
GEOMATICS AND ENVIRONMENTAL ENGINEERING • Volume 17 • Number 6 • 2023 

https://doi.org/10.7494/geom.2023.17.6.129

129

Rido Dwi Ismanto1, Hana Listi Fitriana2, Johannes Manalu3,  
Alvian Aji Purboyo4, Indah Prasasti5

Development of Flood-Hazard-Mapping Model  
Using Random Forest and Frequency Ratio  
in Sumedang Regency, West Java, Indonesia

Abstract: Flooding, often triggered by heavy rainfall, is a common natural disaster in 
Indonesia, and is the third most common type of disaster in Sumedang Regen-
cy. Hence, flood-susceptibility mapping is essential for flood management. The 
primary challenge in this lies in the complex, non-linear relationships between 
indices and risk levels. To address this, the application of random forest (RF) 
and frequency ratio (FR) methods has been explored. Ten flood-conditioning 
factors were determined from the references: the distance from a river, eleva-
tion, geology, geomorphology, lithology, land use/land cover, rainfall, slope, 
soil type, and topographic wetness index (TWI). The 35 flood locations from 
the flood-inventory map were selected, and the remaining 18 flood locations 
were used for justifying the outcomes. The flooded areas from the RF model 
were 28.39%; the rest (71.61%) were non-flooded areas. Also, the flooded ar-
eas from the FR method were 8.02%, and the non-flooded areas were 91.98%. 
The AUC for both methods was a similar value – 83.0%. This result is quite ac-
curate and can be used by policymakers to prevent and manage future flooding 
in the Sumedang area. These results can also be used as materials for updating 
existing flood-susceptibility maps.
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1. Introduction

Among the different sorts of natural hazards, a flood is one of the most damaging 
types of disasters; it causes significant damage [1–3] and is regarded as a serious nat-
ural danger. The extent of its harm is unquantifiable [4], it is the most prevalent 
natural calamity in the world according to most experts [5], and is a common natural 
calamity that kills people and destroys property around the world [6]. Between 1996 
and 2015, the United Nations Office for Disaster Risk Reduction (UNISDR) report-
ed 150,061 flood-related deaths worldwide; this accounted for 11.1% of all disaster 
deaths [7]. Floods are caused by severe rainfall that overflows into rivers and flood 
plains, briefly flooding the surrounding areas [8]. Therefore, a flood is linked to 
other disasters that might spread and cause a disastrous chain reaction [9].

In Indonesia, floods are one of the most common disasters – especially when 
the rainfall intensity is significant. They produce flooding in various regions – par-
ticularly in metropolitan areas with poor drainage. According to the National Agen-
cy for Disaster Countermeasure (BNPB) database (https://dibi.bnpb.go.id/), flood-
ing has dominated all existing disasters by 37% over the last 20 years, resulting in 
the deaths of 2,184 people, the disappearance of 39,030 people, and the destruction 
of 267,198 properties. According to the same data, there were 598 flood events in In-
donesia out of a total of 2401 disasters in 2022 (24.9%) (Fig. 1). Based on this, it can be 
seen that floods have caused a lot of losses and damage in terms of the environment, 
social issues, and even the economic stability of communities.

Fig. 1. Number of disasters (a) and flood events (b) in Indonesia from January 2014 to July 2023
Source: BNPB database

a)

b)

https://dibi.bnpb.go.id/
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In addition, floods are the third-most-common type of disaster in Sumedang 
Regency (after landslides and forest/land fires). During the period of 2000–2021, 
there were 103 flood events in the Sumedang district. The data on the flood events 
for the period of 2000–2011 was obtained from the BNPB database, while for the 
2012–2021 period, it was obtained from the West Java provincial government data-
base (https://opendata.jabarprov.go.id/id/dataset/jumlah-kejadian-bencana-  banjir-
berdasarkan- kabupatenkota-di-jawa-barat). In this regency, the most floods oc-
curred in 2010 (11 events), 2016 (13 events), 2019 (16 events), 2020 (21 events), and 
2021 (14 events). Based on the report from the Health Crisis Center, Indonesian Min-
istry of Health (https://pusatkrisis.kemkes.go.id/), as many as five villages in the Jati-
nangor sub-district were inundated with floods as high as 70–250 cm on January 6, 
2010. This flood occurred due to high rainfall intensity. Floods also occurred in the 
village of Sidamulya in the Sumedang Utara sub-district; these occurred as a result of 
the construction of the Cisumdawu toll road. This flood affected seven houses, and 
one part of the road collapsed.

Prediction, preparation, prevention, and damage assessment are the four steps 
to flood management [4]. Flood-susceptibility mapping is widely recognized as 
a necessary step in preventing and managing future flooding [2], as it can cover 
all four steps. However, flood susceptibility cannot be modeled by the basic and 
non-linear hydrological approaches because of the complexities of catchments [8, 10]. 
Therefore, traditional flood-modeling methods were unreliable regarding accurate 
predictions [11–13]; we need to use the most up-to-date geographic information 
system (GIS) techniques to process and analyze complicated planning strategies, 
decision- making, and integrated management [7]. In contrast to traditional flood- 
control theories, modern flood-risk management constantly attempts to use limited 
resources (social, environmental, and financial) [9].

According to [7], there are three types of flood-susceptibility assessments. 
There are hydrological models, statistical and data-driven approaches, and non- 
linear machine learning algorithms (such as support vector machine [SVM], deci-
sion trees [DT], and artificial neural network [ANN]). The main difficulty that is 
associated with the flood-susceptibility-assessment process is the multi-variable and 
non-linear relationship between the indices and the risk levels [5]. Traditional hy-
drological methods are not robust nor automated, as their model design, construc-
tion, and parameterization are time-consuming [7]. SVMs are complex mathematical 
functions that are difficult for humans to understand [5]. DT necessitates extensive 
pre-treatment and easily falls into local optimization [5, 14]. The ANN method shows 
over-learning and slow convergence speed problems [5, 15]. In addition, ANN can-
not estimate the contribution of each variable to the model [5].

On the other hand, random forest (RF) has been widely used for flood-susceptibil-
ity research. This method has been used to map the risk of widespread flooding in Cal-
casieu Parish, Louisiana, U.S. [16], to develop a spatial prediction of flood susceptibili-
ty in the Seoul, South Korea, metropolitan area [17], for a flood-susceptibility analysis 

https://opendata.jabarprov.go.id/id/dataset/jumlah-kejadian-bencana-banjir-berdasarkan-kabupatenkota-di-jawa-barat
https://opendata.jabarprov.go.id/id/dataset/jumlah-kejadian-bencana-banjir-berdasarkan-kabupatenkota-di-jawa-barat
https://pusatkrisis.kemkes.go.id/


132 R.D. Ismanto, H.L. Fitriana, J. Manalu, A.A. Purboyo, I. Prasasti

in Gresik Regency, Indonesia [18], for flood mapping and identifying the essential 
conditioning factors at Fredericton, New Brunswick, Canada [19], for flood-hazard 
mapping at the Galikesh River basin in northern Iran [20], and for flood-hazard and 
flood-insurance claims in southeast Texas [21]. In addition, the RF technique has sig-
nificant advantages when compared to the other more commonly used multivariate 
regression or classification approaches [22]. It is capable of accounting for the inter-
actions and non-linearity between variables. Second, it allows for the mixed use of 
categorical and numerical variables without reverting to indicator (or dummy) var i-
a bles. Third, it does not require assumptions on the distribution of explanatory varia-
bles. Moreover, RF can be used to rank the importance of variables using the mean 
decrease impurity (MDI) measure of significance [23].

The other methods that were considered for use in this study were statistical 
techniques, as numerous techniques of this type have been employed in earlier stud-
ies. Frequency ratio (FR) was used by [24] to map the flood vulnerability in the Kulik 
River basin in the Indo-Bangladesh Barind region. To map the flood susceptibility of 
the Kopai River basin in eastern India, [25] used FR, Shannon’s entropy, and weight 
of evidence (WoE) techniques. FR, entropy index, and WoE were used by [26] to 
analyze the flood risk of the Raiganj subdivision in eastern India. [27] assessed the 
flood susceptibility of the Patna district in Central Bihar, India, using FR and Shan-
non’s entropy. WoE and Shannon’s entropy were also used by [28] to map the flood 
susceptibility of eastern India. According to these, the FR method was chosen as the 
comparison for the RF machine learning method. This technique is one of the most 
widely used bivariate statistical techniques that are applied to various natural haz-
ard studies [8]. This model has the advantages of being easily implemented and pro-
ducing completely understandable results [8]. In addition, the models produce good 
flood-risk maps, and the analysis process is simple to grasp [4]. Furthermore, some 
research has indicated that bivariate statistical models can occasionally be more ac-
curate than machine learning models [29]. Therefore, the aims of this study are (1) to 
successfully analyze the flood-susceptibility distribution of the study area using RF 
and FR and (2) to compare the RF machine learning technique to the bivariate sta-
tistical FR method in flood-susceptibility assessment. The results can help planners 
for the Sumedang regional government in preparing a flood-management plan in an 
effort to manage regional flood risk. These findings can also be used to update the 
flood-susceptibility maps that are already in existence.

2. Study Area

The study area that was chosen as the case study was Sumedang Regency 
in West Java Province, Indonesia. According to Central Bureau Statistics (BPS), 
Sumedang had 26 sub-districts and 270 villages in 2021 with a total population 
of 1,152,507 people and a population density of 739 people/km2. Sumedang is a hilly 
and mountainous region with elevations that range from 18 to 1996 meters above 
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sea level. Mountainous terrain dominates much of the Sumedang region, with some 
flat areas in the north. Based on these details, Sumedang was selected as the initial 
study location for the RF and FR algorithm-based flood-susceptibility assessment in 
Indonesia; there is a chance that we can continue this study in other areas as well. 
The study area can be seen in Figure 2.

Fig. 2. Twenty-six sub-districts of Sumedang Regency (study site)

3. Materials and Methods

3.1. Flood-Inventory Map

The flood-inventory database is a key component of flood-vulnerability map-
ping [13]. The suggested methodological initial step is to make a flood-inventory map 
by collecting the data on previous flood events [7]. Due to changes in land use, his-
torical flood data may provide limited spatial and temporal precision. Consequently, 
the results may be more ambiguous [7, 30]. A flood-inventory map was created by 
using historical data sets for specific events in Sumedang Regency. In this study, 
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a flood-inventory map was created using a collection of flood-event data archives 
from the BNPB database. The used data was the date of each incident and the coordi-
nates of the floods in Sumedang Regency from 2000 to 2021. Based on the historical 
data, there are records of 53 coordinates of flood events; 35 coordinates of these events 
were used to develop the model, and 18 coordinates were used to validate the model. 
Then, the 53 non-flood coordinates were also meticulously created. Determinations 
of the non-flood points were made randomly outside the existing flood coordinates.

The accuracy of the data (training sample data) had an important impact on the 
creation of the flood models [19]; therefore, choosing the right training dataset was 
critical for ensuring the overall quality and effectiveness of the model [5]. In this 
study, an equal number of flooded and non-flooded points were generated in the 
RF classification method in order to avoid the issue of class imbalance [19]. The 
training and validation data from the flood inventory is shown in Figure 3. RF used 
both classes (flood and non-flood) to model the susceptibility, but FR merely needed 
the flood class to build the model.

Fig. 3. Coordinates of flood events used as training (35 points) and validation (18 points) 
mapped on National DEM (DEMNAS) for Sumedang region, West Java

Source of DEMNAS: https://tanahair.indonesia.go.id/demnas/#/demnas

https://tanahair.indonesia.go.id/demnas/#/demnas


Fig. 4. Flood-conditioning factors: a) distance from rivers [m]; b) elevation [m]; c) geomorphology; d) lithology; e) land use/land cover; f) rainfall [mm/year]; g) slope [%]; h) soil type; i) TWI; j) geology

a) b) c) d)

e) f) g) h)

 i) j)



Development of Flood-Hazard-Mapping Model Using Random Forest and... 135

3.2. Flood-Conditioning Factors

Understanding and determining flood-conditioning factors were critical for this 
study when creating the flood model [6]. Although some factors were important 
when determining one flood-susceptibility area, they may be insignificant in an-
other [6, 31]; therefore, the selection of conditioning factors depended on the study 
area and its characteristics [6, 19]. The conditioning factors of this study were the 
distance from a river, elevation, geology, geomorphology, lithology, land use/land 
cover, rainfall, slope, soil type, and TWI (Fig. 4 on the interleaf). 

The distance from the rivers of the study area significantly impacts the speed 
and extent of floods [2, 32]. TWI measures topographic influences on hydrologic 
processes and is closely linked with groundwater depth and soil moisture [21, 33]. 
The TWI values are in the form of a 0–1 range (the values are normalized); a value 
of 0 indicates that the land does not accumulate water, while a value of 1 indicates 
that the land accumulates water. Land use/land cover directly or indirectly influence 
infiltration, evapotranspiration, and surface-runoff generation [13]. Surface runoff 
and water-flow intensity are controlled by the slope, which causes soil erosion and 
vertical percolation [29, 34]. Lithology is a key flooding conditioning parameter be-
cause it directly impacts land permeability and surface runoff [13, 35]. Moreover, the 
importance of soil data in predicting excess precipitation and infiltration is partic-
ularly important [7]. At the same time, geomorphology has the potential to provide 
deterministic methods for detecting flood risk or hazard [36]. Geology parameters 
influence flood susceptibility because of their sensitivity to lithological units [37]. 
Furthermore, elevation is the most critical component for flood-susceptibility map-
ping according to the sensitivity analysis [6]. Last, rainfall has a direct relationship 
with river discharge according to the literature, and a substantial amount of rain in 
a short period of time can cause flash floods in semi-arid locations [29].

Land use/land cover were derived from Landsat-8 image data using supervised 
classification with the support vector machine (SVM) algorithm at an 85% accura-
cy level. Data from the National DEM (DEMNAS, https://tanahair.indonesia.go.id/ 
demnas/ #/demnas) was used to make the slope (processing uses slope features) 
and TWI (uses formula calculations based on references). TWI uses DEMNAS image 
data to know the trend-mapping method of water accumulation on topographical 
control [38]. DEMNAS was built from several data sources, including IFSAR data 
(5-metre resolution), TERRASAR-X (5-metre resampling resolution from 5–10 m 
original resolution) and ALOS PALSAR (11.25-metre resolution) by adding the mass 
point data that is used in making topographical maps. The spatial resolution of DEM-
NAS was 0.27-arcseconds when using the EGM2008 vertical datum. This DEMNAS 
data was used as a reference by the authors because it was issued by the national 
authority. The DEMNAS data had a smaller root mean square error (2.79 m) as com-
pared to the DTM data (3.24 m) and DSM (3.71 m), with bias errors of −0.13, −0.63, 
and 2.21 m for the DEMNAS, DTM, and DSM data, respectively.

https://tanahair.indonesia.go.id/demnas/#/demnas
https://tanahair.indonesia.go.id/demnas/#/demnas


136 R.D. Ismanto, H.L. Fitriana, J. Manalu, A.A. Purboyo, I. Prasasti

Furthermore, rainfall was obtained by downloading the Climate Hazards 
Group InfraRed Precipitation with Station (CHIRPS) satellite monthly average rain-
fall raster file for 30 years (1990–2020). The CHIRPS data is a re-analysis of rainfall 
data with a spatial resolution of 0.05° × 0.05° that has been available since 1981 (and 
introduced by [39]). The data will be processed by converting all of the bulk data 
from originally a monthly average to an annual one and interpolating using the in-
verse distance weight (IDW) method. All of the data sources are listed in Table 1. All 
of the data was then resampled to a spatial resolution of 30 m.

Table 1. Flood-conditioning factor (data sources)

No. Factor Format Resolution [m] Source

1 Geomorphology polygon – Indonesian Ministry of Energy and 
Mineral Resources 

2 Geology polygon – Indonesian Ministry of Energy and 
Mineral Resources 

3 Lithology polygon – Indonesian Ministry of Energy and 
Mineral Resources 

4 Soil type polygon – Indonesian Ministry of Agriculture

5 Elevation raster 8 DEMNAS

6 Slope raster 8 DEMNAS

7 Rainfall raster 5,500 CHIRPS

8 TWI raster 8 DEMNAS

9 Land use/land cover raster 30 Landsat-8 image 

10 Distance from river line vector – DEMNAS

3.3. Random Forest

Random forest (RF) classification is a machine learning algorithm for non-para-
metric multivariate classification that was first developed by Leo Breiman in 2001 [22]. 
RF uses a non-parametric estimating framework in which an input random vector 

pX∈ ⊂


   is observed [23]. The purpose is to estimate function ( ) [ | ]m x Y X x= =


   
in order to anticipate random response Y = {0, 1}. With this goal in mind, we assume 
we are given a training sample ( )1 1 )( , ,  ) , ( , n n nX Y X Y= …

 

  of independent random 
variables distributed as independent prototype pair ( , )X Y



. The purpose is to create 
an estimate :nm →  of function m using data set.

RF is a predictor that is composed of M randomized regression trees [23]. The 
predicted value at query point x  is represented as ;Θ ,  ( )n j nm x   for the j-th tree in the 
family, where 1Θ , ,ΘM…  are independent random variables.
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If a leaf represents region A, the randomized tree classifier takes the following form:
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where * )Θ(n j  denotes the data points that are chosen during the resampling pro-
cess. The RF classifier is a result of a majority vote among classification trees; that is:
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Consider a single tree that has not been subsampled. Let Nn(A) be the total num-
ber of data points that fall into A. A cut in A is pair (j, z), where j is some value 
(dimension) from {1, ... , p}, and  the position of the cut along the j-th coordinate 
within the limits of A. Let CA denote the collection of all possible cuts in A. Let p0,n(A) 
(resp., p1,n(A)) be the empirical probability given a data point in cell A that has label 0 
(reps., label 1). By noticing that 1, 0,( ) 1 ( )A n nY p A p A= = − , the classification and regres-
sion trees (CART) split the criterion reads for any ( , ) Aj z C∈ :
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This criterion is based on the so-called Gini impurity measure [23]. For each cell A, 
the best cut * * )( ,n nj z  is selected by maximizing Lclass,n(j, z) over a subset { }1, ,tryM p⊂ …  
and CA; that is:
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RF can be utilized to determine the significance of parameters in regression or 
classification problems using the mean decrease impurity (MDI) measure of signifi-
cance [23]. MDI is calculated by averaging the total decrease in the node impurity that 
is caused by variable splitting across all trees. Set ( )(1) )( , , pX X X= …



, for a forest that is 
formed by the joining of M tresses, the MDI of the variable X(j) is defined by the following:
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where pn,t is the fraction of observations that fall within node t, 1{ } ≤ ≤l l MT  is the col-
lection of trees in the forest, and * *

, , )( , n t n tj z  is the split that maximizes Lclass,n(j, z) in 
node t.
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3.4. Frequency Ratio

A frequency ratio (FR) is a bivariate statistical analysis method that uses a spa-
tial distribution-dependent (probability-dependent) factor (flood location) as well 
as flood-triggering and causal factors [29]. The bivariate probability of each inde-
pendent flood-triggering factor was determined by its relationship with flood oc-
currence [29]. The higher the bivariate probability (greater than 1), the stronger the 
correlation between the flood incidence and the flood-triggering factors; the lower 
the probability (less than 1), the weaker the correlation [29].

Let L and F stand for floods and a specific flood-related factor, respectively. The 
frequency ratio for the i-th type of factor F(Fi) can be stated as follows [13]:

 

 
 

 ( | )
( ) 

 

i

i i i
i

i

area of floods in F region
PL area of F region p L F

FR
area of floods in study regionPF p L

area of study region

= = =  (5)

Because “the probability of floods in the study region” p(L) is predefined based 
on the flood and factor data, frequency ratio FRi is entirely determined by “the prob-
ability of floods in the Fi area” p(L|Fi), which is actually “the conditional probability 
of L given Fi” [37]. A larger conditional probability p(L|Fi) means that the occurrence 
probability of floods is larger in the i-th type or the i-th class of factor F(Fi).

Consider an arbitrary flood-related factor F(j) (j = 1, 2, 3, ... , m); the frequency ratios 
for the different classes, ( )j

iFR (i = 1, 2, 3, ... , n; j = 1, 2, 3, ... , m), can be computed by using 
Equation (5). The frequency ratio of this factor at this location FR(j) will be ( )j

iFR  if the 
class F(j) of at this location is ( )j

iF . At this location, the flood-susceptibility index (FSI) 
will then be the sum of the frequency ratios of various flood-related factors [37]:

 ( )
1

m j
j

FSI FR
=

= ∑  (6)

3.5. Flood-Susceptibility Assessment based on RF
A flowchart of flood-susceptibility assessment based on RF was created (shown 

in Figure 5). The work starts with collecting the flood-inventory data and the fac-
tors that caused the flood events. The 53 flood coordinates were found based on 
the historical data. For the RF training sample, 53 non-flood coordinates were also 
generated and made randomly outside the existing flood coordinates. The precision 
of the data that was used to generate the flood model has a significant impact on its 
accuracy [19]. Selecting an appropriate training data set is critical for ensuring the 
overall quality of the model and efficacy [5]. The BNPB database was used to acquire 
several sample points. An equal number of flooded and non-flooded points were 
generated to avoid the issue of class imbalance [19].
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From the flood and non-flood coordinates, the training sample was generated 
by taking all of the digital numbers on the flood-conditioning factor. The data set 
was randomly split into training and testing data – both of which were utilized to 
develop the RF model and test its accuracy [5]. The training sample was randomly 
separated as training data and test data at a ratio of 70:30. Using the training data 
and the RF algorithm, the RF model was earned. From the model, the importance 
degree was generated. The assessment map of the flood susceptibility was created 
with all of the digital numbers of the flood-conditioning factor and the RF model. 
Next, the validation was conducted using the test data and flood susceptibility.

The RF method was implemented using the open-source scikit-learn python 
package (https://scikit-learn.org). The model hyper-parameters of the RF algorithm 
(which regulate the structure of the forest and the level of the randomization) need-
ed to be defined before it could be used [40]. Therefore, the two different scenarios 
were conducted based on this. The first scenario was to vary the number of trees 
from 100, 200, through 1000, with all of the other parameters set by default. The 
second scenario was the ten-times cross-validation; this was achieved by varying the 
training and test data by randomly separating each running. These two scenarios 
evaluated the performance of the RF model. The area under the receiving operat-
ing characteristic curve (AUC) was used to evaluate the performance of the model. 
According to [26], the AUC value was classified into five classes: 0.9–1.0 (excellent); 
0.8–0.9 (very good); 0.7–0.8 (good); 0.6–0.7 (average); and 0.5–0.6 (poor).

Fig. 5. Flowchart of flood-susceptibility assessment using random forest

https://scikit-learn.org
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3.6. Flood-Susceptibility Assessment based on FR

To compare the performance of the RF method, the bivariate FR method is ex-
plained in Figure 6. The used data (training and test data) was the same data that 
was used in the RF method. In the FR method, the used data was only the flood data 
without the non-flood data. Since the used data was absolutely the same as the data 
that was used in RF, the performance can be compared. Perceiving the feature-
ÐÔportance value, the normalized prediction rate was used. Normalization helped 
ÙÌmove the effect of variation in the scale of the data set; i.e., a data set with large 
values can be easily compared to a data set with smaller values. Besides, AUC was 
also derived from the FR of the flood susceptibility using the test data.

Fig. 6. Flowchart of flood-susceptibility assessment using frequency ratio

4. Results

4.1. Random Forest

Two scenarios were carried out to see the RF performance. The AUC values 
that were based on the results by varying the number of trees are shown in Figure 7. 
The AUC values that were obtained from this scenario were divided into two val-
ues: 82.0, and 83.0%. The results of several numbers of these trees were very close, 
and no significant difference could be seen. The AUC value of 83.0% was achieved 
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by the following numbers of trees: 200, 300, 400, 500, 700, and 900. The number of 
trees of 200 was chosen (for the ten-times cross-validation scenario) because it was 
the smallest number of trees but had the highest AUC value.

Fig. 7. AUC values based on N-tree sensitivity

The following scenario was ten-times cross-validation with the number of trees 
set to 200 while the other hyper-parameters were held constant. From this process, 
the performance of the model could be observed. The receiver operating character-
istic (ROC) curves and AUC for each run are shown in Figure 8.

Fig. 8. ROC curves and AUC values based on ten-times cross-validation
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The AUC values varied quite a bit on each run; these were different from the 
previous scenario. The smallest AUC was 74.0% and occurred on the seventh run, 
while the highest AUC was 94.0% and was on the third run. The average AUC value 
of all of these cross-processes was 83.0%.

In addition to the AUC value, feature-importance values were also derived from 
the RF model. The importance value of this feature determined which feature of the 
existing data was most helpful in the RF model. Table 2 shows the average feature- 
importance values from ten cross-validation runs. The most important parameter 
was geology (with an average value of 19.42%), followed by land use/land cover and 
soil type (with average appearance importance values of 15.84 and 10.28%, respec-
tively); the lowest significant values were geomorphology, TWI, and lithology (with 
averages of 4.62, 7.24, and 7.78%, respectively).

Table 2. Random forest importance values

Feature Importance value  
[%] Rank

Geology 19.42 1

Land use/land cover 15.84 2

Soil type 10.28 3

Rainfall 9.61 4

Elevation 8.53 5

Distance from river 8.47 6

Slope 8.21 7

Lithology 7.78 8

TWI 7.24 9

Geomorphology 4.62 10

After applying the RF algorithm to various combinations of the training and 
validation data, each implementation produced a probability map with values that 
ranged from 0 to 1. Each value of the pixel showed the likelihood of that pixel be-
coming flooded or not. The flood-probability map is shown in Figure 9. Using Jenks 
natural breaks categorization approach [19,  41], the flood-susceptibility map was 
derived from the probability map (shown in Figure 10) with five susceptibility class-
es; namely, very low, low, moderate, high, and very high.
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Fig. 9. Random forest method probability

Fig. 10. Random forest method susceptibility
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4.2. Frequency Ratio

Bivariate statistical RF was used to compare the performance of the RF method. 
The separated training and test data that was used in this model was the same as that 
which was used in second run from the cross-validation scenario in the RF model. 
The data that was used in the FR model was only the flooded inventory data.

Table 3. Frequency ratio summary

Feature Number of pixels – 
each class Total pixels – area Number of 

flood pixel
Frequency 
ratio (FR)

Distance from river [m]

0–10 1,162,164

22,886,661

4 2.25

10–50 4,488,188 7 1.02

50–100 4,866,632 10 1.34

100–150 3,753,107 6 1.05

>150 8,616,570 8 0.61

Elevation

Lowland 779,252

22,886,670 

3 2.52

Lowland hills 2,227,794 5 1.47

Low hills 2,574,683 0 0.00

Hills 7,197,657 12 1.09

High hills 10,107,284 15 0.97

Geomorphology

Volcano cone 12,056,378

22,887,214 

19 1.03

Strong inscribed hills 807,846 1 0.81

Volcanic fallout deposits 9,077,103 13 0.94

Fault hills 945,887 2 1.38

Lithology

Lava, volcanic mudflow, 
tuffa, brecci 15,025,648

22,887,214 

16 0.70

solid sediment 4,704,503 9 1.25

Semi-solid sediment 
(gravel, sand, silt, clay) 3,157,063 10 2.07
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Land use/land cover

Waterbody 1,109,199

22,612,717 

3 1.75

Forest 8,207,183 7 0.55

Shrubs 4,750,051 6 0.82

Building area 2,191,050 11 3.24

Open-space area 1,278,003 3 1.52

Wet agriculture 2,842,272 5 1.14

Dry agriculture 1,687,997 0 0.00

Cloud 546,962 0 0.00

Rainfall [mm/year]

2503–2668 2,911,214

22,886,661 

8 1.80

2668–2776 3,704,360 1 0.18

2776–2873 5,420,916 13 1.57

2873–2973 5,217,407 6 0.75

2973–3173 5,632,764 7 0.81

Slope [%]

0–8 7,986,698

22,887,110 

21 1.72

8–15 7,214,156 5 0.45

15–25 5,239,389 8 1.00

25–45 2,428,127 1 0.27

>40 18,740 0 0.00

Soil type

Gleysol 1,391,467

22,887,214 

3 1.41

Alluvial 65,439 0 0.00

Cambisol 9,742,493 18 1.21

Podzolic 7,140,751 10 0.92

Mediterranean 6,184 0 0.00

Andosol 4,229,586 4 0.62

Lithosol 80,565 0 0.00

Others 230,729 0 0.00

Table 3. cont.
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Feature Number of pixels – 
each class Total pixels – area Number of 

flood pixel
Frequency 
ratio (FR)

TWI

1.14–4.59 4,669,778

22,601,689 

6 0.83

4.59–5.74 9,056,324 13 0.93

5.74–7.16 6,132,616 12 1.26

7.16–9.32 2,057,843 3 0.94

9.32–18.38 685,128 1 0.94

Geology

Coastal sediment 409,057

22,887,214

3 4.80

Claystone 3,744,312 1 0.17

Sandstone 851,190 1 0.77

Kaliwangu formation 754,499 2 1.73

Tufa sandstone and 
conglomerate 729,714 2 1.79

Tufaan clay unit 8,741 1 74.81

Young volcanic rock 2,530,552 3 0.78

Young volcanic product 6,006,891 18 1.96

Lava 1,078,535 1 0.61

Rocky tuff 275,507 1 2.37

Flake 533,315 2 2.45

Others 5,964,901 0 0.00

Using the digital numbers from all of the conditioning factors that were extract-
ed in the training data coordinates as well as Equation (5), the FR model was created; 
the summary is presented in Table 3. From this model, the flood-probability map can 
be derived using Equation (6); the result is shown in Figure 11. Using Jenks natural 
breaks categorization approach [19, 42], the flood-susceptibility map was derived 
from the probability map (shown in Figure 12) with the same five susceptibility 
classes as were in the RF model.

Table 3. cont.
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Fig. 11. Frequency ratio probability

Fig. 12. Frequency ratio susceptibility
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The validation data (Fig. 3) was used to measure the performance of the model. 
The ROC values are shown in Figure 13 (with an AUC value of 83.0%). In addition, the 
feature-importance values were also derived from the FR model using the normalized 
prediction rates. Table 4 shows the feature-importance values from the FR model. The 
most important parameter was the geology (just the same as in the RF model), with 
a feature-importance value of 19.11%, followed by lithology and slope (with values 
of 12.15 and 11.78%, respectively). The lowest in importance were the TWI, geomor-
phology, and slope type, with importance values of 6.07, 7.83, and 8.00%, respec-
tively. Like in the RF model, geomorphology was always one of the lowest factors. 

Fig. 13. ROC of frequency ratio result

Table 4. Frequency ratio importance values

Feature Importance value  
[%] Rank

Geology 19.11 1

Lithology 12.15 2

Slope 11.78 3

Elevation 9.81 4

Land use/land cover 8.48 5

Distance from river 8.46 6

Rainfall 8.29 7

Soil type 8.00 8

Geomorphology 7.83 9

TWI 6.07 10
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5. Discussions

5.1. Random Forest

In this study, the flooded areas (susceptible zones) were defined as the high- and 
very-high-susceptibility classes. After the total area of each class was calculated, the 
regions with the highest flood-susceptibility zones were the Ujungjaya (4423.14 ha), 
Sumedang Selatan (4072.05 ha), and Cimalaka (2775.6 ha) sub-districts (shown 
in Figure 10). It can be seen in Figure 10 that these regions have a lot of red and or-
ange pixels. This makes sense, as these regions have a lot of flood-event history (as 
is shown in Figure 3). Likewise, the Tanjungmedar, Surian, and Ganeas sub-districts 
were the regions with the lowest flood-susceptibility zones, as they have almost no 
flood-event histories (as can be seen in Figure 10). Overall, the map (Fig. 10) contains 
five probability map classes: very low (21.12%), low (25.15%), moderate (25.34%), 
high 18.44%, and very high (9.95%). Therefore, the flooded susceptibility zone from 
the RF model was 28.39%, and the remaining 71.61% consisted of non-flooded 
zones. Very high flood-susceptibility zones are located in the Ujungjaya, Cimala-
ka, Cimanggung, and Sumedang Utara sub-districts, while high flood-susceptibility 
zones are in the Sumedang Selatan, Buahdua, and Ujungjaya sub-districts.

In addition, the highest flood-susceptibility-zone regions based on the per-
centage (the ratio of the susceptible area to the sub-district area) were Jatinan-
gor (81.05%), Sumedang Utara (67.61%), and Cimanggung (58.15%). It can be seen 
in Figure 10 that each of these areas is dominated by red and orange pixels; despite 
the fact that these regions are small, they have a lot of flood-event history (Fig. 3). 
Meanwhile, the regions with the lowest percentages were the Surian, Tanjungme-
dar, and Conggeang sub-districts.

Based on total area and percentage, it can be generally concluded that Ujung-
jaya and Cimalaka are the most-susceptible zones in Sumedang, while Surian and 
Tanjungmedar are the least-susceptible zones. This is acceptable according to the fact 
that the average AUC for RF was 83.0% (acc. to [26], this value can be considered to be 
very good), with the highest AUC being 94.0%. This value is said to be relatively good 
when compared to the works of [21] (with an AUC value of 89.5%) and [18] (with an 
AUC value of 97.0%); it is better than the work of [17] (with an AUC value of 79.2%).

5.2. Frequency Ratio

As shown in Table 3, the highest FR value was reached by the tuff clay unit class, 
followed by the coastal sediment class for the geology factor. This was because this re-
gion was small but had a flood-event history. Besides, the lowland and lowland hills 
classes from the elevation factor had rather high FR values. It makes sense that the 
low areas have higher susceptibility than the higher areas. The same is true for slopes 
of less than 8%; this region had an FR value that was greater than 1, while the other 
areas (with slopes that were greater than 8%) had the same or less than 1 (showing 
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that these areas are not susceptible to floods). This was also acceptable, since flat ar-
eas can hold more water than sloping areas. Moreover, the building area class on the 
LULC factor looked to have a higher FR value that the others; this was because the 
building areas had a small catchment area. Furthermore, the highest FR for the rain-
fall factor was generated by the smallest rainfall class. Despite this fact, this was in 
line with the fact that the rainfall factor was less important than the others (Table 4).

Similarly to the RF result, the susceptible zone from FR was defined as the high- 
and very-high-probability map classes. Based on the total area, the region with 
the highest susceptible zone was Ujungjaya (3693.60 ha), followed by the Tomo 
(1344.87 ha) and Cimalaka (1077.75 ha) sub-districts (as can be seen in Figure 12). 
It can also be seen in Figure 12 that these regions are dominated by orange pixels. This 
makes sense, as these regions have had a lot of historical flood events (according to 
Figure 3). Since they have had almost no flood history, the Wado, Tanjungmedar, and 
Cibugel sub-districts were the regions with the lowest numbers of susceptible zones 
(this can also be seen in Figure 12). Overall, the map (Fig. 12) contains five probabil-
ity map classes: very low (31.63%), low (36.88%), moderate (23.47%), high (7.98%), 
and very high (0.04%). A very high susceptibility is associated with Pamulihan, and 
a high susceptibility is mainly associated with the Ujungjaya, Tomo, and Cimalaka 
sub-districts. Therefore, the flood-susceptibility zones from the FR model accounted 
for 8.02% of the zones (located in the Pamulihan, Ujung Jaya, Tomo, and Cimalaka 
sub-districts), while the remaining 91.98% were non-flooded zones.

In addition, the areas with the highest percentages of susceptible zones were 
Ujungjaya (43.61%), Jatinangor (35.51%), and Sumedang Utara (25.86%). It can be 
seen from Figure 12 that each of these areas is dominated by orange pixels; this is 
because a history of flood events has occurred in these areas even though they are 
not very large (Fig. 3). Meanwhile, the areas with the lowest flood-area percentages 
were Surian, Tanjungmedar, and Conggeang.

Based on these two categories (flood area and flood-area percentage), areas 
such as Ujungjaya, Cimalaka, and North Sumedang can be generally said to be the 
most-prone areas to flooding in Sumedang (because these areas were included in 
the top five based on both categories), while Cibugel, Wado, and Tanjungmedar 
are the safest areas from flooding. These results are acceptable because the AUC val-
ue for the FR model is 83%. This value can be said to be very good according to [26], 
although it is lower than [24] (with an AUC of 90.1%), [25] (with an AUC of 96.5%), 
and [26] (with an AUC of 91.1%).

5.3. Comparison
Based on RF and FR, the flood-susceptible areas in Sumedang were relative-

ly the same; namely, Ujungjaya and Cimalaka. For those areas that are not prone 
to flooding, RF and FR concluded that Tanjungmedar was not a flood-susceptible 
area; however, the results of the susceptible areas based on the two methods showed 
relatively different results. The flooded susceptibility zones from the RF model 
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accounted for 28.39%, and the remaining 71.61% were non-flooded zones, whereas 
the flood-susceptibility zones for FR accounted for 8.02%, and the remaining 91.98% 
were non-flooded zones. It can be seen that the susceptibility zone was smaller 
based on FR than the results from RF – especially for very high susceptibility areas. 
This happened because, in the FR method, the FR value was dominated by one class; 
namely, tuff clay units (whose value was quite high). Thus, the distribution of the 
pixel values collected on the left (lower) and caused the Jenks natural breaks to cat-
egorize fewer classes for the very high class.

In both models, the results of the importance value stated that geological pa-
rameters are essential parameters for flood-risk assessment (Fig. 4j). This is similar 
to [43, 44], where geology was determined to be one of the significant flood-deter-
mining events. If the training data is overlaid with the geology data in Figure 4j, it 
can be seen that not all classes in geology have flood events. In those classes where 
there was flooding, the distribution of the flood points was not evenly distributed in 
each class (Table 3, ‘Number of flood pixel’ column, ‘Geology’ row). Thus, the class 
differences in geology can determine the differences in the levels of flood suscepti-
bility quite well. This is what caused geology to be the most important parameter.

6. Conclusions

The study of flood-hazard risk in the Sumedang area was conducted using the 
machine learning RF algorithm as compared to the bivariate statistical FR method. 
This study chose ten flood-conditioning factors: distance from a river, elevation, geolo-
gy, geomorphology, lithology, land use/land cover, rainfall, slope, soil type, and TWI. 
There were two scenarios: the first was the number of trees sensitivity, and the second 
was the training and test data (cross-validation) sensitivity. Based on the first scenar-
io, the number of trees that were employed throughout the cross -validation process 
was 200, and the other hyper-parameters were fixed to default. By using the feature- 
importance method on scikit-learn, the significant parameters were derived. From the 
important average values, the ranking of the essential parameters was as follows: 
geology, land use/land cover, elevation, rainfall, soil type, distance from a river, TWI, 
slope, geomorphology, and lithology (in order from highest to lowest). Therefore, 
geology was the highest, and lithology was the most subordinate significance to the 
RF model. Using the FR method, the important parameters ranked from the highest to 
the lowest were as follows: geology, lithology, slope, elevation, land use/land cover, 
distance from a river, rainfall, soil type, geomorphology, and TWI. Here, TWI scored 
the lowest significance, but the highest was the same as with the RF method (geology).

Furthermore, the flood-susceptibility map was created using the model and all 
of the digital numbers from conditioning factors. Using the Jenks natural break clas-
sification method, a flood-susceptibility map was derived from that map, including 
five classes: very low, low, moderate, high, and extremely high. Flooded areas were 



152 R.D. Ismanto, H.L. Fitriana, J. Manalu, A.A. Purboyo, I. Prasasti

defined as having high and very high probabilities. The flooded areas from the RF mod-
el were 28.39%, and the remaining 71.61% were non-flooded areas. The susceptibility 
zones from RF were mainly from the Ujungjaya, Sumedang Selatan, Cimalaka, Buah-
dua, and Cimanggung sub-districts. The flooded areas from the FR method were 8.02%, 
with the most being located in the Ujungjaya, Tomo, Cimalaka, Jatinangor and Sumed-
ang Utara sub-districts; the non-flooded areas accounted for 91.98%. The RF model 
resulted in more flooded areas than the FR model; this happened because the FR value 
was dominated by one class in the FR method (namely, tuff clay units), whose value 
was quite high. Thus, the distribution of the pixel values collected on the left (lower) 
and caused the Jenks natural breaks to categorize fewer classes for the very high class.

The area under the receiver operating characteristic curve (AUC) was used to 
assess the model. The average AUC from the ten-times cross-validation RF model 
was 83.0%, with the best AUC being 94.0% and the worst – 74.0%. At the same time, 
the AUC average from the FR method was also 83.0% (just the same as the average 
AUC value from RF). According to [26], both results had the ‘very good’ title; how-
ever, these results can still be developed when compared with the previous study. 
Overall, the flood-susceptibility examination in the Sumedang area using the RF al-
gorithm compared to the bivariate statistical FR both yielded relatively good results.
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