baner - AGH
baner - BG
C   Z   A   S   O   P   I   S   M   A        E   L   E   K   T   R   O   N   I   C   Z   N   E        A   G   H


Decomposition techniques for full-waveform airborne laser scanning data.

Małgorzata Słota

Vol. 8, no. 1 (2014), s. 61-74

Full text: pdfPDF

Abstract:

This article provides an overview of full-waveform airborne laser scanning data processing methods. Since 2004, when the first commercial small-footprint full-waveform LiDAR system was introduced, a vast amount of studies have been carried out on the potential of utilizing full-waveform data in various fields such as forestry, archaeology, urban areas modelling and point cloud classification, resulting in a range of approaches to the processing of full-waveform data. This research is an attempt to systematize the knowledge in this field. The first part of this paper presents a brief description of the full-waveform system. Then, the typical methods of data processing are described, starting from simple peak detection methods, followed by methods based on wave modelling using basic functions, and going on to an analysis focused on the correlation between an emitted and backscattered signal.

W artykule zamieszczono przegląd podstawowych, najbardziej znanych metod przetwarzania pełnych profili energii zarejestrowanych przez systemy lidarowe. W klasycznych systemach lidarowych rejestrowana jest trójwymiarowa chmura punktów - cały proces obliczeniowy związany z wyznaczaniem odległości między mierzonym punktem a skanerem odbywa się w czasie rzeczywistym, z tego względu użytkownik nie dysponuje informacjami o wykorzystywanych metodach detekcji echa ani o dokładności wyznaczenia chmury punktów. Od 2004 roku na rynku dostępne są skanery przystosowane do rejestracji pełnych profili energii (tzn. ilości odbitej energii laserowej w czasie), które umożliwiają użytkownikowi implementację własnych, precyzyjnych metod ekstrakcji chmury punktów. W pierwszym rozdziale przybliżona została technika pozyskiwania danych typu full-waveform. Następnie omówiono proste algorytmy detekcji echa. W kolejnym rozdziale opisana została metoda dekompozycji sygnału oraz zamieszczony został wykaz najczęściej stosowanych funkcji bazowych wraz z charakterystyką i wzorami. Na końcu zaprezentowano metody przetwarzania sygnału bazujące na zależnościach korelacyjnych. Artykuł stanowi zwięzłą syntezę prowadzonych na całym świecie badań nad danymi full-waveform, zawiera informacje niezbędne dla osób, zajmujących się przetwarzaniem profili energii z systemów lidarowych.

DOI: dx.doi.org/10.7494/geom.2014.8.1.61