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Abstract: This study uses a machine learning (ML) ensemble modeling approach to predict porosity from mul-
tiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. 
The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), ran-
dom forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural net-
work with multilayer perceptron (MLP). The selected models are additionally run with different configurations 
originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component 
analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each 
model. The model candidates and the role of different pre-processors are evaluated based on standard ML met-
rics  – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The 
model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal 
role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, 
RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results 
obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial 
distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with 
hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from 
model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understand-
ing of heterogeneous carbonate reservoirs from multiple seismic attributes.
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INTRODUCTION

The inherent feature of carbonate reservoirs is sig-
nificant heterogeneity that originates from mul-
tiple stages of diagenesis. This process overprints 
the initial depositional environment features and 
shapes the pore structure characteristics, which is 
the most complicated in carbonate rocks. Porosity 
in carbonate reservoirs manifests itself as a dual 

or triple system with pore space, creating vugs, in-
tercrystalline pores, and fractures of different siz-
es and distributions (Moore & Wade 1989, Tiab & 
Donaldson 2015). The complex diagenetic histo-
ry of carbonate systems also dilutes the relation-
ship between reservoir property characteristics 
and seismic response, making this type of reser-
voir extremely unpredictable in the subsurface. 
The statement is particularly true regarding the 
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Vp-porosity relationship, which is much less con-
strained in carbonates than in siliciclastic reser-
voirs (Hendry et al. 2021). The described features 
have long been recognized as a challenge for eval-
uating fundamental reservoir properties at the 
reservoir scale. 

The recent advances in machine learning (ML) 
tools have shed new light on the recognition and 
characterization of carbonate systems (Hendry 
et al. 2021). One unique feature of ML algorithms 
is their capability to synthesize high-dimensional 
data and find hidden interactions between them, 
making them a powerful tool for studying com-
plex and heterogeneous carbonate systems where 
the relationships between reservoir properties and 
seismic response are highly non-linear and am-
biguous (Hendry et al. 2021). Multi-attribute ML 
processes have been successfully used for seismic 
facies recognition (e.g., Jesus et al. 2019, Pattnaik 
et al. 2020, Carvalho et al. 2022), evaluation of res-
ervoir properties (e.g., Sinaga et al. 2019, Hou et al. 
2022), detection of reservoir quality and sweet 
spots of carbonate reservoirs (e.g., Chen et  al. 
2021). Other authors have hybridized unsuper-
vised and supervised methods for comprehensive 
carbonate facies classification and subsequent po-
rosity-permeability prediction (e.g., Ferreira et al. 
2021).

Another interesting strategy involves the ap-
plication of ensemble models, where predictions 
of single learners are combined to make a  final 
prediction (Couch & Kuhn 2022, Kuhn & Silge 
2022). Although ensemble techniques are pop-
ular in single methods such as bagging, ran-
dom forest, and boosting (Breiman 1996a, 2001, 
Freund & Schapire 1997), the technique origi-
nates in stacking many models of different types 
(Wol pert 1992, Breiman 1996b). Model stack-
ing has already proven superior predictive per-
formance in various settings and is often used 
as a  winning solution in ML competitions (see: 
the winning solutions of Kaggle competitions at  
www.kaggle.com). 

The application of model stacking (or ensem-
ble modeling) has also received attention in res-
ervoir characterization studies of porosity, per-
meability and water saturation (e.g., Adeniran 
et al. 2019, Bedi & Toshniwal 2019, Otchere et al. 

2021a). Most of the published studies utilize mul-
tiply regression, artificial neural network (ANN), 
and support vector machines (SVM) as an ensem-
ble (e.g., Chen & Lin 2006, Reza et al. 2011, Ani-
fowose et al. 2013, 2015, Helmy et al. 2013). How-
ever, other methods such as random forest (FR) 
and extreme gradient boosting (XGB) also have 
been successfully applied for reservoir characteri-
zation (Otchere et al. 2021a, Liu et al. 2022). Both 
RF and XRG are known for their superior accu-
racy and the ability to handle unstructured data 
(James et al. 2013, Hall & Hall 2017), making them 
good solution when analyzing complex relation-
ships between reservoir properties and seismic re-
sponse (Topór & Sowiżdżał 2022).

The study demonstrates the capability of an 
ensemble model for the porosity prediction of 
carbonate reservoirs from seismic attributes. The 
study’s novelty lies in a  complex workflow in-
volving advanced data pre-processing, enhanced 
models’ hyperparameters tuning, model stacking 
with different candidate types, and comprehen-
sive evaluation of model results using ML metrics 
and visual inspection with the spatial distribution 
of porosity. 

The pre-processing data stage involves data 
transformation (normalization, Yeo–Johnson), 
data reduction (PCA), and feature engineering 
with the application of the unsupervised k-means 
method to determine seismic facies based on 
pre-selected seismic attributes. The study assess-
es the role of individual pre-processing types in 
porosity prediction. The tuning strategy is con-
ducted using one of the most efficient ways of 
determining models’ hyperparameters  – the 
race ANOVA method. Stacking is performed on 
models of different levels of complexity, such as 
K-nearest neighbors (KNN), random forests (RF), 
extreme gradient boosting (XGB), support vector 
machine (SVM), and single layer neural network 
with multilayer perceptron model (MLP). These 
models are commonly used to build the model-
ing strategy and are known for their superior pre-
diction accuracy (Kuhn & Johnson 2013, Hall & 
Hall 2017). 

The obtained stacked model is compared to 
single learners as well as to neural network re-
sults (NN) obtained from commercial software. 

https://journals.agh.edu.pl/geol
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All models are evaluated using standard ML met-
rics, including coefficient of determination (R2), 
mean squared error (RMSE), and mean absolute 
error (MAE). Finally, the obtained results are 
spatially distributed to check if the porosity pat-
terns followed the one expected from the known 
research works and experience acquired during 
the exploration, appraisal, and field production  
stages.

DATASET 

The analyzed dataset refers to one of the most 
promising Main Dolomite hydrocarbon res-
ervoirs in NW Poland. It consists of seismic at-
tributes calculated from a  3D seismic cube that 
describes the area of the carbonate platform, bar-
riers, slope, and bottom facies. The analyzed data-
set consists of more than five million (5,476,146) 
observations and 35 variables. In addition to the 
seismic attributes variable and coordinate infor-
mation, the analyzed dataset included estimated 
porosity (Phi) as an outcome variable (2,278 ob-
servations). Porosity was derived using the stan-
dard crosslots method based on well-log profiles 
(neutron-acoustics, neutron-density). 

EXPLANATORY DATA ANALYSIS 
(EDA)

The analyzed hydrocarbon system is highly di-
verse in terms of storage properties. Porosity var-
ies from 0% to 31.2% (mean 11.3%, median 6.8%), 
and its distribution is skewed with a high popula-
tion of porosity less than 5% (Fig. 1). 

According to Mikołajewski & Wróbel (2005), 
the Main Dolomite carbonate rocks consist of 
both vogues and intercrystalline porosity, com-
plicating the presence of microfractures which are 
common in this type of rock. The deposition envi-
ronment initially controlled the pore network de-
velopment, but the most important factor was the 
multiple stages of diagenetic changes (Kotarba & 
Wagner 2007). Burial diagenesis in the analyzed 
hydrocarbon system deteriorated and enhanced 
storage and filtration properties. Compaction, re-
crystallization, and cementation (mainly with an-
hydrite and dolomite) had the most adverse im-
pact on the pore network, while the dissolution of 
carbonate grains with pore fluids enriched in CO2 
and fracturing (in micro and macro scales) posi-
tively impacted reservoir properties (Mikołajew-
ski & Wróbel 2005, Kotarba & Wagner 2007). 

Fig. 1. Distribution of porosity (Phi) in the analyzed dataset
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The investigation of the relationship between 
seismic attributes and log-based porosity data was 
conducted within the framework of the 3D grid 
into which seismic data were resampled, and well-
log profiles upscaled. It required the acceptance 
of a compromise between the loss of well-log data 
accuracy resulting from the upscaling procedure 
(the arithmetic average method was implemented) 
and the apparent increase of seismic data resolu-
tion resulting from its downscaling. Nonetheless, 
this procedure ensured both datasets were trans-
formed into a standard 3D grid domain, allowing 
further analysis using machine learning methods. 

The relationship between porosity and seis-
mic attributes in carbonate reservoirs is complex, 
making porosity prediction challenging. The cor-
relation between porosity and seismic variables 
diverges from linear and monotonic relations, ex-
pressed in its low Spearman’s rank correlation co-
efficient (Fig.  2). The correlation matrix present-
ed in Figure 2 reveals another problem, which 
complicates prediction and may lead to uncer-

tainty in ML modeling. This issue is a high cross- 
correlation (collinearity) between seismic attri-
butes. The cross-correlated variables were grouped 
using hierarchical clustering and the Lance–Wil-
liams dissimilarity update formula with Ward’s 
method. The method uses the classical sum-of-
squares criterion, producing groups that minimize 
within-group dispersion (Ward 1963, Lance & Wil-
liams 1966, Murtagh & Legendre 2014). The num-
ber of clusters was arbitrarily set to eight (Fig. 2). 

Figure 3 shows the most significant variables 
for porosity prediction. Although these vari-
ables  are statistically significant (p-value < 0.05), 
their correlation coefficients are weak and be-
low 0.5. Additionally, some of them are also highly 
cross-correlated (Fig. 3). Several of the listed seis-
mic attributes are important for seismic character-
ization study, including the top-ranked attribute, 
acoustic impedance (Rel_AI), which is common-
ly used to target reservoir potential (Hendry et al. 
2021). A similar role can be assigned to Vp and its 
low-velocity anomalies within carbonate strata.

Fig. 2. A correlation matrix with marked highly cross-correlated variables based on hierarchical clustering. An outcome vari-
able (Phi) was highlighted. A description of the individual seismic attribute is presented in Appendix 1

https://journals.agh.edu.pl/geol
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Fig. 3. Fifteen (15) most significant correlation variables for 
porosity prediction with their correlation coefficients

Generally, seismic attributes resulting from 
simultaneous seismic inversion workflow and 
those related to seismic signal amplitude reveal 
the highest correlation with porosity. Since they 
record similar information contained in seismic 
data, they will be further processed into predic-
tive models before their implementation.

METHODS

The workflow applied in this study uses the tidy-
models framework and the latest concepts devel-
oped by R Core Team for modeling and machine 
learning (Kuhn & Silge 2020, Kuhn & Silge 2022, 
R Core Team 2022). The workflow is coupled with 
a 3D visualization of the obtained results from Pe-
trel software (Fig. 4).

Data pre-processing  
and feature engineering
The EDA reveals several problems with variables 
that need to be considered in the pre-processing 
stage before the modeling. The pre-processing and 
feature engineering was performed using a recipe 
package from tidymodels meta-packages (Kuhn & 
Silge 2022).

Fig. 4. Workflow of the study coupling R/Posit environment and Petrel software
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Since the study uses stacked models for po-
rosity prediction that involves several models of 
different levels of complexity, the pre-processing 
stage was grouped for the model types. 

The KNN, RF, and XGB use three-step data 
pre-processing that involves the zero-variance 
filter, high correlation filter, and data normaliza-
tion (base pre-processing). The applied filters re-
move variables containing only a single value and 
those with significant absolute Spearman correla-
tions with other variables. The normalization step 
scales numeric data to have a standard deviation 
of one and a mean of zero. The applied procedure 
reduced the number of variables to 21 numerical 
features.

The RF was additionally run with an extra class 
variable that indicates seismic facies. This new fea-
ture was derived from unsupervised k-means clas-
sification and a combination of stratigraphic and 
structural seismic attributes (Rel_AI, RMS_Amp, 
Loc_Flat, Chaos, Variance, Vp, Dip_Dev) (Ran-
den & Sønneland 2005). A similar approach was 
described by Ferreira et al. (2021). The number of 
clusters was set to potentially represent three fa-
cies of carbonate platforms, build-up, and debris. 
The k-means clustering was performed using Eu-
clidean distances measurement and the Hartigan–
Wong algorithm (Hartigan & Wong 1979). A de-
tail of the k-means method and its application for 
rock-typing can be found in Topór (2020). 

The data pre-processing and feature engineer-
ing for the MLP and SVM models was additionally 
extended for the Yeo–Johnson transformation. Its 
main role was transforming continuous variables 
to be more normally distributed (Yeo & Johnson, 
2000). The algorithm is similar to the Box-Cox but 
does not require the input variables to be strictly 
positive, which is important when handling seis-
mic attributes, which are skewed and frequently 
with negative values. Both algorithms were also 
run in a variant after principal component analy-
sis (PCA). This method transforms variables into 
a set of artificial components, which capture the 
maximum amount of information in the original 
variables and, in the same way, combat significant 
inter-variables correlations in a  data set (Jolliffe 
2010). The number of components was arbitrarily 
set to five. 

The presented pre-processing stage produced 
eight different model configurations: KNN, RF, RF 
with seismic facies (defined as rock-type: RF RT), 
XGB, MLP with Yeo–Johnson transformation 
(MLP YJ) MLP with PCA (MLP PCA), SVM with 
Yeo–Johnson transformation (SVM YJ), and SVM 
with PCA (SVM PCA).

The dataset was split into a  training set and 
a test set using a 0.8 ratio. The 10-fold cross-val-
idation was used on the training set to obtain ten 
resampling sets for analysis and assessment. In 
addition, the outcome variable was used to con-
duct stratified sampling. This operation helps en-
sure that the resamples have equivalent propor-
tions of porosity range as in the original data set 
(see Fig. 1). 

Model description and specification 
Stacking was performed on a  suite of high-per-
formance models such as KNN, RF, XGB, MLP, 
and SVM, which, self-alone or combined, are fre-
quently used to build the modeling strategy (Kuhn 
& Johnson 2013). Part of them (XGB and RF) were 
also top models in the contest organized by the 
Society of Exploration Geophysicists, which in-
volved interpreting data from well-log analysis 
(Hall & Hall 2017). Before stacking, the models 
were run individually on resamples.

The tidymodels workflow required the specifi-
cation of the mode and engine of the model. The 
mode is common for all models and is set to re-
gression. The regression models were trained us-
ing the KNN algorithm with “kknn” engine, RF 
with “ranger” engine, XGB with “xgboost” engine, 
MLP with “nnet” engine, and SVM with “kern-
lab” engine.

The KNN is a simple algorithm that relies on 
the k most similar data points and sophisticated 
distance metrics to generate accurate predictions. 
Because the model is based on k nearest neighbors, 
it is inherently local and cannot be summarized 
by a closed-form model (Molnar 2019, Boehmke 
& Greenwell 2020). It also means that the right 
k number will determine its performance. Be-
sides the number of neighbors, the KNN has two 
other hyperparameters that can be tuned. These 
are a type of kernel function used to weight dis-
tances (weight_func) and a single number for the 
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parameter used in calculating Minkowski dis-
tance (dist_power). Kuhn & Johnson (2013) and 
Boehmke & Greenwell (2020) provide details of 
the method with the full specification.

The RF and XGB are decision tree algorithms 
with the exact model representation and inference 
but a different training algorithm. While RF cre-
ates an extensive collection of de-correlated (inde-
pendent) trees to improve predictive performance, 
the XGB builds an ensemble of shallow trees in se-
quence, where each tree learns and improves on 
the previous (Yoav & Schapire 1997, Boehmke & 
Greenwell 2020). The number of hyperparame-
ters also distinguishes the two algorithms. For 
the RF, the operator needs to specify the number 
of predictors randomly sampled at each tree split 
(mtry) and the minimum number of observations 
in a node required for further split (min_n). The 
number of trees within the ensemble (trees) was 
left as the default (500). The XGB uses the gradient 
descent optimization algorithm to update model 
parameters. Two extra hyperparameters regulate 
the algorithm  – the number representing the rate 
at which the boosting algorithm adapts from iter-
ation to iteration (learn_rate) and the number for 
the reduction in the loss function required to split 
further (loss_reduction). Both RF and XGB were 
extensively described by Topór (2021) and Topór 
& Sowiżdżał (2022). 

The SVM model uses kernel-induced fea-
ture space to find a fitting hyperplane with good 
generalization based on original features. Using 
a  robust loss function (ε-insensitive loss), the al-
gorithm tries to form a  margin around the re-
gression hyperplane of ε width that includes as 
many observations within the margin as possible. 
The observations whose residual satisfy r(x, y) ± ε 
form the support vectors that define the margin. 
The kernel function can capture complex non-lin-
ear relationships (Boehmke & Greenwell 2020). 
The SVM algorithm has four hyperparameters, 
but only two were tuned in this study  – the cost of 
predicting a sample within or on the wrong side 
of the margin (cost) and the positive number for 
the polynomial degree (degree). The remaining 
hyperparameters, such as the polynomial scaling 
factor (scale_factor) and the ε in the SVM insen-
sitive loss function (margin), were set by default.

The MLP is a  supplement of a  single-layer, 
feed-forward neural network (NN) and defines 
a  multilayer perceptron model. The model has 
three layers  – the input layer, which receives the 
input signal to processes; the output layer, which 
performs prediction; and the in-between hidden 
layer, which performs non-linear transformations 
to assign weights of the inputs provided to the net-
work. The process is done through the activation 
function that is automatically set depending on 
the type of the outcome variable. The number of 
units (units) is a crucial hyperparameter that de-
termines model performance. Besides the hidden 
layer, two other parameters can be tuned  – the 
penalty, which defines the amount of regulariza-
tion to simplify the model, and epochs, which 
establishes the length of training. Both hyperpa-
rameters help overcome overfitting and enhance 
generalization performance, which is an ability 
to appropriately adapt to new, previously unseen 
data. Details of the method are provided by Abi-
rami & Chitra (2020).

Tuning strategy
The modeling process involves testing eight mod-
els before stacking. Selecting the best hyperpa-
rameters for each model using a  classical ap-
proach with a grid search would be both time and 
resource-consuming but, more importantly, inef-
ficient. As a result, grid searching was performed 
via racing with ANOVA models. The method 
computes RMSE for selected tuning parameters, 
pre-defined in model specification, across resa-
mple data. The algorithm tests the statistical sig-
nificance of tuning parameter combinations and 
eliminates those which are not prospective us-
ing the repeated measure ANOVA model (Kuhn 
2014). 

The applied tuning strategy involved testing 
120 model combinations (15 for each model type) 
to select the best settings for each model.

RESULTS AND DISCUSSION

The performance of individual regression mod-
els was assessed after fitting the final models (with 
tuned hyperparameters) to the training set and 
then evaluating them with the testing set. This 
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operation eliminates the issue of overfitting that 
can occur in the training set. The assessment 
was performed using standard ML metrics  – R2, 
RMSE, and MAE (Table 1). The RMSE and MAE 
have the same units as the outcome variable, and 
R2 ranges from 0 to 1. Since the distribution of 
the outcome variable is skewed, the MAE and 
R2 seem to reflect the model accuracy best. The 
results of R2 revealed that the models with the 
highest predictive power are KNN, XGB, and RF 
(Table 1). The MAE 0.0173–0.0202 for the best 
models reflects the error of porosity prediction of 
~1.7–2.0% (porosity as a percentage).

Table 1
Model metrics for the best model type from the tuning results 
on the testing set

Model R2 RMSE MAE
KNN 0.875 0.0266 0.0173
XGB 0.868 0.0273 0.0191
RF RT 0.857 0.0285 0.0202
RF 0.856 0.0286 0.0202
SVM YJ
MLP PCA

0.722
0.612

0.0402
0.0471

0.0276
0.0362

SVM PCA 0.415 0.0583 0.0414
MLP YJ 0.343 0.0610 0.0464

The top rank of ensemble models (XGB and 
RF) is not surprising. Both models are known for 
their computational efficiency and superior accu-
racy (Chen & Guestrin 2016, Hall & Hall 2017). 
XGB and RF are designed to deal with collineari-
ty, handle data that are not structurally designed, 
and consider the hidden relationships between 
the variables (James et  al. 2013, Kuhn & John-
son 2013). These features could play a  key role 
when modeling porosity from seismic attributes 
for which colinearity is a  significant issue and 
non-linear relationships are common. The results 
showed that the XGB and RF could predict with 
87% and 86% accuracy, respectively. The accuracy 
of RF with seismic facies variable (RF RT) was on 
the same level as base RF. These results neglected 
the role of k-means classification in porosity pre-
diction for the studied carbonate platform, though 
the method is commonly used to evaluate seismic 
carbonate facies (Ferreira et  al. 2021, Carvalho 
et al. 2022). Ferreira et al. (2021) demonstrated the 

application of an unsupervised classification that 
differentiates between carbonate platform, build-
ups, and the debris seismic facies in Bare carbon-
ate formation from Brazil. The obtained results 
were used for porosity and permeability predic-
tion with the MLP method. The authors, however, 
did not report the porosity and permeability mod-
eling results without the seismic facies, making 
the statement that the high heterogeneity of the 
formation restricts the direct and marked correla-
tion between the mapped seismic facies and petro-
physical properties. The case could be similar for 
the studied formation.

What is surprising, though, is the high rank 
of the KNN model, which is not very popular in 
predicting reservoir properties such as porosity. 
Raheem & Shuker (2021) have used KNN and re-
current neural networks (RNN) with one of the 
long- and short-term memory (LSTM) algorithms 
to predict porosity from seismic attributes. The 
authors, however, showed superior accuracy of 
LSTM over KNN. Wardhana & Pratama (2021) 
used KNN to predict porosity from well-log data. 
They showed that KNN performed with bet-
ter accuracy when compared to artificial neural 
networks (ANN) and support vector regression 
(SVR). Other application of KNN in formation 
evaluation focuses on classification problems and 
rock-typing (e.g., Al-Amri et  al. 2017, Hou et  al. 
2022). The testing set results show that KNN is 
highly efficient and can predict porosity with the 
same accuracy as RF and XGB (Table 1). The high 
score of the KNN model on the testing set also ex-
cludes the possible overfitting issue. 

Although SVM and MLP have a long history in 
various aspects of reservoir characterization stud-
ies (Dramsch 2020, Otchere et  al. 2021b), their 
performance is not satisfactory for the analyzed 
dataset (Table 1). The accuracy of these models 
varies with respect to the applied pre-processing. 
The PCA is frequently used to decrease the redun-
dancy of the seismic attributes before the model-
ing, which is a common issue in seismic charac-
terization studies (Chopra et al. 2018, Jesus et al. 
2019, Carvalho et  al. 2022). The results showed 
that PCA had a  limited effect on improving the 
MLP model but significantly deteriorated the per-
formance of SVM (Table 1). The Yeo–Johnson 
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transformation positively affected the predictive 
power of the SVM model, placing it in the fifth 
position in the overall ranking with the accuracy 
of 72% (Table 1). 

The model stacking was performed with the 
eight model definitions and 14 most promis-
ing candidate members, where two come from 
the KNN model, two from the RF model (one 
for  each model configuration), two arise from 
the XGB model, four from the SVM models (two 
for each model configuration), and four from the 
MLP model definition (two for each model config-
uration). To predict porosity from each candidate 
member, the models were blended and fitted using 
an elastic net model (Hastie et al. 2015, Couch & 
Kuhn 2022). The penalty and model mixture for 
the elastic net model was evaluated based on the 
lowest RMSE (default settings) and set for 0.0001 
and 1, respectively. The penalty parameter helps to 
overcome overfitting by forcing the regression es-
timator to shrink its coefficients toward 0.

Of 14 possible candidate members, the en-
semble retained five with non-zero stacking co-
efficients. These models belong to two KNN, two 
XGB, and one SVM with PCA transformation 
(Fig. 5).

The obtained coefficients create weightings for 
each of the member models in a final model pre-
diction:

( )
( )
( )
( )

( )

  .     0.00046   0.33487   KNN  No 4  

0.13263   KNN  No 9

 0.22525   XGB  No  14

0.31699   XGB  No  2  

+0.00004   SVM PCA  No  12  

ensemble predPhi = − + × +

+ × +

+ × +

+ × +

×

The presence of SVM PCA is surprising, but its 
role in porosity prediction is still marginal, with 
weights of 0.00004. The final ensemble model as-
sessment was evaluated on the testing set. The stack 
model shows an enhanced accuracy over individu-
al models in all model metrics (Table 2). The perfor-
mance of the stacked model is ~1% better than the 
best from the individual models (KNN and XGB). 
Although this may not be impressive, this one ex-
tra percent in the Kaggle competitions may tilt the 
balance and secure victory. In a seismic reservoir 
characterization study, models with the best pre-
dictive accuracy may potentially reduce the uncer-
tainty that is inherently connected with predictions 
over millions of observations between the wells and 
for which there is no labeling data. 

Fig. 5. Model stacking coefficients for selected candidates
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Table 2
Model metrics for the stack model, selected member candi-
dates, and the NN model from commercial software

Model R2 RMSE MAE
.pred (ensemble 
model) 0.890 0.0252 0.0168

KNN (No 9) 0.884 0.0259 0.0171

KNN (No 4) 0.880 0.0263 0.0170

XGB (No 2) 0.876 0.0268 0.0187

XGB (No 14) 0.875 0.0271 0.0174

SVM PCA (No 12) 0.436 0.0579 0.0418

NN (from Petrel) 0.318 0.0628 0.0487

The most important result, however, is a com-
parison between the ensemble model and the 
one obtained from commercial software using 
the neural net  – NN (Fig. 6, Table 2). The predic-
tion accuracy of NN (with no data pre-process-
ing) is extremely low at the level of this obtained 
from MLP with Yeo–Johnson transformation 
(MLP  YJ). Thus the direct application of neu-
ral nets results, in this case, is not recommend-
ed. To date, this drawback has been overcome 
by treating NN results as a secondary variable in 
the co-kriging form of deterministic or stochas-
tic algorithms in which the relationship between 

primary (modeled) and secondary data is ex-
pressed with the Pearson correlation coefficient 
(in this case, equal to 0.69).

The spatial distribution of porosity from the 
model stacking is the last verification step. The 
obtained results should be consistent (or prefera-
bly outperform) with the previous research works 
in the studied area. This proved its validity in the 
processes of field appraisal and dynamic model 
calibration and simulation confirmed in the filed 
production output (Jędrzejowska-Tyczkowska 
2003, Malaga et al. 2006, Papiernik et al. 2009). In 
most cases for the studied area, zones with high 
porosity values represent exploration fields with 
high hydrocarbon production. Figure 7A shows 
that high-porosity zones from the ensemble mod-
el are connected to production wells. A  cross- 
section through the example areas of a carbonate 
platform, barriers, and slope structures revealed 
another distinguishing feature of the studied 
area  – that zones with the best reservoir proper-
ties are located on the western slope of the carbon-
ate platform (Fig. 7B). These sediments are linked 
to the debris facies (Mikołajewski & Wróbel 2005, 
Jaworowski & Mikołajewski 2007). Although the 
derived seismic facies did not capture this fea-
ture, the results from the ensemble model clearly 
showed enhanced porosities in these areas.

Fig. 6. Comparison between Phi modeling results of the ensemble model (A) and NN (Petrel) (B)

A B
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Fig. 7. Graphic presentation of the results of stacking model implementation into the 3D geological model: A) average map 
of porosity distribution predicted from ensemble model; an outlines of confirmed oil and gas accumulations (expressed by 
increased porosity values  – marked with ellipsoidal shapes) are apparent, which are additionally validated by production yield; 
B) cross-section through the carbonate platform with porosity distribution from ensemble model revealing high convergence 
with porosity values interpreted along boreholes; the barrier between oil accumulation (marked with a black ellipse) and gas 
accumulation (marked with a red ellipse) resulting from reduced porosity values is clearly visible

CONCLUSIONS

The study presents an advanced ensemble mod-
eling approach for predicting carbonate reservoir 
porosity from seismic attributes. The approach 
combined complex data pre-processing (data fil-
tration, transformation, feature engineering) and 
tuning strategy with the race ANOVA method to 

create eight efficient models: KNN, RF, RF RT (RT 
with a class variable representing seismic facies), 
XGB, and MLP and SVM with two configurations 
each  – with 5 PCA components, and with variable 
transform using Yeo–Johnson method. The model 
candidates were evaluated based on standard ML 
metrics  – R2, RMSE, and MAE, and the role of 
each model configuration was assessed.

A

B
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The results of the testing set revealed that the 
models with the highest predictive power are 
KNN, XGB, and RF, for which the MAE var-
ies from 0.0173 to 0.0202. These results reflect 
the error of porosity prediction on the level of  
~1.7–2.0%. The accuracy of the RF RT model did 
not improve significantly, with an extra class fea-
ture neglecting the role of seismic facies variable 
from k-means for porosity prediction in the stud-
ied carbonate reservoir. The PCA and Yeo–John-
son transformation significantly impacted MLP 
and SVM models, making the SVM YJ the best of 
the tested MLP and SVM models.

The model stacking was performed with the 
eight model definitions and 14 most prospective 
candidate members, from which five models were 
selected: two KNN, two XGB, and one SVM PCA. 
The latter one had a minor impact on a final en-
semble model accuracy. Although not signif-
icant, the performance of the ensemble mod-
el showed superior accuracy over the best single 
learners, with all metrics (R2 0.890, RMSE 0.0252, 
MAE 0.168). The predicting power of an ensemble 
model best reflects the direct comparison with the 
results obtained with NN from commercial soft-
ware. This comparison showed that the ensem-
ble model is almost three times better than NN  
(R2 0.318, RMSE 0.0628, MAE 0.0487).

The spatial distribution of ensemble porosity 
results consisted of an additional assessment of 
model correctness. The obtained spatial distribu-
tion follows the one observed from the previous 
appraisal and exploration works, where high po-
rosity zones occur in the slopes of the carbonate 
platform. 

Finally, the results showed that the proposed 
advanced ML ensemble approach is promising 
for the better prediction of porosity in heteroge-
neous carbonate reservoirs from multi-seismic at-
tributes.

The study was financed based on the statutory 
work entitled “Hybrydowe techniki uczenia ma-
szynowego (meta-learning) w  prognozowaniu pa-
rametrów petrofizycznych złoża”  – the work of the 
Oil and Gas Institute  – National Research Insti-
tute commissioned by the Ministry of Education 
and Science; order number 0048/SG/2022, archive 
number DK-4100-36/22. 
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APPENDIX 1

Description of the individual seismic attributes used in the study

Abbreviations 
name of 
attribute

Name of attribute Description

Grad_Mag Gradient magnitude The magnitude of the instantaneous gradient computed in three-dimensions of 
the sample neighborhood

Refl_Int Reflection intensity Reflection intensity is the average amplitude over a specified window (default 
9 samples) multiplied by the sample interval

RMS_Amp RMS amplitude RMS Amplitude computes root mean squares on instantaneous trace samples 
over a specified window

Envelope Envelope The total instantaneous energy of the analytic signal (the complex trace), 
independent of phase

Sweetness Sweetness
Sweetness is the implementation of two combined attributes (envelope and 
instantaneous frequency) and is used for the identification of features where 
the overall energy signatures change in the seismic data

Attenuation t* attenuation

The differential loss of high frequencies relative to low frequencies as measured 
above and below the point of interest. t* attenuation is a patented seismic 
attribute for indicating open fractures within the seismic volume based on 
windowed frequency attenuation

Dom_Freq Dominant frequency

An attribute is calculated as the hypotenuse between instantaneous 
frequency and instantaneous bandwidth. This attribute, in combination 
with Instantaneous bandwidth, serves as a supplement to the Instantaneous 
frequency, as the three attributes reveal the time-varying spectral properties of 
seismic data

Inst_Freq Instantaneous 
frequency

An attribute that helps to measure the cyclicity of geological intervals and 
can be helpful in cross-correlation across faults. The time derivative of phase, 
w = d(phase)/dt

Inst_Ph Instantaneous phase

The instantaneous phase is a good indicator of continuities, faults, pinch-outs,  
bed interfaces, sequence boundaries, and regions of on-lap patterns  – 
the argument of the analytic signal, phase = arctg(g/f ). The attribute is 
calculated on a sample-by-sample basis without regard for the waveform

LR Lambda*Rho
An attribute obtained from AVO inversion using moduli and density 
relationships to impedance. Lambda-Lamé parameter of incompressibility; 
Rho-density

DN Bulk density Rock bulk density estimated from simultaneous seismic inversion procedure
Vp_Vs P-wave velocity The velocity of P-wave estimated with simultaneous seismic inversion procedure

Zp P-wave impedance The acoustic impedance of P-wave derived from simultaneous seismic 
inversion

Rel_AI Relative acoustic 
impedance

Relative acoustic impedance is a running sum of regularly sampled amplitude 
values. It is calculated by integrating the seismic trace, passing the result 
through a high-pass Butterworth filter to reduce potentially introduced 
low-frequency noise

Vs S-wave velocity The velocity of S-wave estimated with simultaneous seismic inversion 
procedure

Zs S-wave impedance The acoustic impedance of S-wave derived from simultaneous seismic inversion

MR Mu*Rho An attribute obtained from AVO inversion using moduli and density 
relationships to impedance. Mu-Lamé parameter of rigidity; Rho-density

App_Polar Apparent polarity The polarity of the instantaneous phase calculated at the local amplitude 
extreme

COP Cosine of phase
The cosine of the instantaneous phase, also known as normalized amplitude; 
helps to enhance the definition of structural delineations. Used together with 
instantaneous phase for comparison

Org_Amp Original amplitude The real part of the analytical signal f(t)
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Abbreviations 
name of 
attribute

Name of attribute Description

Trace_AGC Trace AGC (automatic 
gain control)

The trace AGC (iterative) volume attribute automatically scales the 
instantaneous amplitude samples with the local root mean square (RMS) 
amplitude level, computed over a user-specified vertical window, and has 
the option to apply multiple RMS iterations, in order to get more well-behaved 
(smooth) scaling function

Iso_Freq_15 Iso-frequency 
component (15 Hz)

The contribution of individual frequencies (here 15 Hz) to the make-up of 
the input seismic signal. The desired frequency is the isolated frequency 
component to extract from the input seismic volume

Cons_Dip Consistent dip Accurate volumetric dip estimation
Variance Variance The estimation of local variance in the signal

Dip_Dev Dip deviation Tracking of the rapid changes in the dip orientation field. The difference 
between the dip trend and the instantaneous dip

Iso_Freq_30 Iso-frequency 
component (30 Hz)

The contribution of individual frequencies (here 30 Hz) to the make-up of 
the input seismic signal. The desired frequency is the isolated frequency 
component to extract from the input seismic volume

Chaos Chaos The chaotic signal pattern contained within seismic data is a measure of 
the lack of organization in the dip and azimuth estimation method

Loc_Flat Local flatness The variance of the orientation field to identify the uniformity of the signal 
within the orientation estimation range

Vp_Vs Vp/Vs P-wave and S-wave velocity ratio
Phi Porosity Porosity derived from well-log interpretation

Iso_Freq_45 Iso-frequency 
component (45 Hz)

The contribution of individual frequencies (here 45 Hz) to the make-up of 
the input seismic signal. The desired frequency is the isolated frequency 
component to extract from the input seismic volume
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