandstones	perm, czerwony spągowiec, autun (Ps): seria wylewna Permian, Rotliegend, Autun (Ps): Volcanic Series

TŁUMIENIE FAL SPRĘŻYSTYCH

Współczynnik dobroci Q został wyznaczony na podstawie interpretacji widm amplitudowych akustycznych obrazów falowych. Interpretację wykonano w aplikacji FalaFWS w systemie GeoWin (Jarzyna et al. 2007). Wybrano pary AOF, które spełniały wymogi poprawności zapisu (niższa amplituda drgań w pakietach fal P i S na zapisie dalszym rejestratorem, odpowiednie czasy pierwszych wstąpień fal). Przyjęto założenie, że amplituda sygnału, a także widmo amplitudowe są funkcją energii niesionej przez falę i traconej w ośrodku skalnym na skutek wpływu odległości i dyspersji (Cheng 1989). Obliczono wartości Q w wybranych formacjach litostratygraficznych na podstawie analizy par AOF w dziedzinie czasu i dziedzinie częstotliwości. Podstawowe statystyki uzyskanych wyników Q przedstawiono w tabeli 5. Rozrzut obliczonych wartości Q w tej samej formacji jest wynikiem niskiej jakości zapisu AOF. Wysokie wartości odchylenia standardowego wskazują na niską wiarygodność obliczonych wartości Q. W tabeli 5 znajdują się także średnie wartości czasu interwałowego fali P (DTP) oraz średnie wartości intensywności naturalnej promieniotwórczości (GR). Na podstawie danych z tabeli 5 opracowano zależność między wartościami GR będącymi miarą zailenia i czasem interwałowym fali P oraz między GR i Q (Fig. 17, 18). Równanie przedstawione na figurze 18 można wykorzystać do predykcji Q.

Tabela (Table) 5	Wartości współczynnika dobroc i ${\mathcal Q}$ dla wybranych formacji litostratygraficznych	Values of Q factor in the selected lithostratigraphic formations
------------------	--	--

GR śred. [API] <i>GR</i> <i>av</i> .		86	77	53	50	74	47	47	
	DTP éred	DTP DTP av.	I	253	263	224	289	197	302
0		odch. st. stand. deviation	14.8	10.46	8.93	16.1	11.38	39.95	32.57
		śred. <i>av</i> .	22.41	11.99	15.66	15.97	6.83	30.2	23.47
		maks. <i>max</i>	82.37	53.07	42.03	85.33 63.57		243.29	178.55
		min min	8.28	4.41	3.88	1.85	0.63	4.03	5.16
		Litologia Lithology	Lithology iłowce, mułowce claystones, mułowce górna seria gipsowa, iłowce, anhydryty ipper Gypsum Series, claystones, anhydrite wapienie, wapienie margliste, margle ilaste, iłowce limestones, marfy limestones, shaly marls, claystones		wapienie, wapienie margliste, margle ilaste, iłowce <i>limestones, marły limestones, shały marls,</i> <i>claystones</i>	ilowce, wapienie, wapienie dolomityczne, margle claystones, limestones, dolomitic limestones, marls	piaskowce drobnoziarniste, mułowce, iłołupki fine-grained sandstones, mudstones, shaly clays	mułowce, piaskowce, iłowce, iłołupki, węgle mudstones, sandstones, claystones, shaly clays, coals	mułowce, piaskowce, iłowce, iłołupki, węgle mudstones, sandstones, claystones, shaly clays, coals
	H spągu [m]	H spagu [m] Depth of the bottom 612.39		1424.3	1972.76	2331.8	1035.4	1034.02	726.5
	H stropu [m] Depth of the top		[m] Depth of the 593.9 1403.5 1403.5 1966.06		2238.3	708.8	657.41	657.81	
		Okres Stratigraphy bajos Jbj Bajocian kajper górny Upper Keuper wapień muszlowy Muschelkałk		wapień muszlowy Muschelkalk	Tp3	J1	J1 (WF1-WF2)	J1 (WF1-WF3)	
		Otwór Well	Well Winna Góra 1 Winna Góra 1 Winna Góra 1		Winna Góra 1	Śr.Wiel.4	Śr.Wiel.5	Śr.Wiel.5	

Wybrane aspekty skalowania profilowań geofizyki otworowej na potrzeby sejsmiki

cont.
cd. /
5
lable
ela (]
Tabe

GR	śred. [API] <i>GR</i> <i>av</i> .	66	91	7	65	49	44	93	7	96
DTP śred. [us/m] <i>DTP</i> <i>av.</i>		236	236	210	300	241	235	236	176	310
	odch. st. stand. deviation	19.91	7.7	42.82	14.7	65.24	44.91	30.46	2.1	11.63
0	śred. av.	20.33	13.81	88.00	20.84	47.61	44.46	21.68	I	12.7
	maks. <i>max</i>	49.63	35.82	123.6	56.5	184.73	189.2	78.48	11.24	45.76
	min min	5.16	6.55	10.59	9.08	9.93	7.1	11.61	5.07	6.51
	Litologia Lithology	iłowce, anhydryty, sole claystones, anhydrites, salts	iłowce wapniste brązowe, mułowce, piaskowce, anhydryty calcareous brown claystones, mudstones, sandstones, anhydrites	sól salts	kajper Keuper	dolna seria gipsowa Lower Gypsum Series	wapień muszlowy Muschelkalk	iłowce, mułowce brązowe claystones, brown mudstones	anhydryty ilaste, wapniste argillaceous calcareous anhydrites	piaskowce drobnoziarniste, szare, brązowe, iłowce, mułowce grey brown fine-grained sandstones, claystones, mudstones
H spągu	[m] Depth of the bottom	2974.5	2901	3027.5	2067	1998.7	2125.2	3631.5	4229.6	4872.23
H stropu	[m] Depth of the top	2970	2613.4	3016	2003.8	1993.7	2089.9	3621.2	4206.5	4836.73
	Okres Stratigraphy	A4G	Tp1	Na4	Tk1	Tk3D	Tm3	IP	A1D	Autun Autun
Otwór Well		Miłosław 3	Miłosław 3	Kromolice 2	Kromolice 2	Kromolice 2	Kromolice 2	Grundy 2	Grundy 2	Grundy 2

442

J. Jarzyna, M. Bała, P. Krakowska & K. Wawrzyniak-Guz

Wartość współczynnika Q zmienia się w szerokim przedziale: 6.83–88. Dla małych wartości wpływ Q na obniżenie prędkości wyznaczonej z profilowania akustycznego jest niewielki, rzędu kilku procent, ale dla wartości maksymalnych obniżenie prędkości może sięgnąć 30% (Boyer & Mari 1997).

PODSUMOWANIE

Przedmiotem analizy były wyniki pomiarów sondą FWS i wyniki interpretacji akustycznych obrazów falowych w otworach znajdujących się w pobliżu doświadczalnej linii sejsmicznej. Do analizy włączono także parametry uzyskane w programie Estymacja. Przedstawiono zakresy zmian czasów interwałowych fal sprężystych P i S oraz dynamicznych parametrów sprężystych: modułu Younga, sprężystości objętości i postaci oraz stałej Poissona dla formacji litostratygraficznych wydzielonych w badanych otworach. Wykazano, że nie następuje utrata istotnych informacji w zakresie badanych parametrów w procesie uśredniania (filtrowania) i interpolacji danych geofizyki otworowej. Przedstawiono przedziały zmienności i średnie wartości czasów interwałowych (prędkości) fal P i S dla wszystkich formacji wyznaczonych w otworach. Praca została wykonana w ramach realizacji projektu badawczego "Poprawa efektywności badań sejsmicznych w poszukiwaniach i rozpoznawaniu złóż gazu ziemnego w utworach formacji czerwonego spągowca".

Autorki dziękują prof. dr. hab. inż. Wojciechowi Góreckiemu za zaproszenie do współpracy. Dziękują także PGNiG SA Oddziałowi w Zielonej Górze oraz spółkom Geofizyka Toruń i Geofizyka Kraków za udostępnienie danych pomiarowych.

LITERATURA

- Aki K. & Richards P.G., 1980. *Quantitative Seismology. Vol. 1*. W.H. Freeman and Co., New York.
- Bała M. & Cichy A., 2006. *Metody obliczania prędkości fal P i S na podstawie modeli teoretycznych i danych geofizyki otworowej – program Estymacja*. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
- Boyer S. & Mari J.-L., 1997. Seismic surveying and well logging. Editions Technip, Paris.
- Cheng C.H., 1989. Full waveform inversion of P waves for V_s and Q_p. *Journal of Geophysical Research*, 94, 15619–15625.
- Górecki W. et al., 2010. Poprawa efektywności badań sejsmicznych w poszukiwaniach i rozpoznawaniu złóż gazu ziemnego w utworach czerwonego spągowca. Sprawozdanie z projektu. Etap III. Archiwum KSE, WGGiOŚ AGH.
- Jarzyna J., Bała M., Cichy A., Gądek W., Karczewski J., Marzencki K., Stadtmüller M., Twaróg W., Zorski T., Jarzyna J., Bała M. & Cichy A., 2007. Przetwarzanie i interpretacja profilowań geofizyki wiertniczej – system GeoWin. Cz. II: Nowe aplikacje i uzupełnienia. Arbor, Kraków.
- Jarzyna J., Bała M. & Krakowska P., 2011. Modele prędkościowe na potrzeby sejsmiki na podstawie profilowań geofizyki otworowej. *Geologia* (kwartalnik AGH), 37, 3, 447–473.

Summary

Sonic logging in wells is based on the same physical principlal as seismics with the difference being the frequency of elastic waves. Frequencies between 15–20 kHz in sonic logs and between 30–60 Hz in seismics define already the vertical resolution of the methods. After interpretation of acoustic full wavetrains, AFW, a substantial amount of data was obtained due to very fine step of recording in depth (0.1 m). In order to filter and smooth the well log results as well as to reduce the great amount of data an averaging operation using FalaFWS application as well as interpolation using Funmat application of GeoWin system were performed. The results for the selected depth interval of 350.2–1891.4 m in the Śr.Wielk.4 well were presented in table 1 and figures 1–5. The results of the next test for different lithostratigraphic formations were presented in table 2 and figures 6–9. It was shown that there is no essential information loss in the range of analyzed parameters during the averaging (filter) and interpolation process of the well log data. The collective results of AFW interpretation in terms of average P-wave slowness, S-wave slowness and elastic moduli like: E, K, MI and Poisson ratio, NI, and V_p/V_s ratio together with GR and RHOB from logs were presented in table 3. Mutual relations between average values of DTP, DTS and RHOB (Tab. 3) were presented in figures 10–12. Variability of the DTP and DTS vs. depth was illustrated in figures 13 and 14 and variability of RHOB and GR vs. depth is presented in figures 15 and 16. Parameters obtained in Estymacja program were also included in the analysis (Tab. 4). The range of variability of the P-wave velocity, S-wave velocity and dynamic elastic moduli: Young modulus, bulk modulus, shear modulus and Poisson ratio were presented for litostratigraphic formations in the selected analyzed wells. Variation intervals and average P- and S-wave slowness (velocities) for all formations marked out in wells were presented. Simple statistics for Q parameter for the selected formations identified in geological well profiles were presented in table 5. Plots of Q vs. DTP and GR were presented in figures 17 and 18. The obtained results may be used to construct seismic models of velocity and attenuation of elastic waves.