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Abstract:	 Due to growing demand for ground-truth in deep learning-based remote sens-
ing satellite image fusion, numerous approaches have been presented. Of these 
approaches, Wald’s protocol is the most commonly used. In this paper, a new 
workflow is proposed consisting of two main parts. The first part targets obtain-
ing the ground-truth images using the results of a pre-designed and well-tested 
hybrid traditional fusion method. This method combines the Gram–Schmidt 
and curvelet transform techniques to generate accurate and reliable fusion re-
sults. The second part focuses on the training of a proposed deep learning mod-
el using rich and informative data provided by the first stage to improve the 
fusion performance. The demonstrated deep learning model relies on a series of 
residual dense blocks to enhance network depth and facilitate the effective fea-
ture learning process. These blocks are designed to capture both low-level and 
high-level information, enabling the model to extract intricate details and mean-
ingful features from the input data. The performance evaluation of the proposed 
model is carried out using seven metrics such as peak-signal-to-noise-ratio and 
quality without reference. The experimental results demonstrate that the pro-
posed approach outperforms state-of-the-art methods in terms of image quality. 
It also exhibits the robustness and powerful nature of the proposed approach 
which has the potential to be applied to many remote sensing applications in 
agriculture, environmental monitoring, and change detection.
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1.	 Introduction

Pansharpening is the process of combining both spatial and spectral information 
into one image [1]. Recently, the significance of creating accurate pansharpening al-
gorithms has become evident, leading to the proposal of multiple methods to solve 
the pansharpening problem. Image fusion methods can be categorized into tradition-
al approaches and deep learning techniques. The traditional methods involve three 
main processes: image transformation, activity level measurement, and fusion rule 
design. Being manually designed and based on theoretical assumptions, the selection 
and design of activity level measurements and fusion rules are challenging. Addition-
ally, their performance can vary with imaging sensors, land cover characteristics, ac-
quisition geometry, and complex transformations. Traditional methods are classified 
into three categories: component substitution (CS), multiresolution analysis (MRA), 
and hybrid methods. CS-based methods separate spatial and spectral information and 
replace the spatial details with a panchromatic (PAN) image. However, these methods 
require a high correlation among image components to minimize spectral distortion. 
In contrast, MRA-based methods address spectral deformation by employing spatial 
detail extraction methods while preserving spectral accuracy [2]. Hybrid methods, 
using both CS-based and MRA-based categories, combine the benefits of both meth-
ods. Deep learning methods, particularly convolutional neural networks  (CNNs), 
provide an automatic solution to the pansharpening problem as they are shift, scale, 
and distortion invariant [3]. Using neural networks (NN) targets the preservation of 
both spatial and spectral information in the fused images. The exponential growth of 
datasets and improvements in computational power have led to the remarkable suc-
cess of deep learning in extracting image features for use in image processing applica-
tions. As a result, many deep learning networks have been developed specifically for 
image fusion tasks. Researchers have explored various techniques to enhance fusion 
performance by increasing network depth, transfer learning, and using multiscale 
and multi-depth CNNs, as discussed in the following section.

In the paper, a novel approach called traditional deep learning image fusion 
(TDIF) is introduced as a solution for satellite remote sensing image fusion. Unlike 
many other deep learning-based image fusion methods, TDIF takes a different ap-
proach using a well-established and accurate traditional image fusion method as 
the ground truth during the training process. Typically, deep learning-based im-
age fusion methods rely on low-resolution images as the ground truth for training 
their models. However, TDIF deviates from this approach and instead leverages the 
expertise and accuracy of traditional image fusion methods to generate high-qual-
ity fused images. By using traditional image fusion methods as the ground truth, 
TDIF benefits from their established performance and accuracy to enhance the train-
ing process. This unique characteristic of TDIF makes it distinguishable from other 
deep learning-based image fusion approaches and also contributes to improving the 
fusion results. By incorporating the power of traditional fusion methods and deep 



Satellite Image Fusion Using a Hybrid Traditional and Deep Learning Method	 147

learning capabilities, TDIF aims to provide a robust and accurate solution for remote 
sensing satellite image fusion tasks.

To optimize this approach, the following steps can be taken:
1.	 Experiment with different traditional image fusion methods to find the 

one that produces the best results as the ground-truth for training the deep 
learning model.

2.	 Explore different deep learning architectures and training strategies to opti-
mize the performance of the TDIF method.

3.	 Use a larger and more diverse dataset for training and testing the TDIF meth-
od to increase its robustness and generalizability.

4.	 Evaluate the performance of the TDIF method using a variety of quality met-
rics, both qualitatively and quantitatively, to ensure that it performs well in 
different scenarios and applications.

5.	 Compare the TDIF method to other state-of-the-art image fusion techniques 
to demonstrate its superiority.

6.	 Fine-tune the parameters of the traditional method and the deep learning 
model to improve the results and make the method more robust.

The organization of the remaining parts of the paper is as follows. In Section 2, 
previous related researches are discussed. Section 3 offers a summary of the frame-
work of the proposed approach. Section 4 details the data and outlines the experi-
mental setup. This section also contains the experimental results and presents a dis-
cussion of them. Finally, Section 5 presents some conclusions and the future work 
of the study.

2.	 Related Works

The development of deep learning algorithms for image fusion, which can be 
seen as a subset of image super resolution, began in 2016 with the creation of the sim-
plest super resolution deep learning algorithm, super-resolution convolutional neu-
ral network SRCNN, which utilized three convolutional neural networks (CNNs) [4]. 
This led to the development of the first deep learning image fusion algorithm, pan-
sharpening by convolutional neural networks (PNN) [5]. PNN effectively preserves 
the spectral information at the cost of losing the spatial one. Many subsequent works 
continued to build on this foundation; for example, the author in [6] created a two-
stage model relying on a SRCNN to increase the resolution of the intensity component 
of multispectral (MUL) image. The final fused image was produced by combining 
PAN image and the result from the first stage using the Gram–Schmidt method. In [7], 
the author proposed the pan-sharpening network (PanNet) that improved upon pre-
vious methods by better preserving both spatial and spectral information. However, 
this came at the cost of some blurring in the final fused image. Over time, research-
ers have sought to improve the results of these algorithms by making the networks 
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deeper using, for example, transfer learning, changing the loss function, and utiliz-
ing multiscale and multi-depth CNNs [8]. In 2017, the deep residual pan-sharpening 
neural network (DRPNN) [9] method was proposed using a deeper image super-res-
olution network to produce better results. In 2018, the use of two NN branches was 
introduced to extract more features from both PAN and MUL images [10, 11]. Dual 
NN paths approach was also proposed [12] consisting of a local and global NN. More 
recently, there has been a focus on the training data itself, such as in [13], where the 
authors attempted to find suitable training data relationships by using a dynamic 
blurring kernel and residual deep learning model. In [14], the authors explored the 
relationship between the PAN and MUL input images in their loss function without 
the use of label data. Also, Generative Adversarial Networks (GANs) have been used 
for satellite image fusion, but they require large amounts of training data, are compu-
tationally intensive, and can require significant processing power to train [15].

To date, there are three approaches for training the NN for PAN and MUL im-
age fusion. The first method involves using Wald’s protocol to make MUL images as 
ground truth images [5, 6], but this simple blur and interpolation process can lead 
to the loss of spatial information. The second method trains the NN on other images 
that do not have the same characteristics as remote sensing images [16]. The final 
method uses the relationship between the PAN and MUL images in the loss function 
without using labelling data [14].

3.	 Methodology

Typically, remote sensing image fusion methods utilize one of the following 
deep learning architectures: autoencoder  (AE)-based architecture, CNN-based 
architecture, or GAN-based architecture. This paper particularly utilizes the sec-
ond scheme and implements a CNN-based architecture for the image fusion task. 
A visual representation of the general workflow diagram is presented in Figure 1.

Fig. 1. General workflow diagram of the proposed TDIF method
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The figure illustrates the overall structure of the network and how data flows 
through it, aiming to provide a clear and concise explanation of the proposed ap-
proach making it simple for others to follow and implement.

A new workflow is suggested to tackle the difficulty of obtaining ground-truth 
high-resolution multispectral images for deep learning-based remote sensing sat-
ellite image fusion. This workflow is comprised of two primary components. The 
initial stage involves acquiring ground-truth images through a hybrid traditional 
fusion approach that combines the Gram–Schmidt (GS) and curvelet transform tech-
niques (CVT). This well-established fusion method producing precise and depend-
able fusion outcomes which are then utilized as the reference data for training the 
deep learning model. The proposed hybrid traditional fusion method overcomes the 
limitations of traditional fusion methods by combining two fusion techniques, to 
take advantage of both methods [17]. The resulting traditional fused images (TMUL) 
are evaluated and compared to numerous CS-based and MRA-based methods, as 
well as recently published methods, using various datasets.

The subsequent phase is dedicated to training the proposed deep learning mod-
el using the obtained ground-truth images. By capitalizing on the high-quality fusion 
results derived from the traditional method, the deep learning model can effectively 
learn from the valuable and information-rich dataset, leading to enhanced fusion 
performance. The proposed TDIF model is based on the enhanced super-resolution 
generative adversarial network (ESRGAN) generator [18]. The overall framework of 
the proposed method is summarized in Algorithm 1.

By incorporating the strengths of the traditional fusion method and deep learn-
ing, this workflow addresses the challenge of acquiring ground-truth high-resolu-
tion multispectral images. It utilizes the reliable fusion results from the traditional 
method to provide robust training data for the deep learning model, enabling it 
to learn and generalize from this information, ultimately enhancing fusion perfor-
mance. The main layers of the model are illustrated in Figure 2.

The first convolutional layer takes the upsampled MUL  image as input and 
performs a 3 × 3 kernel operation with a stride of  1 and padding  of  1. The sec-
ond convolutional layer takes the PAN image as input and performs the same op-
eration.

A sequence of eight residual in residual dense blocks (RRDB) is applied to en-
hance its feature learning capabilities. Each of these blocks, consisting of three dense 
residual blocks and including five convolutional layers, each performing a 3 × 3 
kernel operation with a stride of 1 and padding of 1. A non-linear activation func-
tion (LeakyReLU) is applied after each convolutional layer except for the last one to 
further refine the output and introduce non-linearity to the network. These dense 
residual blocks allow the network to capture both low-level and high-level informa-
tion, making it more effective in preserving spatial and spectral details during the 
fusion process. Another convolutional layer is applied to the output of the residual 
blocks. It performs a 3 × 3 kernel operation with a stride of 1 and padding of 1.
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Fig. 2. Architecture of the proposed model

Algorithm 1 The proposed TDIF method

Input: PAN images; MUL images; Target images M̂ ; TMUL images MT
Output: Fused image M
// Prepare the dataset for training

1.	 Downsampling PAN Images p and MUL images then interpolate MUL im-
ages.

2.	 Use [19] to create the reduced resolution MUL based on Wald’s protocol.
3.	 Divide the dataset for training and validating and testing steps.
4.	 Get the trusted image by fusing PAN and MUL images using the traditional 

method MT.
// Training and validating the network

5.	 Use L1 losses for the training dataset from Wald’s protocol L11 and add L12 
losses for the TMUL and MUL images:
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// Testing the network
6.	 Use the test dataset to test the network.
7.	 Evaluate the resulted fused image.
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The output from the convolution layer is added to PAN, MUL images to main-
tain the spatial and spectral information from both  PAN and MUL  images then 
apply the result to the final stage. The final block consists of a leaky ReLU activation 
function followed by two more convolutional layers. The first convolutional layer 
has a kernel size of 3 × 3 and the second one has a kernel size of 1 × 1. The number 
of output channels in the last convolutional layer matches the number of channels 
in the MUL image. Additionally, all the convolutional layers are initialized using 
Kaiming normal initialization for weight initialization.

3.1.	 Network Training

The TDIF model is optimized using the Adam optimizer because of its advan-
tageous features that enhance the accuracy and speed of the proposed models. By 
utilizing an adaptive learning rate and a momentum-based approach, the Adam op-
timizer facilitates faster learning and quicker convergence towards the optimal pa-
rameter values that minimize the cost or loss function. The TDIF model is optimized 
using the Adam optimizer with specific configuration settings. It starts with an ini-
tial learning rate of 0.0001 and does not incorporate weight decay. The momentum 
parameters, β1 and β2, are set to 0.9 and 0.999, respectively. To introduce non-linear-
ity in the activation layers, a Leaky ReLU activation function is applied with a slope 
of 0.2. This activation function allows for the propagation of small negative values, 
preventing the complete saturation of neurons. The weights of the model are initial-
ized using the Kaiming initialization method. This method takes into account the 
specific activation function and aims to initialize the weights in a way that prevents 
the signal from vanishing or exploding during forward and backward propagation. 
By incorporating these settings, the TDIF model optimizes its performance and en-
sures effective learning and convergence during the training process.

The model undergoes training for a total of 100 epochs. Throughout the training 
process, the performance of the model is evaluated using two metrics: peak signal to 
noise ratio (PSNR) and losses. In each iteration or epoch, the model’s output is com-
pared to the ground truth or target data using the PSNR metric. PSNR measures the 
quality of the model’s output by quantifying the ratio of the peak signal power to the 
noise power. Higher PSNR values indicate better image quality. Additionally, the 
losses incurred during each iteration are calculated to quantify the discrepancy be-
tween the model’s predicted output and the ground truth as outlined in Algorithm 2.

The training process involves minimizing the L1 loss, which is defined as the 
sum of all the absolute differences between the ground truth value and the predict-
ed value M . The overall loss is calculated by taking into account two ground truth 
values with different priorities. The training data is represented by a set of pairs of 
down-sampled MUL and PAN images, with the MUL image M̂  being the label. The 

training data is represented as ( ) ( ) ( ) ( )

1
, ,  , ˆ N

i i i i
T i

p M M M
=

 
   for i = 1 to N, where N is the 

number of training samples in each iteration.
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Algorithm 2 The proposed training algorithm

Require: train data set, batch size, epoch number, number of channel output of 
conv2D layers, number of RRDB, and number of dense block, define the optimizer, 
β1, β2, learning rate, learning rate steps, define the losses function.
Initialize model weights
Split the dataset into training and validation sets
For epoch = 1:100 do
	 For each batch size = 4 do

Perform a forward pass on the current batch of data to get the predicted 
output
Compute L1 losses
Compute gradient
Update weights
Calculate PSNR for each epoch (training/validation) dataset
Save lowest losses value
If the model is stable then add L1 losses between MUL and TMUL
Calculate PSNR for each epoch (training/validation) dataset
Save lowest losses value

	 End For
End For

4.	 Dataset, Results, and Analysis

The use of Wald’s protocol for creating MUL images as ground truth is a com-
mon approach in the field of image fusion for remote sensing images. This meth-
od is based on the idea of using a simple blur and interpolation process to create 
a low-resolution image from a high-resolution image. The NN is then trained to pro-
duce a high-resolution image from the low-resolution image and the corresponding 
high-resolution PAN  image. Wald’s protocol has been widely used in the remote 
sensing community due to its simplicity and ease of implementation. However, as 
already mentioned, this method can lead to the loss of important spatial informa-
tion, and it may not always produce the best results. Nevertheless, it remains a wide-
ly used approach and has been applied in various studies and applications.

The model was implemented using the PyTorch framework and trained on an 
Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz with a NVIDIA Quadro P500. The dataset 
was divided into a training set (80%), validation set (10%), and testing set (10%).

4.1.	 Dataset

In this study, verified pansharpened images are used as additional ground 
truth images in the training process of the deep learning model. These images are 
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produced through a well-established pansharpening method (GS-CVT based) and 
are used to further improve the results of the model. The preparation of the training 
dataset is depicted in Figure 3.

Fig. 3. Dataset preparation

The study uses two different satellite images, WorldView2 and GeoEye1, for its 
datasets. These images capture different types of regions including both man-made 
and natural areas. The images are divided into patches for training and testing pur-
poses. For WorldView2 dataset, the PAN images are 512 × 512 in size and the MUL 
images are 128 × 128. For GeoEye1 dataset, the PAN images are 128 × 128 in size 
while the MUL images are 32 × 32. These differences in scales allow the model to be 
tested with varying data sizes. The results of the traditional method are produced 
using the same dataset as the one used to train and test the model. The satellite da-
tasets details can be seen in Table 1.

Table 1. Satellites specifications

Satellite
Resolution [m]

Date City Downloaded sites
PAN MUL

WorldView2 0.4 1.6 26.09.2016 Washington DC https://resources.maxar.com/
product-samplesGeoEye1 0.41 1.64 4.12.2020 Vientiane

https://resources.maxar.com/product-samples
https://resources.maxar.com/product-samples
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The proposed ground truth dataset is produced using a combination of GS and 
CVT methods, which are based on local energy and maximum fusion rules [17]. This 
combination of methods aims to reduce the limitations of the individual method and 
improve the preservation of both spectral and spatial information in the output. It 
is important to note that the traditional method used can be changed based on the 
specific design environment, requirements, or dataset being used.

The effectiveness of the proposed traditional method is evaluated using 
3600  pairs of WorldView2 and 14,400  pairs of GeoEye1 satellite images satel-
lite images with varying patch sizes. Both qualitative and quantitative evalua-
tions are performed using seven image quality evaluation metrics: peak signal 
to noise ratio  (PSNR), quality with no reference  (QNR) index, spectral correla-
tion coefficient  (SCC), spectral angular mapper  (SAM), structural similarity index 
measure  (SSIM), error relative global dimensionless synthesis  (ERGAS), quality 
index (Qindex). The results are shown in Figures 4, 5 and Tables 2, 3. The results ob-
tained from the comparison of the proposed traditional method with eight other 
traditional methods demonstrate the superiority and robustness of the proposed 
approach. The performance of the proposed method outperforms the other tradi-
tional methods in various evaluation metrics. These findings highlight the signifi-
cance and reliability of the proposed traditional method as a preferred choice for the 
specific application or problem domain.

In Figure 4, a sample of the quantitative evaluation of WorldView2 images are 
displayed using eight different traditional fusion methods (GS-CVT, CVT, Brovey, 
GS, intensity hue saturation (IHS), principal component analysis (PCA) and Ehler 
transform (EL)). The GS-CVT fusion method resulted in the best image in the qual-
itative evaluation.

The other methods either had high spectral or spatial distortion. For example, in 
the GS-based method, the fused image had a red hue, while the DWT and CVT fu-
sion methods have clear details but poor coloration.

Table 2 shows the evaluation of traditional fusion methods based on different 
seven evaluation metrics reveals varying levels of performance over WorldView2 
images. Brovey, IHS, PCA, EL, CVT, and DWT exhibit lower performance in metrics 
such as SSIM, SCC, QNR, Qindex, PSNR, ERGAS, and SAM compared to GS-CVT. 
GS shows comparable performance to GS-CVT in most metrics, indicating its effec-
tiveness as a fusion method. GS-CVT serves as a reliable baseline, demonstrating its 
superior performance compared to other traditional fusion methods. These findings 
emphasize the significance of GS-CVT as a benchmark method and highlight its 
potential for achieving improved fusion results.

In Figure  5, a sample of the quantitative evaluation of GeoEye1 satellite im-
age fusion results using eight different traditional fusion methods is displayed. The 
output of the GS-CVT method is closest to the MUL images, which are used as the 
ground truth images.
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a) b)

c) d) e) f)

g) h) i) j)

Fig. 4. Sample of WorldView2 images by different pansharpening algorithms:  
a) PAN; b) MUL; c) GS-CVT; d) CVT; e) DWT; f) Brovey; g) GS; h) IHS; i) PCA; j) EL

Table 2. Objective evaluation of traditional fusion results for WorldView2 images

Brovey IHS GS PCA EL CVT DWT GS-CVT
SSIM↑ 0.8421 0.9012 0.8773 0.9017 0.9099 0.923 0.857 0.919
SCC↑ 0.8035 0.8099 0.7731 0.8101 0.7949 0.859 0.851 0.862
QNR↑ 0.8876 0.6773 0.6944 0.6758 0.6387 0.640 0.694 0.887
Qindex↑ 0.6998 0.7038 0.6660 0.7037 0.6598 0.746 0.774 0.735
PSNR↑ 25.897 23.590 24.278 23.543 20.024 24.09 26.48 31.49
ERGAS↓ 64.884 67.444 73.658 67.392 88.319 66.70 68.54 63.82
SAM↓ 12.659 14.868 15.048 14.871 15.955 15.11 15.62 13.52
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a) b) c) d) e)

f) g) h) i) j)

Fig. 5. Sample of GeoEye1 images by different pansharpening algorithms:  
a) PAN; b) MUL; c) GS-CVT; d) CVT; e) DWT; f) Brovey; g) GS; h) IHS; i) PCA; j) EL

In Table 3, the performance of the fusion methods is evaluated over a different 
dataset (GeoEye1 images). It shows that the GS-CVT method has the highest QNR, 
SCC and PSNR values and DWT method has highest Qindex compared to the other 
methods. However, the ERGAS value is the best for the GS-CVT method compared 
to the other methods.

Table 3. Objective evaluation of traditional fusion results for GeoEye1 images

Brovey IHS GS PCA EL CVT DWT GS-CVT
SSIM↑ 0.838 0.9146 0.870 0.9133 0.9142 0.768 0.8441 0.8528
SCC↑ 0.831 0.8364 0.827 0.8356 0.8352 0.813 0.8673 0.8997
QNR↑ 0.813 0.8259 0.852 0.8250 0.8136 0.821 0.8363 0.8414
Qindex↑ 0.675 0.6854 0.685 0.6863 0.6923 0.585 0.6965 0.6879
PSNR↑ 27.788 25.010 26.25 24.945 23.860 28.67 27.128 32.060
ERGAS↓ 68.363 66.132 66.00 65.918 65.703 78.57 60.408 60.249
SAM↓ 10.663 12.293 12.52 12.286 13.335 12.43 13.558 11.979

It is important to note that different metrics may prioritize different aspects of image 
quality, such as sharpness, colour preservation, or noise reduction. For example, SSIM 
values closer to one indicate a higher level of similarity between the fused image and the 
reference image, while PSNR values closer to infinity indicate a lower level of noise in 
the image. On the other hand, the ERGAS metric measures the quality of the detail rep-
resentation and how well the global and local structures are preserved in the fused image.

Overall, the performance of these traditional fusion methods varies in different 
metrics compared to GS-CVT. While some methods show comparable or slightly better 
performance in certain metrics, others may have trade-offs in different aspects. The se-
lection of the fusion method should be based on the specific requirements and priorities 
of the application.

4.2.	 Results
The evaluation was performed on the fusion result quantitatively and qualita-

tively over the eight different image fusion methods (GS-CVT, PCA, CVT, GS, IHS, 
Brovey, Ehler, DWT) and two deep learning methods that trained from scratch on 
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the same datasets (PNN and PanNet) and finally the proposed method without us-
ing traditional results and with using traditional results. The same seven perfor-
mance metrics that were used for dataset evaluation were also used for comparing 
the results (SSIM, SCC, QNR, Qindex, PSNR, ERGAS and SAM).

The results from Figures 6 and 7 indicate that the proposed method provides 
the best outcome in terms of both spatial and spectral information preservation. The 
CVT and DWT methods do not effectively preserve the spatial details, while other 
methods preserve the spectral details but not the spatial details. However, the pro-
posed method is successful in preserving both aspects of the information. Addition-
ally, the use of traditional results as additional ground truth improves the results of 
the proposed method, as demonstrated by the figures.

a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n)

Fig. 6. Sample of WorldView2 images by different pansharpening algorithms:  
a) PAN; b) MUL; c) GS-CVT; d) CVT; e) DWT; f) Brovey; g) GS; h) IHS; i) PCA; j) EL;  

k) PNN; l) PanNet; m) TDIFW; n) TDIF
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a) b) c) d) e) f) g)

h) i) j) k) l) m) n)

Fig. 7. Sample of GeoEye1 images by different pansharpening algorithms:  
a) PAN; b) MUL; c) GS-CVT; d) CVT; e) DWT; f) Brovey; g) GS; h) IHS; i) PCA; j) EL;  

k) PNN; l) PanNet; m) the proposed method without using traditional results (TDIFW);  
n) the proposed method (TDIF)

4.3.	 Analysis
As the subjective evaluation depends on the vision of the interpreter, there is 

a need for objective analysis. The evaluation of different fusion methods for World-
View2 and GeoEye1 images by seven metrics reveals that TDIF demonstrates com-
petitive performance compared to the other methods. While some methods show im-
provements or slight decreases in performance compared to TDIF, others exhibit more 
significant drops. TDIFW stands out as a method that shows comparable performance 
to TDIF, with only slight decreases in various evaluation metrics. Overall, the proposed 
fusion method (TDIF) proves to be effective in improving the performance of the 
fusion process, outperforming several other methods in terms of evaluation metrics.

According to the results from Figures 8 and 9, TDIFW exhibits slightly lower 
similarity, correlation, and quality scores (SSIM, SCC, and QNR) compared to TDIF. 
PNN demonstrates significantly lower structural similarity (SSIM) and lower qual-
ity in terms of noise reduction (QNR) than TDIF. Similarly, PANNET shows lower 
similarity (SSIM) and correlation (SCC) scores compared to TDIF. Brovey, as well as 
IHS, GS, PCA, CVT, DWT, and GS-CVT, exhibit lower similarity, correlation, and 
quality scores compared to TDIF, with varying degrees. Overall, TDIF performs bet-
ter than TDIFW, PNN, and PANNET in terms of image fusion quality. The percent-
age differences in evaluation metrics range from −29.2% to −2.9% for WorldView2 
images and from 29.5% to 99.8% for GeoEye1  images. However, TDIFW demon-
strates comparable performance to TDIF as shown in Table 4, with slight decreases 
ranging from 1.6% to 6.9% for WorldView2 images and from 0.2% to 7.9% for Geo-
Eye1 images across different evaluation metrics.

Table 4. Objective evaluation TDIF and TDIFW

Satellite image Method SSIM↑ SCC↑ QNR↑ Qindex↑ PSNR↑ ERGAS↓ SAM↓

WorldView2 images
TDIF 0.92 0.97 0.93 0.94 31.52 22.2 7.58

TDIFW 0.91 0.96 0.91 0.92 30.47 23.2 8.11

GeoEye1 images
TDIF 0.92 0.98 0.97 0.96 32.10 13.87 6.41

TDIFW 0.91 0.98 0.96 0.96 29.94 14.99 6.4
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Ranking Tables 2, 3 and the values of Figures 8, 9, so that all the metrics values 
of the methods are being compared are in order. When these methods are numbered 
from 1 to 12, with the best metric value taking the highest number and the worst metric 
value taking the smallest, as shown in Figure 10, the proposed fusion method is the best 
that can improve the performance of the fusion process because it has the highest value.

  

 

 

 

 Fig. 8. Objective evaluation of fusion results for WorldView2 images 

  

 

 

 

 Fig. 9. Objective evaluation of fusion results for GeoEye1 images
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5.	 Conclusion and Future Work

The main challenge addressed in this study is the training phase as it requires 
significant processing power and memory resources. Furthermore, designing light-
weight architectures and optimizing the inference process are important considera-
tions. Two contributions are introduced within the scope of the proposed approach. 
The first proposes a deep learning model for the fusion of PAN and MUL images 
before testing it to ensure its superiority. Second, it proposes a new perspective for 
training the deep learning network. The proposed (TDIF) approach is based on the 
results obtained from pre-designed and well-tested hybrid traditional methods pro-
viding a novel perspective on solving the image fusion problem compared to exist-
ing deep learning methods.

By comparing the performance of different fusion methods to the proposed TDIF, 
significant variations in the evaluation metrics can be observed. For WorldView2 
images, the percentage differences range from  −29.2% to  −2.9%, indicating lower 
performance compared to TDIF. On the other hand, for GeoEye1 images, the per-
centage differences range from 29.5% to 99.8%, highlighting even greater disparities 
in performance. These variations emphasize the impact of different fusion methods 
on image quality and the need to carefully consider the choice of method based on 
the specific dataset or application. Overall, the proposed TDIF approach demon-
strates competitive performance compared to the other fusion methods, with some 
methods showing improvements or slight decreases, while others exhibit more sig-
nificant performance drops.

For future work, the TDIF approach can be further refined and optimized by 
exploring different architectures and techniques within the deep learning model. 
This may involve investigating the use of different types of layers, loss functions, or 
incorporating attention mechanisms to enhance the model performance. The TDIF 
could also be used as a generator, adding a discriminator to form GAN architectures 

 
 Fig. 10. Ranking of fusion methods
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and testing the results. Additionally, the TDIF approach can be applied and evaluat-
ed in a wider range of remote sensing applications, such as agriculture, environmen-
tal monitoring, and change detection. This will allow for a better assessment of its 
effectiveness in various real-world scenarios and provide insights into its potential 
practical applications.
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