baner - AGH
baner - BG
C   Z   A   S   O   P   I   S   M   A        E   L   E   K   T   R   O   N   I   C   Z   N   E        A   G   H

Hydrothermal fluids influence on the thermal evolution of the Stephanian sequence, the Sabero Coalfield (NW Spain).

Dariusz Botor

Vol. 38, no. 4 (2012), s. 369-394

Full text: pdfPDF


In the present study, the thermal history of the Late Carboniferous (Stephanian) coal-bearing sediments of the Sabero Coalfield has been reconstructed in order to elucidate coal rank. The Sabero Coalfield is located in a small intramontane coal-bearing basin along the Sabero-Gordón fault zone, one of the major E-W trending strike-slip fault systems of the southern part of the Cantabrian Zone (NW Spain). The total thickness of the Stephanian succession is in excess of 2,000 m, and is composed of siliclastic rocks and intercalated coal seams with tonsteins. Mean vitrinite reflectance values in the Stephanian rocks in the Sabero Coalfield are in the range from 0.61 to 3.14% Rr, but most values are in the range from 0.8 to 1.5% Rr (based on 84 samples). Average vitrinite reflectance gradient is high (0.73% Rr/km), which suggests high value of average paleogeothermal gradient (52°C/km). The maximum paleotemperatures calculated from vitrinite reflectance values for the Stephanian rocks range between 89°C (top of the Stephanian) and 195°C (bottom of the Stephanian). Coalification of the organic matter in the Stephanian rocks was achieved in the Early Permian, and was most likely related to several almost simultaneous related to magmatic and hydrothermal activity during high subsidence period in the pull-apart basin. The primary, burial-related maturity pattern, was probably slightly overprinted by fluid migration event, which is supposed to have occurred in Early Permian time.