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An Evaluation of  
Some Machine Learning Algorithms  
as Tools for Predicting Soil Characteristics  
Based on Their Spectral Response in the Vis ‑NIR Range

Abstract: Using the Land Use and Coverage Frame Survey (LUCAS) database of Euro‑
pean soil surface layer properties, statistical and machine learning predictive 
models for several key soil characteristics (clay content, pH in CaCl2, concentra‑
tion of organic carbon, calcium carbonates and nitrogen and exchange cations 
capacity) were compared on the basis of processing their spectral responses 
in the visible (Vis) and near ‑infrared (NIR) parts. Standard methods of rela‑
tionship modeling were used: stepwise regression, partial least squares regres‑
sion and linear regression with input data obtained from principal components 
analysis. Using the inputs extracted by statistical algorithms various machine 
learning algorithms were used in the modeling. The usefulness of the models 
was analyzed by comparison with the values of the determination coefficients, 
the root mean square error and the distribution of residual values. The mean 
square error of estimation in the cross ‑validation procedure for the stack mod‑
el using the multilayer perceptron and the distributed random forest were as 
follows: for clay content – ca. 4.5%; for pH – ca. 0.35; for SOC – ca. 7.5 g/kg 
(0.75% by weight); for CaCO3 content – ca. 19 g/kg; for N content – ca. 0.50 g/kg; 
and for CEC – ca. 3.5 cmol(+)/kg.
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1. Introduction

The need for large amounts of soil data, when confronted with high costs 
and time ‑consuming implementations, justifies the search for alternative testing or 
survey methods: namely, aerial or satellite level spectrum analyses, and laboratory 
spectrum analysis [1]. Spectral response, as a source of information on the chemical 
and physical properties of soils, has been studied since the 1970s [2–5]. Progress 
in this field has been driven by development of multispectral registration technolo‑
gy for the Earth’s surface from the satellite level, which requires improving and re‑
fining methods of interpretation of spectral responses to extract useful information 
on the state of Earth surface. In parallel, another branch of research using the spec‑
tral response of soil samples determined under laboratory conditions is rapidly 
developing, whose aim is to indirectly determine their characteristics obtained by 
standard, referencing methods requiring complex, expensive and time ‑consuming 
preparation. A fair number of research findings have been published demonstrating 
the usefulness of this both spectral response approach for modeling soil characteris‑
tics or indicating significant limitations to it [6].

There is a relatively extensive body of literature addressing the use of soil spec‑
tral response in the visible and near infrared range (Vis ‑NIR) for predicting vari‑
ous soil properties: clay fraction content, organic carbon content, reaction, macro ‑ 
and micro ‑elements contents, and cation exchange capacity (CEC), among others [6]. 
The conclusions are varied, being generally positive with respect to farm scale tri‑
als [7], yet generally more cautious with respect to areas with more diverse soil for‑
mation conditions. These results, however, are very difficult to compare, since those 
studies used differing ranges of recorded spectral data, sampling steps, and number 
of samples. In some cases, the use of models based on principal component analy‑
sis (PCA) and partial least squares regression (PLSR) gives satisfactory results for 
the prediction of soil characteristics; in others, a very complex and computationally 
demanding procedure of transformation and selection of variables can provide very 
good results as well [8].

From numerous research works it is reasonable to conclude that when tasked 
with interpreting the spectral response in the NIR range for the indirect deter‑
mination of soil variables, various ways of data preprocessing, extraction of use‑
ful information from the extensive measurement data, and modeling algorithms 
of the relationships sought are attempted. The widest range in data transformation 
and selection is characterized by the PARACUDA II engine [9]. Second place should 
go to the PLSR algorithm, which could also be used (next to PCA) to select input 
data from other regression models (e.g., M5, Cubist, MARSpline, random trees, ran‑
dom forests, and other statistical and machine learning methods). An intermediate 
solution between the two potential approaches would make full use of soil spec‑
tral response vectors, as allowed by deep learning models, mainly through convo‑
lutional networks. The Convolutional Neural Network (CNN) represents a model 
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of deep machine learning [10]. Its main application is image analysis, but with some 
modifications it can be used for regression tasks, also done with 1D inputs. Using 
CNN has several advantages. First, it does not require selecting spectral data, be‑
cause the model inputs can be the whole vector of absorbance or reflectance (or some 
transformation of them), without the need to extract information by means of an 
additional algorithm (i.e., PCA, PLSR, genetic algorithm). Second, CNN allows for 
the simultaneous prediction of several variables; this possibility also applies to other 
neural models in regression applications, such as multilayer perceptron – MLP or 
radial basis function – RBF, similarly to PLSR). Third, fragments of the data vector 
that significantly affect the values of the modeled traits are identified in the course 
of learning. Fourth, the principle underpinning CNNs is based on detecting, in im‑
ages (CNNs are currently the basic tool for image analysis) or in data vectors, pat‑
terns differentiating objects (classification) or data values associated with vectors 
(regression). Thus, the CNN architecture, apart from the elementary arithmetic lim‑
itations of the size of processing layers, is very flexible. Yet this significantly increas‑
es uncertainty in the choice of its processing parameters. The CNN models used 
in practice are generally large in terms of their number of parameters, optimiza‑
tion time, and the risk of overfitting (despite applying techniques to reduce these 
trends). Understandably, they require testing different architectures, optimization 
algorithms, and sample sizes. An important feature of modeling is the uncertainty as 
to the construction of an algorithm suitable for solving the prediction problem. This 
particularly applies to machine learning (ML) algorithms, which are characterized 
by considerable freedom in the selection of the number of optimized parameters. 
Equally important may be the problem of multivariate data acquisition, represent‑
ed in the case of the spectral response by large sequences recorded at points with 
a specific reflectance wavelength. Under such conditions, an experimental selection 
of the model architecture and the method of extraction from data useful in modeling 
are inevitable.

The aim of this current work was to experimentally assess the acquisition 
of a large set of spectral data obtained from laboratory testing and the applica‑
tion of different algorithms for predicting soil characteristics based on spectral re‑
sponses of soil samples, as collected by the LUCAS project, which includes the test‑
ing of topsoil surface layers in more than 20 European Union (EU) countries [11, 12].

2. Materials and Methods

The LUCAS database, made publicly available for research purposes by the Eu‑
ropean Soil Data Center, contains the results of more than 20,000 laboratory tests 
of soil surface layer samples from 23 EU countries [11]. In addition to data identi‑
fying sampling location, land use, soil type and topography, this database includes 
the values of 12 soil characterization variables (determined by methods considered 
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as standard) and results of reflected spectrum recordings in the 400–2,500 nm range, 
in 0.5‑nm steps. The data contained in the database were obtained in the same labo‑
ratory, according to uniform methodology. Hence, we may presume the factors dif‑
ferentiating the properties of these samples arise mainly from the spatial variability 
of soils.

The 17,216 mineral soil sample records collected in the LUCAS database were di‑
vided, without any soil ‑use differentiation, at random, into a training (teaching) part 
for the optimization of prediction models of 12,898 sites. For the model evaluation 
of independent data, it used 4,318 data sites. This data included the results of the de‑
termination of the surface properties of mineral soils’ surface layer. For the statis‑
tical models, the whole training set was used, but for machine learning models, 
depending on the applied learning algorithm, an additional test set (15% of training 
set data) were separated from the training set, in order to apply the early stopping 
principle. In some of the experiments, the k ‑folds validation was used (indicated 
in the text accordingly).

Soil data included, inter alia, the following characteristics: clay, silt and sand 
content, reaction (pH in CaCl2 and pH in H2O), organic carbon content (SOC), car‑
bonate content (CaCO3), N, P and K content and cation exchange capacity – CEC [11]. 
Considering these traits individually, their values had statistical distributions that 
differed from normal distributions (Tab. 1, Fig. 1): they are characterized by positive 
skewness – except for slightly negative skewness for pH – and by extremely high po‑
tassium and CaCO3 contents, with a strong data concentration at the distributions’ 
mean and a relatively large range of data lying distant from its median, especially 
for carbonates, phosphorus, and potassium contents. The soil properties listed in Ta‑
ble 1 were those used for modeling based on their spectral response; hereon called 
“soil variables”.

Table 1. Statistics for the distribution of training and validation set variables

Properties
Training set Validation set

Mean SD Min Max Me IQR Mean SD Min Max Me IQR

Clay [%] 18.8 12.9 0 79.0 17.0 18.0 18.9 13.0 0 77.0 17.0 19.0

pH (in CaCl2) 5.74 1.35 2.6 9.2 5.8 2.5 5.77 1.36 2.7 8.3 5.9 2.5

SOC [g/kg] 25.2 19.2 0 165.7 18.9 20.0 25.4 19.6 0 160.3 18.8 19.6

CaCO3 [g/kg] 55.0 127.8 0 944 1.0 18.0 58.8 136.2 0 909.0 1.0 20.0

N [g/kg] 1.95 1.22 0 13.6 1.6 1.3 1.97 1.26 0 10.0 1.6 1.2

P [mg/kg] 29.2 29.9 0 532.8 22.1 31.6 30.0 31.0 0 402.7 22.1 3.5

K [mg/kg] 191.0 226.0 0 7342.0 130.0 173.3 190.0 219.0 0 6861.0 134.0 173.0

CEC [cmol/kg] 13.6 9.7 0 137.0 11.3 11.9 13.7 9.7 0 80.1 11.4 11.5

SD – standard deviation, Min – minimum, Max – maximum, Me – median, IQR – interquartile range. 
Training crop size 12,898 cases, validation crop size 4,318 cases.
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Fig. 1. Boxplots of soil variables. Rectangles indicate the interquartile range (IQR),  
and red points indicate the elements of the variable set of values distant from the first  

or third quartile limit (by more than 1.5 × IQR)
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Figure 1 shows boxplots of the eight selected soil variables. It indicates, in gener‑
al, mostly asymmetrical distributions in the data for each. According to the usual in‑
terpretation, these boxplots indicate a considerable presence of outlier observations 
in the data. They are represented in the diagrams by points marked with red crosses, 
located at a distance of more than 1.5 interquartile distance (IQR), below the lower 
or above the upper quartile.

Fig. 2. Absorbance and reflectance curves of the validation set extracted from LUCAS, 
and transformed curves of the same data
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According to usual practice, this would entail their exclusion from modeling; 
however, this would require the suction: samples with a clay fraction exceeding 53%, 
a silt and sand fraction content and a distribution of both pH‑values would be ful‑
ly within the acceptable variation, whereas samples with an SOC content greater 
than 62 g/kg (6.2% by weight), as well as samples with carbonate content great‑
er than 45 g/kg (4.5% by weight), 4.35 g/kg N and CEC greater than 36 cmol(+)/kg, 
would be discarded. Presumably the presence of outliers in the modeled variables 
may come from measurement errors not excluded by chance, or represent the actual 
data distribution. Due to the diligence of data acquisition [11], it can be assumed that 
this soil data correctly reflects the distribution of each soil variable, while the remov‑
al of the indicated data would distort the actual picture of soil conditions’ variation. 
Doing the latter would run against the aim of the experiment, which was to assess 
the possibility of obtaining a universal prediction model, which may be character‑
ized by a specific, even significant, prediction error for the soil variables.

In the modeling tests, in addition to the spectral absorbance data of the sam‑
ples in the range 500–2500 nm (matrix of absorbance of soil samples marked with 
an X symbol in this paper), pre ‑processed data were used to adapt them to the for‑
mat applied in the spectral response analysis (refer to [6]): that is, first absorbance 
derivative (matrix dX), second absorbance derivative (matrix d2X), sample reflec‑
tance (matrix RefX), first absorbance derivative after Savitzky–Golay filtering (ma‑
trix dsgolayX, framelength of 11, order 4) and continuum removal [13] reflectance 
(matrix CRX). Transformations, based on absorbance values provided by ESDAC, 
were performed in the MATLAB environment [14]. Figure 2 shows the transformed 
spectral data vectors of the validation set extracted from LUCAS.

In testing models for their predictions of soil sample characteristics on the basis 
of spectral response in the Vis ‑NIR range, experiments were carried out using statis‑
tical algorithms, machine learning, and their combinations, as follows:

1. Linear and MLP models with inputs obtained by stepwise regression. In‑
put variables of the model were JX matrix, horizontal concatency matrices X, 
dX, d2X, RefX, ds ‑golayX, and CRX (a total of 23,996 columns). The variables 
modeled were clay fraction content (Clay), pH (pH in CaCo3), SOC con‑
tent (SOC), CaCO3 content  (CaCO3), N, P, K contents (respectively: N, P, K), 
and cation exchange capacity (CEC). Subsequently, separate models were 
developed by stepwise regression method for individual soil variables (for‑
ward regression, p ‑enter = 0.05, p ‑remove = 0.10). In the second stage, the vari‑
ables extracted through stepwise regression were used as inputs in the ma‑
chine learning models (i.e., individual MLP models for soil variables). The 
calculations were performed in the MATLAB [14] environment.

2. Linear and MLP models with inputs obtained by PLS. The input to 
the eight PLSR models was the JX matrix (similarly as in the stepwise regres‑
sion). The outputs were soil variables: Clay, pH in CaCO3, SOC, CaCO3, N, 
P, K, and CEC. The accepted number of components of the PLSR regression 
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model was 150. This value is considered excessive by convention but owing 
to the input vector lengths, and to assess the maximum value of the determi‑
nation coefficient, this solution was adopted here. Subsequently, MLP mod‑
els were developed with PLSR components as inputs and soil variables as 
outputs. The calculations were performed in the MATLAB [14] environment.

3. Linear and MLP models with inputs of PCA components. The first 150 
PCA components extracted from the JX data vector were used to develop 
linear regression models for the eight soil variables. The same components 
were then used as input vectors of MLP models (number of hidden units 
in the samples was 2, 4, 10, 20) for each soil variable. The calculations were 
performed in the MATLAB [14] environment.

4. Linear and MLP models for clustered data. Using the Kohonen SOM clus‑
tering algorithm [15], the elements of the JX matrix were divided into nine 
homogeneous groups. The algorithm groups multidimensional variables, by 
using the criterion of similarity of their vectors. For individual clusters (i.e., 
homogeneous groups) and modeled variables (Clay, pH, SOC, CaCO3, N, P, 
K, CEC.), separate machine learning models (MLP) were developed, whose 
inputs were components extracted through stepwise regression. The calcu‑
lations were performed in the MATLAB [14] environment.

5. Cubist regression models with PLSR components as inputs. This includ‑
ed the following data processing steps: (1) for some soil variables (Clay, 
pH in CaCl2, SOC, CaCO3, N, CEC) and spectral data (X, dX, d2X, RefX, ds‑
‑golayX, CRX), 25 components of the partial least squares regression (6 × 25 
component vectors per soil variable) were calculated); (2) the vectors from 
the previous step, for each soil variable separately, were combined to form 
an input vector of 150 input components; and (3) separate regression models 
were developed for the soil variables using the Cubist algorithm [16] imple‑
mented in the R statistical platform [17].

6. Stacking regression: 0‑level data – PLSR components of the spectral data 
matrices, 0‑level models – MLP models, 1‑level data – horizontal concat‑
enation of MLP models prediction results, 1‑level models – various ma‑
chine learning algorithms. This approach [18, 19], was obtained in four 
steps. (1) For selected soil features (Clay, pH in CaCl2, SOC, CaCO3, N, CEC) 
and spectral data (X, dX, d2X, RefX, ds ‑golayX, CRX), 25 components 
of the least squares partial regression were calculated (25 components for 
each data matrix and soil variable, 0‑level data). (2) For each of the matri‑
ces of the PLSR components created in step one, three MLPs having 5, 10, 
and 20 units in the hidden layer per soil variable were created (18 MLPs 
of the models in total per soil variable, composing a collection of 0‑lev‑
el models). (3) The horizontal concativity of 0‑level prediction models 
in the matrix of predictions (108 estimates = 18 × 6 soil variable), were 108 el‑
ementary 1‑level data, consisting of independent estimates of soil variables. 
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(4) Using a selection algorithm, called ‘Boruta’ [20], for variables relevant to 
variable prediction, were selected as inputs; specifically, the vector of com‑
bined predictions created input variables of the below machine learning 
models served as a 1‑level model in the stacking regression, based on indica‑
tion vectors of 108 weak regression algorithms (corresponding to the 0‑lev‑
el of the stacking model). The following algorithms, as 1‑level model were 
used: (5a) variants of MLP models, with 3, 6, 7 and 10 units in their hidden 
layer, for which the model with the smallest RMSE values for test data was 
selected; (5b) on the basis of the same input variables, individual models 
for soil variables were developed according to Quinlan’s M5 decision tree 
algorithm [16], by implementing M5P of the WEKA [21] calculation pack‑
age; (5c) the M5 algorithm implementation named Cubist was used [17, 22]; 
(5d) decision module Gradient Boosting Machine (GBM) random tree algo‑
rithm, run in the software platform H2O [23]; (5e) the Distributed Random 
Forest (DRF) decision module [23, 24], also implemented in H2O platform. 
The Cubist and M5P packages are an implementation of Quinlan’s M5 al‑
gorithm combines a conventional decision tree with the possibility of lin‑
ear regression functions at the nodes. Data assigned to the nodes of a ran‑
dom tree are used to build a linear model instead of averaging [16]. GBM 
is a machine learning algorithm in which a set (random forest) of multiple 
weak regression (or classification) models is used to iteratively optimize 
the prediction. The algorithm is iterative incrementing the regression tree 
architecture taking into account the value of the residuals from the previous 
state of the model [25]. DRF is a machine learning algorithm that iteratively 
optimizes a random forest structure by generating trees that use data from 
random subsets of training data [24].

7. Convolutional Neural Network (CNN) with a 1D input and a regression 
output consisting of six units corresponding to the eight soil variables ex‑
amined (clay, pH in CaCl2, SOC, CaCO3, N, CEC). The CNN network archi‑
tecture was used with a 1D input in the Keras environment (implemented 
in the R Studio as well as in Anaconda–Python language environment), with 
a TensorFlow library. Reflectance vectors and SNV‑transformed absorbance 
vectors [13] ere used as inputs to the model. The CNN architecture consisted 
of four convolution 1D layers with a 50–75‑unit wide filter (in first convolu‑
tional layer), and 20‑units filters (subsequent layers), with, respectively 32, 64 
128 and 256 of filters. The data from the convolution layers were then trans‑
ferred to the MaxPooling layers, while the model output included the layers 
“flatten” (transformation of data matrix into vectors), “dropout” (removal 
of small ‑scale connections), and two “fully connected” layers, which are 
equivalent to an MLP network with an output of six linear units. For the pro‑
cessing layers (other than the output per se) the ReLU transfer function was 
used. When not able to determine, a priori, the appropriate architecture 
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of the CNN network, many attempts were made regarding the size of evo‑
lutionary filters, their number, as well as the size of fully ‑connected lay‑
ers. Three optimization algorithms were used: Adam, Adadelta, RMSprop, 
in addition to the size of the “batch” (batch) data and number of optimiza‑
tion cycles [26–29].

The following statistics were used to evaluate the data distributions and predic‑
tion results obtained:

 – determination coefficient R2 = 1 – SSR/SST, where SSR is the sum of squares 
of the model’s residuals, SST is the sum of squares of deviations of the mod‑
eled variable from the average;

 – root mean square error: RMSE SSR / n= , where n is number of observations;
 – interquartile range: IQR = Q3 – Q1, where Q1 and Q3, respectively: first 

and third quartiles of distribution;
 – lower quartile, median and upper quartile residue: RQ‑0.25, RQ‑0.5, RQ‑0.75;
 – interquartile range of the distribution of the residue: RIQR = (RQ‑0.75) − (RQ‑0.25);
 – RPIQ (Ratio of Performance to InterQuartile distance), RPIQ = Q3 – Q1/RMSE;
 – RPD (Residual Prediction Deviation), RPD = SD/RMSE, where SD is the stan‑

dard deviation.

3. Results

In the scientific literature on the use of NIR in soil research, the most fre‑
quently modelled feature is the organic carbon content (SOC). It can be assumed 
that the monotonic dependence of the spectral response and the feature identifies 
the spectrum range best for quantifying the feature value.

The Figure 3 graphs show the curves of Spearman’s correlation coefficients val‑
ues (rho) for the transformed absorbance vectors and organic carbon content (SOC) 
in the soil samples. (Note that the curves relate to the SOC variable and are only 
relevant for this relationship.) From their analysis, the following conclusions may be 
drawn: (1) For the range of SOC concentrations, it is not possible to distinguish that 
part of the spectrum where the spectral response would allow an error ‑free estima‑
tion of the SOC content, on this basis; hence, it can be assumed that the linear model 
may show a lower usefulness in this range. (2) Both absorbance and reflectance are 
relatively weak predicators of SOC: a flat course of their curves ρ (curves are mu‑
tually symmetrical with respect to rho = 0) suggests mainly the role of the ordinates 
of reflected or absorbed signals, as an indicator of SOC concentration. (3) Absor‑
bance derivatives, filtered and unfiltered, and the removal of the continuum, jointly 
indicate the presence of spectrum fragments, for which the influence of SOC con‑
centration – or factors correlated with it – upon the growth of reflected or absorbed 
signals is conveyed. (4) The curves’ form may indicate the need for the simultaneous 
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use of different transformations of absorbance and reflectance vectors as input in‑
formation for soil variable prediction models. Given the size of the input vectors, 
it was necessary to extract the most useful information, best achieved by statistical 
algorithms: stepwise regression, partial least squares regression, and of principal 
components analysis.

Fig. 3. Curves of Spearman correlation coefficient values (rho)  
between the concentrations of SOC in the samples  

and the six transformed absorbance values of the soil samples



74 S. Gruszczyński

3.1. Linear and MLP Models  
with Inputs Obtained by Stepwise Regression,  
PLSR and PCA (JX Datamatrix)

Table 2 contains the statistics for all seven models of the eight soil variables 
whose input vector was the JX vector of combined data. The step regression model 
especially the comparison of RMSE errors from training and validation data, indi‑
cates the differentiation among models. Because differences in empirical distribu‑
tion parameters (i.e., mean and standard deviation) of the training and validation 
data are very similar, we should presume they are differentiated by distributions 
in the spectral response as well as random interactions of other soil elements not 
included in the models. It should be noted that the step regression algorithm ex‑
tracted from almost 24,000 variables (combined vectors of transformed reflectance 
values) several hundred (from 344 to 558) variables that significantly impacted 
the prediction of selected properties. Yet the evaluation of regression models varied. 
The error of clay fraction content estimation, both for the training and validation 
sets (4.8% and 5.7%, respectively), may be deemed acceptable, leading to a possible 
texture classification error of no more than one group.

Table 2. Statistics of prediction models for soil variables based on the JX vector

Model Statistic Clay pH in CaCl2 SOC CaCO3 N P K CEC

StepReg (T)
Ncomp 557 524 469 436 548 344 558 504

R2 0.87 0.93 0.80 0.95 0.81 0.46 0.67 0.84
RMSE 4.81 0.36 8.69 29.32 0.54 22.21 132.78 3.99

StepReg (V)
R2 0.81 0.90 0.73 0.94 0.73 0.34 0.34 0.80

RMSE 5.65 0.41 10.21 33.69 0.65 25.19 177.58 4.32
RPD 2.30 3.30 1.91 4.04 1.93 1.22 1.23 2.24

MLP (SR‑V)
Hidden 3 3 2 2 3 2 3 3

R2 0.83 0.94 0.74 0.96 0.78 0.38 0.45 0.82
RMSE 5.29 0.34 9.99 27.87 0.60 24.45 163.38 4.16

PLSR (V)
R2 0.82 0.91 0.75 0.94 0.75 0.37 0.41 0.81

RMSE 5.52 0.41 9.73 33.48 0.63 24.69 168.29 4.20

MLP (PLSRcoef)
R2 0.84 0.91 0.78 0.95 0.76 0.32 0.40 0.78

RMSE 5.11 0.40 9.18 31.96 0.61 25.61 170.02 4.50

LReg (PCA‑150)
R2 0.76 0.84 0.69 0.92 0.68 0.28 0.35 0.75

RMSE 6.32 0.53 10.81 39.57 0.71 26.31 176.67 4.84

Ncomp – step regression components number; Hidden – hidden units number; RPD – ratio of perfor‑
mance to deviation; StepReg (T) – step regression with training data; StepReg (V) – step regression with 
validation data; MLP (SR‑V) – MultiLayer Perceptron with input variables extracted by step regression 
(validation set); PLSR (V) – partial least squares regression (validation set); MLP (PLSRcoef) – MultiLayer 
Perceptron with inputs of PLS (validation set); LReg (PCA‑150) – linear regression with 150 PCA compo‑
nents as inputs; MLP (PCA‑150) – MultiLayer Perceptron with 150 PCA components as inputs. The best 
validation results are marked in bold type.
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Prediction of the reaction (pH in CaCl2), could also be considered acceptable, 
but only for a rough estimate, while the SOC estimation error (8.7 and 10.2 g/kg 
respectively, against the median value ca. 19 g/kg) was relatively high, especially 
for soils with low organic carbon content (e.g., sandy soils). The high determina‑
tion factor of the model for carbonate content, given the asymmetry and significant 
dispersion of this characteristic in the sample, generated a relatively high RMSE es‑
timation error (ca. 30 g/kg, against the median value ca. 1), which may disqualify it 
for the vast majority of soils having low carbonate content. The nitrogen (N) content 
was estimated with relative accuracy analogous to SOC, probably due to the correla‑
tion of these two components. The concentrations of P and K were estimated with 
significant error, while some error in estimating CEC is acceptable for soils with 
a higher clay fraction.

The decision on the number of components used in the PLSR model is arbitrary, 
although it may be determined a posteriori. Figure 4 illustrates the increase in the de‑
termination factor as the number of PLS components is increased. Most of these 
graphs show ca. 20 to 50 such components are sufficient to model output variables 
close to the maximum accuracy offered by this algorithm. The graphs also indicate 
that predicted N, P, and K values are relatively imprecise. Comparing the results 
(R2 and RMSE) of prediction data validation between the step regression algorithm 
and PLSR suggests the latter (partial least squares regression) is the better tool for 
building a soil prediction model (though differences in prediction errors are never‑
theless quite small).

Fig. 4. Values of 100 × R2 (percentage of variability explained by the PLSR model), plotted as 
function of the number of PLS algorithm components, for the eight individual soil variables
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The construction of neural prediction models, in which inputs are explanatory 
variables selected in a step ‑by ‑step regression procedure, or components obtained 
in the partial least squares regression procedure, may improve prediction quality 
since this includes natural non ‑linearity of the machine learning algorithm architec‑
ture in the model. But this must be done iteratively, because, despite a significant re‑
duction in the number of explanatory variables (down from >20,000 to several hun‑
dred), the number of input variables remains relatively high. It should be noted that 
in the case of architectures with non ‑local transfer functions, increasing the number 
of hidden layer units multiplies the number of parameters that must be optimized 
in the learning process, thereby elevating the risk of overfitting and greater valida‑
tion error (decreasing the ability to generalize the model). For MLP models devel‑
oped here for soil variables contained in the LUCAS database, with inputs from 
step regression or PLSR components, exceeding the size of the hidden layer by 2 or 
3 units (values determined in a multiple ‑trial process) significantly increased their 
validation error. Generally, the validation errors of MLP were smaller than those 
of statistical models (step regression and PLSR), while mostly smaller for those mod‑
els whose inputs were determined via step regression procedures.

3.2. Linear and MLP Models for Clustered Data
One way to increase the accuracy of the predictions worth considering is to 

group the vectors of the input fields according to their similarity, and then create 
separate spectral response libraries. Greater forecasting accuracy may result from 
clustering the inputs to such sets for which separate forecasting models can be con‑
structed, based on input data that are more homogeneous than for the whole popu‑
lation. In clustering the JX vectors, the fragment covering the first derivative of ab‑
sorbance was used, since the experiments showed this had the largest quantitative 
share of the set of inputs emerging from the stepwise regression process.

Figure 5 shows the distribution of the vectors of the first absorbance derivatives 
on the SOM map. The starting point of the SOM clustering process is random, mak‑
ing the final clusters’ layout on the map unalike in different attempts, though still 
maintaining the spatial relationships and mutual distances between the clusters. For 
each cluster, prediction models were created with inputs obtained in the stepwise 
regression procedure of JX vectors belonging to that cluster; in each, the prediction 
model was the MLP algorithm, trained by Bayesian regularization in three repeti‑
tions, having 2, 3 and 4 units in the hidden layer. The model with the lowest MSE 
value for test data was then selected. Using this latter model, the values of soil vari‑
ables in the validation set were predicted.

Figure 6 shows the distribution of mean square error elements from predic‑
tion models for soil variables in SOM clusters. Highlighted by bold values are those 
clusters in which RMSE values of the validation set are smaller than those obtained 
on the basis of MLP models without division into clusters, with inputs obtained 
in a stepwise regression procedure and PLSR.
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Fig. 5. Distributions of dX vectors on the Kohnen Self Organizing Map (SOM)

Fig. 6. Distribution of RMSE values of the validation set variables forecast in groups 
distributed on the SOM map. Variables whose RMSE value of the validation set was lower 

than that of the MLP model validation – with inputs of PLS coefficients and variables chosen 
via stepwise regression algorithm without clustering – are highlighted by bold values
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In addition, the validation for all soil variables did not give better results than those 
in Table 2. For several soil variables, in some clusters the RMSEs were smaller than 
those of the overall models. Yet, apart from cases of strong local relationships between 
the spectral response and a soil variable, there is also the phenomenon of clusters fea‑
turing very weak predictive models but very low dispersion of a soil variable. Such cir‑
cumstance arose in the case of the third cluster and SOC variable (Fig. 7), where the vari‑
ables’ dispersion is quite small, generating a low RMSE value with a low R2 = 0.52.

Fig. 7. Scatterplots of observed and modeled (predicted) SOC values for SOM clusters.  
The bottom panel depicts all points together in a single graphic.  
Each panel above it shows RSMP data values for a given cluster

3.3. Cubist Regression Models with PLSR Components as Inputs

Committees of classification and regression models provide better quality pre‑
diction in many cases. Nevertheless, the models themselves can generate relatively 
large forecasting errors. Combining their estimates, either using separate data or com‑
ing from different types of models, can improve the ability to better generalize. A key 
issue here is choosing the way the team infers this. The classic solution is to create 
what is called a stack system. This consists of many models with different properties 
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(differing inputs, architectures, and ways of optimization) and a decision algorithm, 
optimized in relation to the same outputs, providing a solution based on the indications 
of 1‑level models [18]. Table 3 contains statistics on validations of six stacked models 
whose inputs were the vector of combined (concatected) PLS components obtained 
from spectral data X, dX, d2X, RefX, dsgolayX, and CRX along with relevant soil vari‑
ables from the PLSR procedures. Qualitatively, these models were characterized by 
higher RMSE values for the validation set than those models created solely on the basis 
of PLS components extracted from the whole JX vector (included in Table 2). The pre‑
sented models, however, are not a strict realization of the idea of stack regression, in that 
its inputs are not estimates of modeled variables but rather are values of PLS coefficients.

Table 3. Statistics of Cubist models whose inputs were connected by the first 25 PLSR 
coefficients from vectors to X, dX, d2X, RefX, CRX, ds ‑golayX outputs (soil variables).  

Cubist algorithm employed the “boosting” option, and predictions with tuning took into 
account the averaging of five nearest ‑neighbors

Properties Clay pH in CaCl2 SOC CaCO3 N CEC
R2 0.84 0.91 0.77 0.96 0.77 0.81
RMSE 5.25 0.41 9.41 27.47 0.61 4.25
RIQR 4.97 0.38 6.40 2.04 0.49 4.01
RQ‑0.25 −2.14 −0.20 −3.16 −1.21 −0.21 −2.56
RQ‑0.50 0.17 –0.01 –0.03 –0.22 0.03 –0.58
RQ‑0.75 2.84 0.18 3.24 0.83 0.28 1.45
RPIQ 3.62 6.14 2.08 0.73 1.97 2.71

3.4. Stacking Regression

It can be assumed that the inclusion of nonlinear models (e.g. MLP or other ma‑
chine learning algorithms) will improve the prediction quality of the stack regres‑
sion algorithm. Moreover, concatenating the predictions of all 0‑level models (for all 
soil variables) and thus creating a 1‑level data may improve the quality of the pre‑
diction by taking into account the interrelationships between soil variables. The 
1‑level model serving as a decision module remains an open issue. Table 4 contains 
the statistics of a stacked regression model with various inference modules, in which 
inputs were estimations of soil variables made by the MLP model set. For a given 
soil variable, differences between the element values of the root mean square error 
were relatively small: 5.02–5.38 for clay content, 0.39–0.41 for pH, 8.5–9.4 for SOC, 
26.4–29.6 for CaCO3, 0.58–0.61 for N, 3.9–4.2 for CEC; however, the relationships be‑
tween the values of determination factors and RPIQ were similar. Machine ‑learning 
models are, in part, random, and decisions made by their designer are subjective 
and devoid of objective premises for using a particular architecture. It can only be 
stated that among the examined models, a specific architecture has the best proper‑
ties in terms of a specific evaluation criterion (Fig. 8).
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From the testing, in terms of R2 and RMSE, the model with the DRF decision 
module is best, although differences among models’ predictions were relatively 
small. Quality indicators of models are their RPIQ values and observed distribution 
parameters of residual values (leads).

Table 4. Statistics of stacked regressions incorporating different 1‑level models, 
and corresponding statistics on the distribution of residual values of the validation data set

1‑level model Properties Clay pH (in CaCl2) SOC CaCO3 N CEC

MLP

R2 0.83 0.91 0.77 0.95 0.77 0.82

RMSE 5.38 0.41 9.44 29.62 0.61 4.15

RIQR 4.97 0.40 6.60 9.22 0.50 3.92

RQ‑0.25 −2.55 −0.21 −3.67 −5.12 −0.26 −2.11

RQ‑0.75 2.42 0.18 2.93 4.10 0.24 1.81

M5P

R2 0.83 0.91 0.77 0.95 0.77 0.82

RMSE 5.38 0.41 9.44 29.62 0.61 4.15

RIQR 4.91 0.45 6.41 1.42 0.59 3.91

RQ‑0.25 −2.54 −0.24 −3.52 −0.71 −0.40 −2.10

RQ‑0.75 2.37 0.21 2.89 0.71 0.19 1.81

RPIQ 3.53 6.19 2.07 0.67 1.96 2.77

Cubist

R2 0.84 0.91 0.77 0.96 0.77 0.82

RMSE 5.22 0.40 9.33 27.33 0.60 4.09

RIQR 4.81 0.36 6.39 1.67 0.49 3.91

RQ‑0.25 −1.99 −0.18 −2.95 −0.33 −0.19 −2.52

RQ‑0.75 2.82 0.18 3.44 1.35 0.30 1.38

RPIQ 3.64 6.36 2.10 0.73 1.99 2.81

GBM

R2 0.85 0.92 0.79 0.96 0.78 0.83

RMSE 5.07 0.39 9.01 27.24 0.59 3.96

RIQR 4.94 0.37 6.60 1.93 0.50 3.89

RQ‑0.25 −2.60 −0.20 −3.74 −1.61 −0.27 −2.17

RQ‑0.75 2.34 0.17 2.86 0.32 0.23 1.72

RPIQ 3.74 6.44 2.17 0.73 2.02 2.91

DRF

R2 0.85 0.92 0.79 0.96 0.78 0.83

RMSE 5.02 0.39 8.52 26.35 0.58 3.94

RIQR 4.81 0.36 6.44 2.06 0.49 3.87

RQ‑0.25 −2.56 −0.20 −3.79 −1.41 −0.28 −2.19

RQ‑0.75 0.25 0.16 2.64 0.65 0.22 1.68

RPIQ 3.77 6.47 2.19 0.77 2.03 2.92
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Relatively high RPIQ values were recorded for the prediction of clay con‑
tent (RPIQ = 3.77), pH (RPIQ = 6.47), and CEC (RPIQ = 2.92), whereas that SOC mod‑
el had a relatively low value (RPIQ = 2.19), likewise for N (RPIQ = 2.03). For CaCO3 
content, this statistic was at its lowest (RPIQ = 0.77). Statistics for the remaining 
models (i.e., using validation data) indicated a very strong concentration of values 
in their distributions, as evinced by their corresponding RIQR (interquartile ranges 
of the residuals) and kurtosis parameters. Kurtosis, a statistic characterized by high 
inherent variance [30], is not considered a significant indicator of a distribution’s 
shape, but in this case, it concerns sets of equal numbers and similar forms of distri‑
butions (Tab. 5).

Table 5. Kurtosis of distributions of residual values  
of soil feature prediction stacked models. 0‑level model: DRF

1‑level model Clay pH SOC CaCO3 N CEC

MLP 12.2 7.7 15.1 45.1 13.5 16.8

M5 16.8 53.7 17.3 66.9 11.4 14.6

Cubist 12.1 7.6 14.1 37.3 11.8 12.9

GBM 9.4 6.9 14.2 36.8 12.3 11.1

DRF 9.0 6.6 13.6 36.0 11.5 11.1

It should be emphasized that a high kurtosis value for a residual distribution, 
with similar values of RMSE and R2, indirectly shows it has more extreme spac‑
ing. Table 6 lists the ranks according to Spearman’s rho and Kendall’s tau between 
the values of predictions from applied models and observations. This revealed a sig‑
nificant difference between ranks statistics in comparison with the determination 
coefficients of some models, especially those used to estimate the CaCO3 concentra‑
tion in soil. The very high R2‑values are mainly due to very high variance of mod‑
eled values’ distribution, which may be of lesser importance for non ‑parametric 
statistical tests.

Table 6. Spearman’s rho and Kendall’s tau ranked correlation coefficients between 
the results for estimated variables from the applied model incorporating a DRF module 

and the observed validation values

Statistic Clay pH SOC CaCO3 N CEC

Spearman’s rho 0.92 0.96 0.90 0.78 0.88 0.91

Kendall’s tau 0.78 0.82 0.73 0.66 0.72 0.75
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An important criterion by which to evaluate a model is the relation of its estima‑
tion error to actual values of given variables. A greater tolerance for errors associated 
with larger values of modeled variables may be justified, in certain cases, by practical 
aspects of model use. The graphs in Figure 9 show boxplots of the model’s residu‑
als in arbitrarily determined classes of values of the observed variables. Except for 
the pH model, the remaining distributions indicate an increase in residuals with higher 
values of observed variables. For smaller values of the variables, their estimation error 
is less than at larger real values. For example, when analyzing the CaCO3 model val‑
idation residuals of 0–100 g/kg (0–10%), its ‘local’ determination coefficient was 0.66 
and the ‘local’ RMSE value was 9.9 (0.99%), set against an RMSE for the whole variation 
range of ca. 27 (2.7%), while the local value of the inter ‑quartile spacing of residuals 
RIQR = 1.58. It is thus easy to see that higher residuals values at higher variable values 
are due to non ‑linearity in the relationship between modeled and observed values.

Selecting a fixed validation set, especially when there is high variability of input 
values, entails a certain weakening of the model, associated with omitting a certain 
portion of input data’s variability constituting the fixed validation set. The proce‑
dure of model implementation, after determining its suboptimal architecture, was 
based here on the use of all available data, supported by cross ‑validation statistics, 
which incorporates all available data in subsequent optimization cycles (i.e., k ‑folds 
validation). Statistics of the final models – their training set error statistics and cross‑
‑validation averages – developed in this way are presented in Table 7. From these 
Figure 10 follows that a prediction algorithm trained on a full set of data, due to 
its flexibility, would provide much better forecasting results. This makes it difficult 
to differentiate data and discern the influence of non ‑observable factors interfering 
with model outputs by modifying the spectral response. It should be stressed, how‑
ever, that all algorithms and data pre ‑processing methods used here provide predic‑
tions having similar statistical characteristics.

Table 7. Statistics of stacked regression models with DRF decision module, optimized 
for the whole data set: 5‑fold validation and cross ‑validation (CV) ratios, RMSE values 

and RMSE ratios of cross ‑validation and training data estimates

Properties
Training set Cross ‑validation data

R (T)2 RMSE (T) SLOPE CONST R (CV)2 RMSE (CV) RMSE (CV)/RMSE (T)
Clay 0.98 1.75 1.03 −0.6 0.88 4.4 2.51
pH 0.99 0.14 1.02 −0.1 0.93 0.36 2.57
SOC 0.98 2.93 1.04 −1.1 0.85 7.5 2.56
CaCO3 0.99 7.5 1.00 −0.4 0.98 19.6 2.61
N 0.97 0.20 1.04 −0.1 0.83 0.5 2.50
CEC 0.98 1.44 1.04 −0.5 0.85 3.7 2.57

RMSE (T) – root mean squared error stacked regression model with DRF decision module for training 
data in the k ‑folds cross ‑validation procedure, RMSE (V) – root mean squared error stacked regression 
model with DRF decision module for validation data in the k ‑folds cross ‑validation procedure, in the last 
column relations RMSE (V)/RMSE (T).
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3.5. Convolutional Neural Network (CNN)

The results of CNN modeling were comparable to predictions made using 
the previously described stack models with different 1‑level models. Prediction sta‑
tistics for training and validation data, with two versions of 1D input data, namely 
the reflectance and absorbance vectors transformed in the SNV procedure [31] are 
given in Table 8.

Table 8. Statistics for the CNN model validation 

Input Statistic Clay pH SOC CaCO3 N CEC

Reflectance
R2 0.73 0.79 0.68 0.84 0.61 0.62

RMSE 6.66 0.62 10.91 50.39 0.76 5.95

SNV(Abs)

Epochs 400 1400 1400 600 1400 1600

R2 0.82 0.90 0.77 0.95 0.76 0.77

RMSE 5.46 0.42 9.39 31.78 0.62 4.58

Epochs are the number of training epochs after which the result was obtained. SNV(Abs) – Standard 
Normal Variate transformation of absorbance vectors.

Tests may use an architecture similar to that described in [10], with specific 
modifications regarding the number of processing layers, optimization algorithm, 
validation method, and the number of examples that constitute a single “batch” 
of network training.

In this testing, relatively worse results were obtained with inputs in the form 
of reflectance vectors than with the transformation of absorbance vectors by 
the SNV algorithm. The use of models with multiple outputs inevitably complicates 
the problem of completing their optimization. According to Table 8 the optima – 
lowest values of validation errors of particular soil features – occurred in different 
optimization periods (from 400 to 1,600 epochs).

Continuing the optimization, especially with smaller ‘batch’ values, the number 
of examples taken into account at the same time in a single optimization step, result‑
ed in an over ‑adjustment of the model: its systematic correction of training errors 
with an unchanged validation error.

One criterion of robust multidimensional models is the maintenance of quanti‑
tative relationships between the modeled variables.

Table 9 presents the Pearson linear correlation coefficients calculated for soil 
data as determined by reference methods and obtained from the predictions for val‑
idation data.
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Table 9. Comparison of Pearson’s linear correlation coefficients (r) of soil variables observed 
(validation set) to the forecasted data

Properties Data pH SOC CaCO3 N CEC

Clay

Obs 0.52 0.02 0.31 0.27 0.75

SR 0.58 −0.07 0.32 0.20 0.78

PCN 0.62 −0.08 0.34 0.23 0.86

pH

Obs – −0.36 0.51 −0.08 0.57

SR – −0.40 0.53 −0.09 0.63

PCN – −0.46 0.58 −0.12 0.69

SOC

Obs – – −0.11 0.83 0.19

SR – – −0.13 0.82 0.11

PCN – – −0.18 0.86 0.07

CaCO3

Obs – – – −0.06 0.26

SR – – – −0.09 0.27

PCN – – – −0.12 0.32

N

Obs – – – – 0.43

SR – – – – 0.38

PCN – – – – 0.39

The coefficients observed in the population and those calculated for predictions 
between soil variables are generally similar in term of the rankings of their values.

4. Discussion and Conclusion

The idea of using the spectral response in the Vis ‑NIR range as a source of in‑
formation on soil properties has an extensive literature, with varied conclusions 
having been drawn on this approach’s suitability and utility for characterizing soil 
states. The digitization of soil environment documentation places high demands on 
the number of soil properties determinations. Cheap and quick methods of obtain‑
ing reliable soil data are of great importance. For many years, indirect remote sens‑
ing tools have been used to obtain information about the state of the components 
of the environment. The use of indirect methods in soil research in the laboratory 
cannot be underestimated due to the importance of determining the characteristics 
of the soil profile, impossible from the aerial or satellite level.

A literature review on the possibilities and limitations of this methodology 
[4, 6, 32] cited the extreme values of statistics (R2 and RPD) of ’spectral response ‑soil 
property’ relationship models. According to that investigation, in studies by various 
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authors, models’ determination coefficients were obtained that ranged from 0.01 
to 0.99 for clay fraction content, from 0.66 to 0.96 for SOC content, from 0.68 to 0.98 
for N content, from 0.22 to 0.88 for pH, and from 0.07 to 0.93 for CEC. Similarly, 
large differences were found between their model’s RPD values. Practically then, 
the models can range being from completely useless to close to ideal when it comes 
to relying on data ‑based algorithms. The reasons for this great variation are obvious: 
namely, the number of samples and variation in soil properties, the methodology 
for extracting useful information from the spectral data, the model design, the val‑
idation method used, among other objective and subjective factors. Such studies 
typically use numerous transformations of spectral response vectors, differing di‑
mensional reduction algorithms, and different inference models and thus it would 
be difficult to uncover a regression algorithm that would be omitted by them. Addi‑
tionally, using concepts of so ‑called “auxiliary variables” is often presented – such 
as the type of land use, geographical location, soil texture – which, in addition to 
the spectral response, may be used to improve the prediction of other characteristics. 
In sum, lacking a dominant and widely recognized algorithm of inference based on 
the spectral response of soils, different concepts of soil formation ostensibly must 
compete with each other.

The basic modeling methodology that combines dimensional reduction and ex‑
traction of spectral response fragments relevant for modeling is dimensional reduc‑
tion by PCA and PLSR [5, 32], especially for small datasets which, due to their low 
soil variability, provide acceptable values for prediction errors. For years, the results 
of various machine learning methods have been published in combination with us‑
ing such statistical methods (PCA or PLSR) for extracting input variables. This con‑
cept is perhaps best known as the PARACUDA II procedure [9, 33], which combines 
multiple sampling of a data set, dimensional reduction, and sets of prediction mod‑
els. This framework is characterized by a high quality of prediction (RMSE: 0.17% 
in SOC prediction, 5.4 cmol/kg CEC, 5.8% for CaCO3 content), although it applies to 
relatively small sized data sets (sample size of ca. 100).

For ca. 30 years, deep processing has been the focus of interest in image analysis, 
offering an alternative to so ‑called “shallow” models. The use of CNN models for 
regression and classification tasks is now becoming common. Among other things, 
the problem of the number of training sets necessary to obtain useful results using 
CNNs, which usually entail large processing structures, is being resolved. According 
to [10], the CNN model can improve prediction quality with an increase in the num‑
ber of learning examples, while for shallow models, an increase in their number 
of learning sets beyond a certain limit is not accompanied by improved predictions. 
According to that study [10], a set of ca. 8000 examples (data from Brazil) used to 
optimize the CNN network gives better forecasting results than either the PLSR or 
Cubist algorithm. Specifically, the RMSE value of clay fraction content validation 
data was 6.7% for the CNN model (for the PLSR and Cubist: 7.3% and 6.9%, respec‑
tively), the CEC value for CNN was 1.3 cmol/kg (for PLSR and Cubist: 1.7 cmol/kg), 
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and organic matter content for CNN was 3.8 g/kg (for PLSR and Cubist: 5.0 g/kg 
and 4.8 g/kg, respectively). These values, however, cannot be compared with esti‑
mates of errors for other data, since they depend on the distribution and variability 
of the modeled soil variables.

Since its initial release, the LUCAS database has been widely used to devel‑
op various models to predict soil properties. One of the first studies using it was 
a publication on soil organic carbon modeling [34], in which the SVM model 
(RMSE = 8.9 g/kg) gave the best result for mineral soils (no use distinguished). In 
the models developed for particular types of land use, the results were not alike: for 
arable land, grassland, and forest areas the RMSE values obtained were respective‑
ly 4.9 g/kg, 9.3 g/kg and 15.0 g/kg (SVM and Cubist models); the addition of an aux‑
iliary variable to the input variables (content of sandy or clay fraction in the sample) 
significantly improved their prediction. In the case of mineral soils (again, without 
distinction of use), this addition reduced the RMSE to 7.3 g/kg. In another study [35], 
LUCAS data were analyzed for modeling based on spectral response, SOC, N 
and clay fraction content. The modeling algorithm included the extraction of vari‑
ables via PLSR (the number of factors considered experimentally ranged from 42 
to 78). The corresponding RMSE values for the SOC model, for arable land, per‑
manent grassland, and forests were respectively 6.0 g/kg, 10.9 g/kg, and 13.8 g/kg. 
Likewise, the clay fraction of those habitats was modeled with RMSE (in the same 
order) of 5.5%, 6.2%, and 5.4%, with corresponding values of 0.42 g/kg, 0.82 g/kg 
and 0.74 g/kg for nitrogen content.

Advanced models of machine learning (an MLP network, Boltzmann’s restrict‑
ed machine, and CNN) were used by [35–37], in their modeling based on the LUCAS 
soil database. Those modeling results are difficult to interpret as the authors pro‑
vided RMSE values for standardized variables. For five modeled variables (sandy 
fraction content, pH, SOC, CaCO3, and P content), the mean RMSE value was 0.42 
(CNN and a combination of Boltzmann’s machine and the convolutional network), 
which corresponds to an RPD = 2.36. When recalculated to comply with LUCAS data 
(as declared by the authors), the RMSE values for a hybrid model (limited Boltz‑
mann machine and convolutional network) were 7.4 g/kg for SOC, 0.41 for pH, 
and 25.2 for CaCO3 content.

Work by Liu et al. [36] reported on the practical use of a pre ‑trained CNN net‑
work’s properties. The construction of this network, to model the clay fraction con‑
tent on the basis of its spectral response, was also based on LUCAS data for mineral 
soils. The trained network was first used to predict the clay fraction content in or‑
ganic samples, after refining it on the basis of a small number of organic samples 
(RMSE = 7.07%). This was then used to estimate the clay content of soils base on 
multispectral imaging, after fine tuning the pre ‑treated network on a small number 
of samples (RMSE = 8.62).

Spectral data and spectral data in combination with the auxiliary predicators 
of the LUCAS collection were also used in the advanced three ‑level MKL (Multiple 
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Kernel Learning) model for SOC prediction [38]. The prediction variable was logSOC, 
the decimal logarithm of the value (SOC+1), for which the R2 = 0.86 and RMSE = 0.13. 
Much smaller error characterized the model when an auxiliary variable was incor‑
porated (RMSE = 0.1). It should be noted that, in the current study, the conversion 
of RMSE value for the stack model with DRF output (Tab. 7) to the logSOC scale 
indicates that it is ca. 0.115, which is slightly less than that (without the auxiliary 
variable) reported by Tsakiridis et al. [38].

Recently, Tsakiridis et al. [39] published the results of their research on the use‑
fulness of 1D multi ‑channel 1D CNN’s for the prediction of clay fraction content, SOC 
and N content based on the Vis ‑NIR spectral response using LUCAS database. The 
results presented in this study (RMSE for clay content about 4.8%, SOC about 10.96 
and N about 0.66) are similar to those presented in our study. This applies to CNN 
models, while the stacked regression model has even slightly better characteristics.

Against the background of the results available in the literature, the applied 
regression models presented in the paper, in relation to the LUCAS database, can be 
considered comparable with the best prediction algorithms. The square roots mean 
square error estimation in the cross ‑validation procedure were as follows: for clay 
content, ca. 4.4%; for pH, ca. 0.36; for SOC, ca. 7.5 g/kg (0.75% by weight); for CaCO3 
content, ca. 19 g/kg; for N content, ca. 0.50 g/kg; and for CEC, ca. 3.7 cmol(+)/kg. 
These results do not compete with laboratory tests, but are sufficiently accurate to 
dense point observations of soil condition for digital mapping purposes. Unsatis‑
factory low CaCO3 prediction accuracy. It should be noted, however, that the pre‑
diction error of this component is positively correlated with its content in the soil 
and is relatively small at its low concentration. In Polish soils (except for rare cases 
of soils rich in Ca), exceeding of CaCO3 concentration 20–30 g/kg is observed in lim‑
ited cases.

The LUCAS database contains soil sample data from areas with high geological, 
climatic, and land use diversity. In the testing with statistical models, machine learn‑
ing models (MLP, trees and random forests) with and without data grouping, ap‑
plied models and deep learning models, relatively good results were obtained when 
using applied models coupled to PLS inputs processed with MLP algorithms. These 
modeling results are consistent with those reported in the literature, provided that 
the results from different areas are truly comparable. Furthermore, the poor results 
obtained here for the effects of stratification of spectral data were probably caused 
by methodology, specifically establishing similarity on the principle of Euclidean 
distance of vectors, which was significantly influenced by fragments not related to 
the modeled soil variables.

It should be assumed that the practical use of the Vis ‑NIR spectral response 
in prediction of soil properties will be dominated by data ‑based models. The lit‑
erature reports present various algorithms of model construction with satisfactory 
prediction quality. In cases of large and diverse databases, such as LUCAS, PLSR, 
linear models using PCA or linear step regression do not give fully satisfactory 
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results. Large datasets require more sophisticated methods to identify correlations 
between the spectral response and soil variables, such as PARACUDA II, the three‑
‑level MKL, or deep models for example the convolution 1D network, which did 
not give the best results in the tests. The applied stacking model gives good predic‑
tion results, probably partly due to the presence of many soil variables estimations 
in the input vector. This can be considered a disadvantage if the aim is to predict 
one or two soil variables, however, the approach is relatively flexible and the choice 
of the decision module needs testing. This approach, requires a large training data‑
set, which, also applies to the convolutional model. The advantage of the convolu‑
tion network lies in the possibility to develop a pre ‑trained model based on a large 
and diverse data set. The CNN model can be “fine ‑tuned” using a relatively small 
set of local conditions.

The comparison of the results of modeling soil characteristics from different 
regions is difficult due to the differences in the variability of the mineralogy, soil 
types, sample size and other factors influencing the spectral response and the range 
of data variability. The similarity of physiographic conditions is likely to have a pos‑
itive effect on the prediction error due to the homogeneity of potential disturbances 
in the relationship between the examined features and the reflectance of the sam‑
ples. In addition, the machine learning algorithms present in modeling are charac‑
terized by a great flexibility in fixing optimization parameters. This is a factor that 
forces the randomness of the prediction result and the uncertainty as to the best pos‑
sible architecture. For this reason, it is impossible to indicate the objectively optimal 
prediction model.

The conducted tests lead to the following conclusions:
1. The use of machine learning models reduces the error of the prediction 

of soil features based on the analysis of the spectral response in the Vis ‑NIR 
range in relation to the statistical linear models: stepwise regression or par‑
tial least squares regression.

2. The relatively best prediction result was obtained using a stack regression 
model with 0‑level data obtained from many MLP models.

3. Clustering of the input data, due to the presence of variables not related to 
the modeled dependencies, does not improve the prediction results.

4. The influence of factors disturbing the “Vis ‑NIR – soil features” relationship 
is visible in the attempt to use the stack regression algorithm with cross‑
‑validation: the RMSE of the model built on the basis of the entire set is much 
lower than the average RMSE values from the validation.

5. The prediction errors of some features (Clay, SOC, CaCO3, N and CEC) in‑
crease monotonically according to their true value.

6. The use of a single prediction algorithm for data from very diverse geolog‑
ical and soil conditions has significant limitations as a method that replaces 
traditional laboratory analysis. This does not rule out its usefulness as a data 
source in soil cartography.
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