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1. Introduction

The observation of the characteristic values describing the transformation pro-
cesses of the earth’s crust, as well as atmospheric and natural phenomena, often
requires extensive analysis and modelling. This analysis is most often based on
the mutual functional relations which result from the research methods used in
geodesy. The relations between the characteristic parameters of the process or phe-
nomenon being considered are usually non-linear, which means that their model-
ling first requires the transformation of functional relations into linear form. The
easiest method for linearizing complex functional relations is by expanding them
into a Taylor series and then accounting for just the first few partial derivatives.

If we have a nonlinear functional relation which can be written in the follow-
ing symbolic form:

f b x b x b x Bn n n( , ,... , )1 1 2 2 � (1)

then the linear expression of this function can be written as:
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1 1 2 2dX B f b X b X b Xn n n( , ,... , ) (2)

The values of the partial derivatives calculated for the approximate values of
the parameters (unknowns), i.e. for ( , ,... , )X X Xn1 2 , are usually symbolized as the
coefficients ai , and the right side of this equation, which gives the value of the
functional relation for the approximate parameters, is a free term and is symbol-
ized as li .
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That is:
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and l B f b X b X b Xn n�  ( , ,... , )1 1 2 2 .

Using the symbols described above, every set of observational equations
with m unknowns dX xi i� , with set variable coefficients (aij ) and free terms (lj )
can be written in the following analytical form:
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If we define the following matrices:
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– matrix of the variable coefficients with the dimen-
sions (n × n),
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– single column matrix of the estimated unknowns,
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...
– single column matrix of the free terms,

then the set of equations (3) can be written in the following matrix form:

A X L� � (4)

If the system (1) has more equations than unknowns, i.e. (n m� ), then A is
a vertical rectangular matrix and the set of equations under consideration is an
overdetermined system of equations.

If the number of equations is less than the number of unknowns, i.e. (n m� ),
then A is a horizontal rectangular matrix and the set of equations is an
underdetermined system of equations.
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Both overdetermined and underdetermined systems of equations do not pos-
sess uniquely defined values of the unknowns because they are internally incon-
sistent. Therefore, solving such systems requires the formulation of additional re-
strictions. These restrictions can be placed on either the modelled deviations (resi-
dues) ä �  �L A X or on the values of the estimated parameters (X).

Below we will only consider algorithms for solving overdetermined systems
of equations based on Gauss–Markov models.

2. Algorithm for Solving Overdetermined Systems of Equations

Let us suppose that the system of equations (4) has more equations than un-
knowns, i.e. ( )n m� . A Gauss-Markov model will then be used to estimate the pa-
rameters X. This model imposes an additional restriction, in that the sum of the
squares of the model deviations ä �  �L A X should have the least possible value:

F T�  �  � �( ) ( ) minL A X L A X (5)

A necessary condition for the existence of a minimum of function (5) is ob-
tained by setting the first derivative of the matrix expression equal to zero:

�
�

F T T T T

X
A AX A L A A X A L�  � � � �2 2 0 ( ) (6)

The system of equations (6) contains the square symmetrical matrix ( )A AT

multiplied by the unknowns X and is called a normal (Gaussian) system of equa-
tions. If the matrix ( )A AT is nonsingular, i.e. det( )A AT � 0, then the solution to the
system of equations (4) can be written as:

� ( )X A A A L A L� � � � �T T1 (7)

The matrix A� defined by equation (7) is called the pseudoinverse of ma-
trix A, and the calculated estimations of the unknowns �X fulfil the restriction (5)
and give the most probable values of the parameters sought for the given process
or phenomenon.

In many geophysical problems, we encounter systems of equations in which
det( )A AT �0, which means that these systems contain mutually dependent equa-
tions. In this case, matrix A has a rank defect which is defined as the difference
between the smaller dimension of matrix A and the rank of the matrix, i.e.
d m R�  [ ]A . The value of the defect signifies that matrix A contains “d” columns
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whose elements are a linear combination of the elements of other columns. In this
case, the matrix ( )A AT 1 is undetermined; therefore additional restrictions, which
use the generalized inverse of the matrix ( )A AT , must be considered. There are
many types of restrictions of the estimated parameters and, consequently, many
ways to calculate the generalized inverse of the matrix ( )A AT , which we will
call N, i.e. ( )A A NT � from here on.

For a unique selection of a generalized inverse of a symmetrical square ma-
trix M, i.e. for a unique solution to an overdetermined system of equations with
a defect, Moore and Penrose defined the following restrictions:
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The geometrical interpretation of these restrictions is that they ensure the
minimization of the length of the estimated vector of unknowns, i.e. � � minX XT � .

Following the formula for the general inverse, the solution of the system of
equations, as per relation (7), assumes the following form:

� ( )X N NN A L A L� � � � �T (9)

It follows from formula (9) that the pseudoinverse of a rank deficient ma-
trix A is expressed by the following equation:

A N NN A� � / ( ) T (10)

Equation (10) shows that the basis for solving overdetermined systems of
equations in which matrix A is deficient with defect d m R�  [ ]A is the generalized
inverse of the matrix ( )N N� , i.e. ( )N N�  .

To determine A� and, consequently, to calculate ( )N N�  , we propose the fol-
lowing efficient algorithm. First, the matrix N A A� ( )T with dimensions ( )m m� and
defect d must be divided into four submatrices (Fig. 1):

Nn – nonsingular matrix with dimensions,
Nd – horizontal rectangular matrix with dimensions,
N

d

T
– vertical rectangular matrix with dimensions,

N0 – square matrix with dimensions the.

The vector of unknowns ( � )X estimated with equation (9) fulfils condition (5)
and simultaneously leads to minimizing the length of this vector, i.e. � �X XT .
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It results from the above descriptions of the submatrices that the lines of divi-
sion of the rows and columns of matrix N are determined using the defect of ma-
trix A or ( )A AT .

Based on the submatrices defined above, and using matrix transformations,
the following formula for calculating the pseudoinverse of matrix A was derived:

A
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N N N N A� �
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d
n n d

T
d n

T( ) 1 (11)

where matrix An is the submatrix composed of the ( )n d first columns of ma-
trix A, as illustrated in figure 1.

The estimators of the parameters sought for the rank deficient systems of
equations can now be expressed with the formula:
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In order to evaluate the accuracy of observation result modelling as per equa-
tion (3), it is necessary to estimate the variance calculated from random residues,
which is expressed as:
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(13)

After performing the variance analysis in equation (12), we obtain a formula
for the covariance matrix of the estimated vector of unknowns:

Cov[ � ] � ( )X A A� � ��0
2 T (14)
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Fig. 1. Lines of division of the rows and columns of matrix N are determined using the
defect of matrix A or ( )A AT



The evaluation of observation result modelling using equation (3) can be ob-
tained using the indicator �, which is defined as the ratio of the part of the vari-
ance explained by the model to the total variance of the observed parameters, i.e.:
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where �l is the average value of the free term in the system being observed (3).

3. Numerical Example of the Modelling
of Survey Measurement Results

To illustrate the algorithm described above and the use of the generalized in-
verse of the normal equations matrix, the results of survey measurements of the
elevation of a water table at four ground points were analysed and modelled.
A diagram of the locations of the ground points measured and the results are pre-
sented in figure 2. Point A is a national survey benchmark, with a determined ele-
vation within the assumed reference system. Points 1 and 4 are located on one
side of the river and points 2 and 3 on the other side. The distance between the
measurement points ranges from 450 to 650 meters.

Following equation (1) the relations between the observed survey lines and
the elevations of the measurement points assume the form:

Z Z hK P � (16)

where ZK represents the elevation of the end ZP point of a given survey line and
represents the elevation of the initial point of that same line. After expansion into
a Taylor series, these relations (despite always being linear in this particular case,
owing to the nature of the problem) assume the following form:

dZ dZ h Z Z lK P K P h �   �0 0 (17)

The differential form of the observation equations (17) always leads to small
values for the free terms, which is very beneficial for ease of calculation.

Based on the observed values, the approximate elevations of the measured
points were calculated:
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The observation equations for the five survey lines are expressed in the form:

dZ dZ

dZ dZ
2 1

3 2
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0 575 1

 �    �

 � 

. ( . . )
. ( 20 405 119 830 0

1135 121540 120 405 04 3

. . )
. ( . . )

 �

 �   �dZ dZ

dZ dZ

dZ dZ
1 4

3 1

0 245 121250 121540 0045
09

 �    �

 � 

. ( . . ) .

. 10 120 405 121250 0065  � ( . . ) .

(19)

Matrix A will be composed of 4 columns corresponding to dZ1, dZ2 , dZ3 , dZ4

and 5 rows corresponding to the 5 observation equations, i.e.:

A �











�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
1 0 1 0

.

L and X will be single column matrices, with the following elements:
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Fig. 2. A diagram of the locations of the ground points measured and the results



The coefficient matrix of the system of normal (Gauss) equations following
formula (6) will be:

( )A A NT � �
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3 1 1 1
1 2 1 0
1 1 3 1
1 0 1 2

(20)

The determinant of this matrix is equal to zero, i.e. det( )A AT �0, from which it
follows that the matrix is rank deficient with defect d m R T�  �  �[ ]A A 3 2 1, which
means that this matrix does not have a common inverse. Following the scheme for
dividing the matrix presented in Figure 1 for the matrix N with d �1, one distin-
guishes the matrices Nn and Nd and then calculates the generalized inverse ma-
trix NN, which consequently leads to the pseudoinverse of matrix A, as defined
by equation (11).

After determining the matrices:
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After calculating equation (12), we obtain the estimated increments of the ele-
vations of the points to their estimated values:
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The modelled elevations of the measured points, which represent the most
probable values, are the sums of the approximated elevations and the estimated
increments of these elevations:
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The random deviations of the estimated model of measurement point eleva-
tions will be calculated using the formula:
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Thus, the residue variance is:
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The standard deviation from the random residues will be approximately
� �0027. m. Following equation (14) the covariance matrix for the modelled eleva-
tions of the measurement points is:
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Based on the diagonal terms of the covariance matrix (23), we can calculate
the standard deviations of the modelled values of the measured points:
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This analysis and these calculations allow us to formulate the final conclusion
that the modelled elevations of the measured points have been determined with
an error of between 0.012 m and 0.015 m.

The credibility of the model of observation results calculated following equa-
tion (3) is given by the indicator �, the value of which in this case is:

� � 
 


�  � 

�
1 1

0000705
0006170

1
2

( � ) ( � )

( �)

.

.
L AX L AXT

il l
011 089. .� .

This shows that the reconciliation of the observation results provided by this
model of observation equations yields a credibility of 89%.
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