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Abstract:	 Land surface albedo is a relevant variable in many climatic, environmental, and 
hydrological studies; its monitoring allows researchers to identify changes on 
the Earth’s surface. The open satellite data that is provided by the USGS/NASA 
Landsat mission is quite suitable for estimating this parameter through the re-
mote sensing technique. The purpose of this paper is to evaluate the poten-
tialities of the new Landsat 9 data for retrieving Earth’s albedo by applying 
da  Silva et al.’s algorithm (developed in  2016 for the Landsat  8 data) using 
the Google Earth Engine cloud platform and R software. Two urban areas in 
Southern Italy with similar geomorphologic and climatic characteristics were 
chosen as study sites. After obtaining thematic maps of the albedos here, a sta-
tistical analysis and comparison among the Landsat 8 and Landsat 9 results 
was performed considering the entire study areas and each land use/land cover 
class that is provided by the Copernicus Urban Atlas 2018. This approach was 
also applied to the data after being filtered through Tukey’s test (used to detect 
and remove outliers). The analysis showed a very good correlation between 
the Landsat 8 and Landsat 9 estimations (ρ  > 0.94  for both sites), with some 
exceptions that were related to some mis-corresponding values. Furthermore, 
the Landsat 8 and Landsat 9 outliers were generally overlapping. In conclusion, 
da Silva et al.’s approach appears to also be reasonably applicable to the Land-
sat 9 data despite some radiometric differences.
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1.	 Introduction

Land surface albedo (usually called “albedo”) is a key geophysical variable that 
has attracted the interest of many researchers who are studying climate change, Earth’s 
surface energy budget, and water resource management. Indeed, albedo information 
(which quantifies a surface’s ability to reflect incident solar radiation) allows for an 
evapotranspiration (ET) estimate, which is particularly valuable for water resource 
management and tackling the issue of drought [1–5]. In urban areas, lower ET values 
correspond to impermeable surfaces, implying that the heat from the Sun is stored 
and later released into the atmosphere, resulting in an urban heat island (UHI) ef-
fect [5–15]. Monitoring surface albedo is, therefore, relevant for evaluating the impacts 
of climate changes, which are defined in the United Nations’ (UN) 17 Sustainable De-
velopment Goals (SDGs) for safeguarding the Earth from global threats [3, 13, 16–18].

Open Earth Observation (EO) satellite data plays an important role in predict-
ing environmental variables and tracking changes on the Earth’s surface at different 
scales of investigation. While low-resolution data is mainly used for global moni-
toring, medium-resolution Landsat and Sentinel-2 images (with geometric resolu-
tions of 30 and 10 m, respectively) are adequate for regional and city scale research 
[1, 4, 10, 16, 19–21]. Because assessing the consequences of climate change necessi-
tates the data spanning of a long time period, the multidecadal data that is provided 
by the Landsat mission (which has been in operation since 1972) is usually chosen 
over Sentinel-2 data (which has only been available since 2015) [10–13].

The Landsat satellites that are currently in orbit include Landsat 8 (launched 
in 2013) and Landsat 9 (in space since 2021). The sensors of Landsat 8’s Operational 
Land Imager (OLI) and Landsat 9’s OLI-2 have comparable characteristics, such as 
geometric, temporal, and spectral resolutions. This responds to the need to keep 
satellites monitoring natural resources and processes, thereby identifying long-term 
changes on the Earth’s surface. Nonetheless, the Landsat 9 instrument has a higher 
radiometric resolution (14 bits) than the OLI sensor (which has a 12-bit resolution). 
As a result, the debut of the Landsat 9 platform provides still-not-much-explored 
opportunities for environmental monitoring from EO data [2, 10, 22–27].

There are various approaches mentioned in the literature for determining albedos 
from remote sensing (RS) images. Bidirectional reflectance distribution function (BRDF) 
angular models and the narrow-to-broadband conversion methods are the most com-
mon. The former models are more complex and require more parameters than the latter 
ones, which are commonly adopted to simplify the estimation procedure [1, 3]. In rela-
tion to the latter, one of the most-often-used is that of Liang [28], which is an easy-to-use 
technique that is suited for a wide range of EO data. In 2008, Tasumi et al. [29] suggested 
a more complicated strategy for managing Landsat 5 and 7 data based on atmospheric 
correction and a radiative transfer model. Da ilva et al. (2016) [30] introduced the first 
algorithm for Landsat 8 OLI images, which enabled the retrieval of broadband albedos 
from top-of-atmosphere (TOA) images. This approach has been proven to produce 
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accurate estimates despite its need for a significant amount of implementation and 
operating time (owing to the necessity to calculate atmospheric transmissivity in order 
to apply the atmospheric adjustment) [10, 16, 30].

To speed up RS image acquisition and processing times, a novel free cloud-com-
puting-based platform (Google Earth Engine [GEE]) has been recently released to 
efficiently store, process, and analyze geospatial big data. In fact, this engine is made 
up of a high-performance computational service that is linked to an interactive pro-
gramming interface as well as a multi-petabyte data catalog that includes a massive 
number of raw and preprocessed open satellite data sets. Because of the benefits that 
were discussed above, GEE is a powerful tool with more functionalities than standard 
geographic information system (GIS) software [10, 31–37]. However, it is frequently 
paired with the free and open-source R environment (which is based on a proprietary 
programming language), as GEE is not designed for statistical research [38].

This study project falls within such a scientific framework. Its goal is to evaluate 
the new Landsat 9 data’s capability for measuring albedo and, hence, investigate its 
utility in environmental monitoring. To do this, the algorithms that were proposed by 
da Silva et al. [30] and Liang [28] for estimating albedos from Landsat images were applied 
by writing two appropriate programs in the GEE and R environments. The approach was 
assessed using Landsat 8 and 9 images from two cities in Southern Italy: Palermo (Sici-
ly), and Cagliari (Sardinia). Lastly, the impact of the Copernicus Urban Atlas 2018 land 
use/land cover LU/LC) classes on data performance was investigated as well [10, 39–41].

2.	 Materials and Methods
2.1.	 Study Sites
The Mediterranean coastal cities of Palermo and Cagliari in Southern Ita-

ly (Fig. 1) were chosen as study areas because, for these sites, images with compara-
ble acquisition data were identified for both the Landsat 8 and Landsat 9 missions.

a) b)

Fig. 1. Palermo (a) and Cagliari (b) study areas,  
along with corresponding geographical framework

Source: Google Earth for geographical framework
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Additionally, these zones have comparable geographical, geomorphological, 
and climate characteristics, with hot and dry summers and mild winters  [42, 43]. 
Palermo is located on the northern coast of Sicily Island on a densely urbanized wide 
plain surrounded by mountains to the south and west. Its elevation is about 150 m 
above sea level (a.s.l.) [44]. Meanwhile, Cagliari is in the southern part of Sardinia 
Island and stretches across various hills (with an elevation of around 80–100 m a.s.l.) 
It is surrounded by wetlands (such as lagoons and ponds) to the west, north, 
and east [45].

2.2.	 Workflow

Figure 2 describes the approach that was adopted in this research. After our Land-
sat 8 and Landsat 9 TOA image selection, GEE was programmed with a JavaScript 
code to assist with cloud detection and masking. Following this, the albedos were 
determined for both the Palermo and Cagliari sites by applying da Silva et al.’s [30] 
and Liang’s [28] algorithms.

Fig. 2. Operative workflow
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As a consequence, the resulting albedo thematic maps were statistically exam-
ined and compared using R software [38], taking the entire Palermo and Cagliari 
sites as well as each LU/LC class derived from the Copernicus Urban Atlas 2018 
into account  [39]. Tukey’s filter  [46,  47] was then applied to detect and remove 
any outliers, which were explored and compared across both territories and each 
LU/LC class.

2.3.	 Input Data and Pre-processing Step

The input satellite data was chosen based on two key criteria: less-than-10% 
cloud coverage, and the same collecting day and hour. The first criterion assured 
that the clouds had the least influence on the processing output, while the second 
provided equivalent illumination conditions and, therefore, a similar performance 
comparison. This last criterion was satisfied since an underfed maneuver was com-
pleted between November 11 and 17, 2021 (the Landsat 9 satellite traveled beneath 
the Landsat 8 spacecraft [22]). Thus, the images that were captured on November 15 
and November 13, 2021, for Palermo and Cagliari, respectively, matched both re-
quirements and were selected. Their characteristics are described in Table 1.

Table 1. Selected image features

ID Study site Mission Sensor Acquisition date 
[mm/dd/yyyy]

Acquisition 
time Cloud cover [%]

1 Palermo Landsat 8 OLI 11/15/2021 9:48 0.70

2 Palermo Landsat 9 OLI-2 11/15/2021 9:46 0.98

3 Cagliari Landsat 8 OLI 11/13/2021 10:00 5.89

4 Cagliari Landsat 9 OLI-2 11/13/2021 10:05 1.12

To determine the albedos, TOA images that had previously been orthorectified 
and calibrated were used. As a result, no orthorectification or radiometric calibration 
techniques were performed (other than cloud masking). In addition, the Palermo 
and Cagliari LU/LC Urban Atlas 2018 shapefiles [39] (Fig. 3) were imported in GEE. 
Urban Atlas (UA) is a local data-collection site that is provided by the Copernicus 
initiative, which is supported by the European Space Agency (ESA) and the Euro-
pean Environment Agency (EEA). The initiative features 28 LU/LC classes – 17 of 
which are urban, and 11 of which are rural [48]. The LU/LC class distributions (in 
percentages) are reported in Figure 4.
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Fig. 3. LU/LC map of Palermo (a) and Cagliari (b) derived from Urban Atlas 2018
Source: [39]

a)

b)
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2.4.	 Land Surface Albedo Estimation

Da Silva et al.’s  [30] and Liang’s  [28] algorithms were used to determine the 
broadband albedos from the Landsat 8 and various EO satellite data, respectively. 
The first approach was based on Equation (1), which was introduced by Zhong and 
Li [49] and Bastiaanssen et al. [50]:

	 TOA ATM
2

α −α
α =

τ
	 (1)

where αTOA, αATM, and τ denote the TOA albedo, the path radiance albedo, and the 
atmospheric transmissivity, respectively. According to [51], αATM was between 0.025 

Fig. 4. Pie diagrams of Urban Atlas 2018: LU/LC class distribution [%]  
in Palermo (a) and Cagliari (b)

Source: [39]

a) b)



42	 C. Barletta, A. Capolupo, E. Tarantino

and 0.04; as recommended by [52], a value of 0.03 was used. The value of τ was, in-
stead, determined by using Equation (2) [53]:

	
0.40.00146

0.35 0.627 exp 0.075
cos cos 

o

t

P W
K Z Z

   τ = + − −  
   

	 (2)

where Po, W, and Kt are the local atmospheric pressure [kPa], the precipitable wa-
ter [mm], and the air turbidity coefficient, respectively. Po was measured at 10:00 on 
the days of the satellite images by the Palermo and Cagliari stations of the Italian 
National Tidegauge network (https://mareografico.it/). W was obtained from the 
“National Center for Environmental Prediction/National Center for Atmospheric 
Research (NCEP/NCAR) Reanalysis data, Water Vapor” data set [54] (available in the 
GEE catalog), which provides W values at six-hour temporal resolutions (00:00, 6:00, 
12:00, and 18:00). The average of the two closest-in-time values of W (6:00 and 12:00) 
was computed to select a value of W that was representative of the Landsat acqui-
sition time (around 10:00) for each satellite image (as described in [55]). A Kt value 
of 1 is used for pure air, while a value of 0.5 is used for polluted air. Because the re-
gional authorities detected air pollution levels at both sites that were lower than the 
legal limits in November 2021, a value of 1 was chosen in this case. Lastly, the Sun’s 
zenith angle (Z) that was reported in the image metadata was employed.

The TOA albedo was, instead, computed by linearly combining the TOA reflec-
tance (ri) for each OLI-Landsat 8 band through the weighting coefficient (pi) that is 
reported in Table 2 as follows:

	 TOA 2 2 3 3 4 4 5 5 6 6 7 7p r p r p r p r p r p rα = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 	 (3)

where pi is obtained by calculating the ratio between the solar constant of each spec-
tral band (ki) (computed using Equation (4)) and the sum of all of the solar constants 
that are used in the albedo computation (kTOT) [10, 30]:

	
cos

i
i

i

L
k

r Z d
π

=
⋅

	 (4)

where Li and d are the radiance for each band and the correction of the eccentricity 
of the terrestrial orbit, respectively.

On the other hand, Liang proposed Equation (5) to compute the albedos from 
the Landsat atmospherically corrected satellite images  [28]. Table 3 shows the 
weighting coefficient (ωi), applied to the surface reflectance (ρi), that was adopted in 
this calculation:

	 Liang 2 2 4 4 5 5 6 6 7 7 0.0018α = ω ⋅ρ +ω ⋅ρ +ω ⋅ρ +ω ⋅ρ +ω ⋅ρ − 	 (5)

https://mareografico.it/
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Table 2. Weighting coefficient values of da Silva et al.’s algorithm

Weighting coefficients Value

p1 0.300

p2 0.277

p3 0.233

p4 0.143

p5 0.036

p6 0.012

Table 3. Weighting coefficient values of Liang’s algorithm

Weighting coefficients Value

ω1 0.356

ω2 0.130

ω3 0.373

ω4 0.085

ω5 0.072

2.5.	 Statistical Analysis

The resultant albedo maps were sampled and statistically investigated in the 
R environment in order to (i) evaluate the albedo distribution and variability within 
the study areas and LU/LC classes using base statistics metrics, (ii) investigate the 
Landsat 9 data potentialities in estimating the albedos using algorithms that were 
optimized for Landsat 8 and comparing their results to those that were obtained by 
processing the Landsat 8 images, and (iii) assess the outliers’ impacts on the generat-
ed albedo maps. To meet the first objective, the mean (μ), standard deviations (SD), 
median (m), distribution trends, kurtosis (κ), and skewness (sk) were computed. For 
the second one, scatterplots that compared the Landsat 8 and Landsat 9 estimates 
were calculated, along with the correlation coefficient (ρ) and root mean square er-
ror  (RMSE). Lastly, the third purpose was addressed by using Tukey’s statistical 
approach; this allowed for an effective technique for reducing the inherent noise 
by locating and filtering out the outliers. According to Equation  (6), an observa-
tion is labeled as an outlier when its value exceeds the lower (Q1) or upper quar-
tiles (Q3) [46–47]:

	 1 3 1 3 3 11)1.5 )( , .5(Q Q Q Q Q Q − − + −  	 (6)
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The above-mentioned statistical metrics were recalculated from the filtered al-
bedo maps for the entire study areas and for each LU/LC class. These results were 
compared to those that were obtained while dealing with the unfiltered maps.

3.	 Results

3.1.	 Land Surface Albedo Maps and Statistics Metrics

The albedo maps were produced to highlight the variability of the albedos with-
in the case study territories. In Figures 5 and 6, the darker regions show lower val-
ues, whereas the yellow-orange areas have higher values.

Fig. 5. Albedo maps retrieved from Palermo Landsat 8 (a) and Landsat 9 (b) images as well  
as from Cagliari Landsat 8 (c) and Landsat 9 (d) images by applying da Silva et al.’s algorithm

a)	 b)

c)	 d)
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The lowest albedo values in Palermo could clearly be observed in the moun-
tainous areas (mainly identified as the “Forest” and “Herbaceous vegetation” 
LU/LC categories), while in Cagliari, these were associated with the “Water” class. 
Additionally, the highest values could be found in the urbanized areas as well as in 
the classes such as “Mineral extraction and dump sites,” “Open spaces,” and “Her-
baceous vegetation” for both sites.

Fig. 6. Albedo maps retrieved from Palermo Landsat 8 (a) and Landsat 9 (b) images as well 
as from Cagliari Landsat 8 (c) and Landsat 9 (d) images by applying Liang’s algorithm

a)	 b)

c)	 d)

Table 4 presents the statistical metrics that were calculated for the entire terri-
tories of Palermo and Cagliari by using the two methods that were described in the 
previous sections.
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Table 4. Statistical metrics of albedo estimations  
(L8 – Landsat 8, L9 – Landsat 9)

Method Site Mission μ ρ SD m RMSE κ sk

Silva et al.

Palermo
L8 0.202

0.972
0.074 0.202

0.020
8.238 0.831

L9 0.193 0.071 0.192 8.692 0.867

Cagliari
L8 0.199

0.942
0.071 0.197

0.024
6.779 1.033

L9 0.193 0.067 0.190 5.741 0.931

Liang

Palermo
L8 0.127

0.968
0.051 0.128

0.013
5.088 0.177

L9 0.129 0.052 0.130 6.134 0.243

Cagliari
L8 0.092

0.967
0.061 0.109

0.016
2.576 0.098

L9 0.090 0.057 0.106 2.296 0.063

Based on the results of da Silva et al.’s technique, the μ value was around 0.2 
in each map; moreover, the SD in Palermo was 0.074 and 0.071 for the Landsat 8 
and Landsat  9 estimations, respectively. In Cagliari, the SD  values for the Land-
sat 8 and Landsat 9 maps were 0.071 and 0.067, respectively. Furthermore, ρ was 
quite high in both areas (reaching 0.972 for Palermo and 0.942 for Cagliari), while 
the RMSE values were low (totaling 0.020 for Palermo and 0.024 for Cagliari). On the 
other hand, Liang’s algorithm showed lower values than the other method; in fact, 
its μ value was approximately 0.1 in both study areas, and its corresponding SD was 
around 0.5. Nonetheless, the albedo values for Palermo were higher than those that 
were obtained in the Cagliari area according to da Silva et al.’s algorithm.

Histograms were created to determine how the data was distributed (Fig. 7). 
These distributions were visually congruent with the previously reported metrics 
values (Table 4).

Figure 8 depicts boxplots of the albedo values, which illustrate that many outli-
ers were present in the upper section of the graph. Therefore, this signified that high 
albedo values (greater than 0.4 and 0.3 for da Silva et al.’s and Liang’s algorithms, 
respectively) were detected for both data types and for both study areas. Instead, the 
scatterplots between the Landsat 8 and Landsat 9 results for both sites are illustrated 
in Figure 9.

Most of the spots in Palermo (Fig. 9a, c) were scattered along the diagram’s 
bisector line; this indicated that many of the albedo values from Landsat 8 and Land-
sat 9 were linearly correlated. However, there were some inaccurate values – partic-
ularly in the lower-left corner of the image. Cagliari’s pattern (Fig. 9b, d) was similar 
to Palermo’s, but there were more mismatched spots across the plot. This is verified 
by Table 4, which indicates that ρ was lower in Cagliari than in Palermo and that 
RMSE was greater in Cagliari than in the corresponding Palermo area.
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Fig. 7. Distribution trends of albedo values generated from Palermo Landsat 8 (a)  
and Landsat 9 (b) data and Cagliari Landsat 8 (c) and Landsat 9 (d) data using da Silva et al.’s 
algorithm as well as Palermo Landsat 8 (e) and Landsat 9 (f) data and Cagliari Landsat 8 (g)  

and Landsat 9 (h) data using Liang’s algorithm

	 a)	 b)	 c)	 d)

	 e)	 f)	 g)	 h)

Fig. 8. Boxplots of albedo values for Palermo (a) and Cagliari (b) using da Silva et al.’s 
algorithm as well as for Palermo (c) and Cagliari (d) using Liang’s technique  

(L8 – Landsat 8, L9 – Landsat 9)

	 a)	 b)

	 c)	 d)
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The key statistical metrics for each LU/LC class in relation to the Palermo site 
are provided in Tables 5 and 6. The same data that was obtained for the Cagliari 
classes is shown in Tables 7 and 8.

Fig. 9. Scatterplots between albedo values estimated from Landsat 8 and Landsat 9 images 
for Palermo (a) and Cagliari (b) using da Silva et al.’s algorithm as well as for Palermo (c)  

and Cagliari (d) using Liang’s method (L8 – Landsat 8, L9 – Landsat 9)

	 a)	 b)

	 c)	 d)

Furthermore, the scatterplots demonstrate the presence of multiple albedo val-
ues that were greater than 0.4 and 0.3, which corresponded to the outliers in the box-
plots for da Silva et al.’s and Liang’s approaches, respectively. To detect and remove 
these outliers as well as explain their impacts on the calculations, Tukey’s filter and 
an outlier analysis were employed.
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Table 5. Main statistical metrics obtained from da Silva et al.’s algorithm  
for each LU/LC class of Palermo (L8 – Landsat 8, L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Airports 0.233 0.223 0.066 0.064 0.992 0.013

Arable land 0.157 0.149 0.048 0.045 0.939 0.018

Construction sites 0.280 0.267 0.061 0.058 0.985 0.017

Continuous urban fabric 0.232 0.221 0.048 0.046 0.936 0.020

Discontinuous dense urban 
fabric 0.225 0.214 0.048 0.046 0.925 0.021

Fast transit roads 0.189 0.179 0.038 0.036 0.913 0.019

Forests 0.146 0.140 0.054 0.050 0.956 0.017

Green urban spaces 0.187 0.179 0.046 0.045 0.921 0.020

Herbaceous vegetation 0.199 0.190 0.081 0.079 0.988 0.016

Industrial, commercial, public, 
military, and private units 0.257 0.245 0.089 0.091 0.956 0.030

Isolated structures 0.187 0.176 0.052 0.051 0.917 0.024

Land without current use 0.220 0.210 0.080 0.081 0.990 0.015

Discontinuous low-density 
urban fabric 0.202 0.192 0.039 0.037 0.928 0.017

Discontinuous medium-density 
urban fabric 0.214 0.203 0.043 0.042 0.944 0.018

Mineral extraction and dump 
sites 0.305 0.290 0.122 0.118 0.993 0.021

Open spaces 0.334 0.317 0.094 0.090 0.991 0.021

Other roads 0.214 0.204 0.051 0.048 0.950 0.019

Pastures 0.108 0.104 0.048 0.046 0.962 0.014

Permanent crops 0.173 0.166 0.047 0.044 0.896 0.022

Port areas 0.291 0.277 0.105 0.101 0.983 0.024

Railways 0.253 0.239 0.081 0.076 0.991 0.018

Sports and leisure facilities 0.239 0.228 0.071 0.070 0.969 0.021

Discontinuous 
very-low-density urban fabric 0.185 0.177 0.040 0.038 0.915 0.018

Source: extracted from Urban Atlas 2018 [39]
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Table 6. Main statistical metrics obtained from Liang’s method  
for each LU/LC class of Palermo (L8 – Landsat 8, L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Airports 0.160 0.163 0.033 0.034 0.986 0.007

Arable land 0.110 0.111 0.043 0.044 0.938 0.015

Construction sites 0.166 0.167 0.035 0.035 0.980 0.007

Continuous urban fabric 0.123 0.125 0.030 0.030 0.931 0.011

Discontinuous dense urban 
fabric 0.128 0.130 0.031 0.032 0.921 0.013

Fast transit roads 0.100 0.101 0.022 0.022 0.856 0.012

Forests 0.099 0.101 0.046 0.047 0.973 0.011

Green urban spaces 0.124 0.127 0.033 0.033 0.877 0.016

Herbaceous vegetation 0.137 0.140 0.067 0.069 0.989 0.011

Industrial, commercial, public, 
military, and private units 0.146 0.148 0.049 0.052 0.938 0.018

Isolated structures 0.124 0.124 0.041 0.043 0.900 0.019

Land without current use 0.146 0.148 0.046 0.052 0.973 0.013

Discontinuous low-density 
urban fabric 0.130 0.131 0.027 0.028 0.912 0.012

Discontinuous medium-density 
urban fabric 0.131 0.132 0.028 0.029 0.931 0.011

Mineral extraction and dump 
sites 0.185 0.187 0.078 0.080 0.993 0.010

Open spaces 0.198 0.199 0.056 0.057 0.989 0.009

Other roads 0.122 0.124 0.032 0.033 0.938 0.012

Pastures 0.060 0.061 0.041 0.042 0.974 0.010

Permanent crops 0.118 0.122 0.042 0.041 0.880 0.021

Port areas 0.149 0.151 0.063 0.066 0.980 0.013

Railways 0.138 0.138 0.045 0.045 0.987 0.007

Sports and leisure facilities 0.145 0.146 0.041 0.043 0.952 0.013

Discontinuous 
very-low-density urban fabric 0.121 0.124 0.030 0.030 0.899 0.014

Source: extracted from Urban Atlas 2018 [39]
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According to Tables 5 and 6, Palermo had very high ρ values (>0.86) and low 
RMSE  values  (≤0.030) for all of the classes. On the other hand, Cagliari had four 
classes with ρ levels that were lower than 0.80 and/or RMSE levels that were greater 
than 0.03 (Tables 7, 8).

Table 7. Main statistical metrics obtained using da Silva et al.’s algorithm  
for each LU/LC class of Cagliari (L8 – Landsat 8, L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Arable land 0.216 0.208 0.050 0.044 0.611 0.043

Construction sites 0.200 0.194 0.030 0.030 0.944 0.012

Continuous urban fabric 0.253 0.242 0.041 0.043 0.831 0.027

Discontinuous dense urban 
fabric 0.236 0.227 0.039 0.044 0.753 0.031

Forests 0.108 0.103 0.019 0.018 0.969 0.007

Green urban spaces 0.208 0.201 0.043 0.042 0.961 0.014

Herbaceous vegetation 0.218 0.209 0.049 0.045 0.937 0.020

Industrial, commercial, public, 
military, and private units 0.269 0.261 0.074 0.072 0.812 0.045

Isolated structures 0.208 0.201 0.030 0.030 0.985 0.009

Land without current use 0.246 0.235 0.073 0.064 0.923 0.030

Discontinuous low-density 
urban fabric 0.220 0.213 0.034 0.048 0.568 0.041

Discontinuous medium-density 
urban fabric 0.226 0.216 0.035 0.035 0.914 0.018

Mineral extraction and dump 
sites 0.240 0.232 0.047 0.045 0.862 0.026

Open spaces 0.341 0.330 0.068 0.070 0.926 0.029

Other roads 0.241 0.234 0.049 0.047 0.794 0.031

Pastures 0.208 0.198 0.041 0.043 0.932 0.018

Port areas 0.299 0.297 0.073 0.075 0.968 0.019

Railways 0.268 0.264 0.081 0.078 0.948 0.026

Sports and leisure facilities 0.256 0.248 0.064 0.064 0.973 0.017

Discontinuous 
very-low-density urban fabric 0.206 0.198 0.030 0.029 0.979 0.010

Water 0.141 0.138 0.041 0.039 0.958 0.012

Wetlands 0.179 0.178 0.028 0.033 0.392 0.034

Source: extracted from Urban Atlas 2018 [39]
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Table 8. Main statistical metrics obtained using Liang’s method  
for each LU/LC class of Cagliari (L8 – Landsat 8, L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Arable land 0.134 0.129 0.036 0.031 0.645 0.029

Construction sites 0.119 0.116 0.020 0.021 0.927 0.009

Continuous urban fabric 0.132 0.126 0.026 0.026 0.843 0.016

Discontinuous dense urban fabric 0.129 0.124 0.025 0.027 0.772 0.019

Forests 0.040 0.040 0.019 0.018 0.969 0.005

Green urban spaces 0.128 0.123 0.031 0.030 0.971 0.009

Herbaceous vegetation 0.133 0.128 0.035 0.032 0.965 0.011

Industrial, commercial, public, 
military, and private units 0.147 0.143 0.042 0.039 0.775 0.027

Isolated structures 0.131 0.126 0.021 0.021 0.982 0.006

Land without current use 0.147 0.141 0.041 0.035 0.933 0.016

Discontinuous low-density urban 
fabric 0.130 0.125 0.022 0.030 0.647 0.023

Discontinuous medium-density 
urban fabric 0.130 0.124 0.024 0.023 0.921 0.011

Mineral extraction and dump 
sites 0.130 0.125 0.026 0.024 0.900 0.012

Open spaces 0.180 0.173 0.045 0.045 0.910 0.020

Other roads 0.130 0.126 0.029 0.028 0.777 0.019

Pastures 0.125 0.118 0.033 0.036 0.943 0.014

Port areas 0.150 0.149 0.042 0.042 0.970 0.010

Railways 0.144 0.142 0.044 0.041 0.927 0.016

Sports and leisure facilities 0.140 0.135 0.040 0.039 0.970 0.011

Discontinuous very-low-density 
urban fabric 0.125 0.121 0.023 0.022 0.982 0.006

Water 0.027 0.028 0.027 0.025 0.940 0.009

Wetlands 0.094 0.096 0.021 0.021 0.406 0.023

Source: extracted from Urban Atlas 2018 [39]

3.2.	 Impact of Tukey’s Filter on Statistics Metrics

Because each study site had a high number of outliers (as shown in Figure 8), 
Tukey’s filter  [42] was applied to detect them. The statistical measures were then 
recalculated. As a consequence, Figures 10 and 11 and Table 9 show the distribution 
trend, scatterplots between the Landsat 8 and Landsat 9 images, and the statistical 
metrics for the whole region, respectively. Conversely, the metrics that were com-
puted for each LU/LC classes are reported in Tables 10–13.
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Table 9. Statistical metrics of albedo estimations after applying Tukey’s filter  
(L8 – Landsat 8, L9 – Landsat 9)

Method Site Mission μ ρ SD m RMSE κ sk

da Silva et al.

Palermo
L8 0.198

0.968
0.065 0.200

0.019
2.903 −0.204

L9 0.188 0.062 0.191 2.935 −0.192

Cagliari
L8 0.194

0.956
0.062 0.196

0.019
2.416 0.238

L9 0.189 0.060 0.189 2.523 0.275

Liang

Palermo
L8 0.130

0.952
0.039 0.129

0.012
3.100 −0.059

L9 0.132 0.040 0.131 3.093 −0.041

Cagliari
L8 0.092

0.969
0.060 0.109

0.015
1.825 −0.062

L9 0.090 0.056 0.105 1.838 −0.046

Tukey’s filter allowed us to raise the ρ values to greater than 0.952 and reduce 
the RMSE values to less than 0.019 for both areas and methods (Table 9). Further-
more, the skewness went negative in both sites when using Liang’s technique and 
in Palermo when using da Silva et al.’s approach, while the kurtosis of the albedo 
distributions remained positive in both study regions (Figure 10 and Table 9).

Fig. 10. Distribution trends of albedo values generated from Palermo Landsat 8 (a)  
and Landsat 9 (b) data, from Cagliari Landsat 8 (c) and Landsat 9 (d) data  

using da Silva et al.’s approach, from Palermo Landsat 8 (e) and Landsat 9 (f) data,  
and from Cagliari Landsat 8 (g) and Landsat 9 (h) data using Liang’s method:  

all values were obtained after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

	 a)	 b)	 c)	 d)

	 e)	 f)	 g)	 h)
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The scatterplots of the filtered distributions indicate that the bulk of the mis-cor-
responding albedo values were still preserved, but the higher values (greater than 0.4 
and 0.3 for da Silva et al.’s and Liang’s algorithms, respectively) were removed (Fig. 11).

Fig. 11. Scatterplots between albedos estimated from Landsat 8 and Landsat 9 images  
for Palermo (a) and Cagliari (b) using da Silva et al.’s algorithm and estimated from  

Landsat 8 and Landsat 9 images for Palermo (a) and Cagliari (b) using da Silva’s approach:  
all findings were obtained after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

	 a)	 b)

	 c)	 d)

In line with the statistical metrics that were identified for the entire territo-
ries (Table 9), Tukey’s filter increased the ρ value (greater than  0.88 and  0.86 for 
da  Silva et al.’s and Liang’s algorithms for both study sites, respectively) for the 
LU/LC classes (Tables 10–13), and it reduced the RMSE values (lower than 0.20 for 
Palermo, and 0.22 for both sites) for the LU/LC classes (Tables 10–13).
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Table 10. Main statistical metrics obtained using da Silva et al.’s algorithm for each LU/LC 
class of Palermo after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Airports 0.215 0.205 0.035 0.033 0.978 0.012

Arable land 0.161 0.154 0.037 0.035 0.908 0.017

Construction sites 0.280 0.267 0.061 0.058 0.985 0.017

Continuous urban fabric 0.231 0.220 0.044 0.042 0.934 0.019

Discontinuous dense urban 
fabric 0.224 0.213 0.043 0.042 0.923 0.020

Fast transit roads 0.189 0.179 0.038 0.036 0.913 0.019

Forests 0.142 0.137 0.048 0.046 0.973 0.013

Green urban spaces 0.184 0.176 0.042 0.040 0.904 0.020

Herbaceous vegetation 0.198 0.189 0.080 0.077 0.989 0.015

Industrial, commercial, public, 
military, and private units 0.247 0.235 0.054 0.051 0.943 0.022

Isolated structures 0.188 0.178 0.047 0.044 0.899 0.023

Land without current use 0.211 0.201 0.035 0.033 0.955 0.014

Discontinuous low-density 
urban fabric 0.203 0.193 0.032 0.031 0.913 0.016

Discontinuous medium-density 
urban fabric 0.214 0.204 0.035 0.034 0.930 0.017

Mineral extraction and dump 
sites 0.296 0.281 0.107 0.104 0.992 0.020

Open spaces 0.334 0.317 0.094 0.090 0.991 0.021

Other roads 0.215 0.205 0.044 0.042 0.943 0.018

Pastures 0.108 0.103 0.048 0.045 0.966 0.013

Permanent crops 0.182 0.175 0.033 0.030 0.868 0.018

Port areas 0.279 0.266 0.080 0.077 0.974 0.022

Railways 0.243 0.230 0.056 0.053 0.986 0.016

Sports and leisure facilities 0.232 0.221 0.055 0.054 0.955 0.020

Discontinuous 
very-low-density urban fabric 0.186 0.179 0.032 0.030 0.889 0.017

Source: extracted from Urban Atlas 2018 [39]
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Table 11. Main statistical metrics obtained using Liang’s approach for each LU/LC class of 
Palermo after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Airports 0.155 0.157 0.025 0.025 0.975 0.006

Arable land 0.117 0.119 0.030 0.030 0.919 0.012

Construction sites 0.169 0.171 0.030 0.031 0.975 0.007

Continuous urban fabric 0.124 0.125 0.027 0.028 0.936 0.010

Discontinuous dense urban 
fabric 0.129 0.131 0.027 0.028 0.919 0.011

Fast transit roads 0.101 0.101 0.022 0.022 0.870 0.011

Forests 0.098 0.100 0.044 0.045 0.977 0.010

Green urban spaces 0.124 0.126 0.031 0.032 0.877 0.016

Herbaceous vegetation 0.137 0.139 0.067 0.068 0.989 0.010

Industrial, commercial, public, 
military, and private units 0.143 0.144 0.030 0.030 0.933 0.011

Isolated structures 0.130 0.130 0.033 0.033 0.884 0.016

Land without current use 0.144 0.146 0.026 0.026 0.933 0.010

Discontinuous low-density 
urban fabric 0.132 0.134 0.021 0.021 0.896 0.010

Discontinuous medium-density 
urban fabric 0.132 0.134 0.022 0.022 0.908 0.010

Mineral extraction and dump 
sites 0.181 0.183 0.072 0.074 0.992 0.009

Open spaces 0.198 0.199 0.056 0.057 0.989 0.009

Other roads 0.124 0.126 0.026 0.027 0.932 0.010

Pastures 0.060 0.061 0.041 0.042 0.973 0.010

Permanent crops 0.129 0.132 0.028 0.027 0.897 0.013

Port areas 0.142 0.144 0.046 0.047 0.973 0.011

Railways 0.132 0.133 0.029 0.030 0.975 0.007

Sports and leisure facilities 0.143 0.144 0.034 0.036 0.940 0.012

Discontinuous 
very-low-density urban fabric 0.124 0.126 0.022 0.022 0.883 0.011

Source: extracted from Urban Atlas 2018 [39]



Extracting Land Surface Albedo from Landsat 9 Data in GEE Platform...	 57

Table 12. Main statistical metrics obtained using da Silva et al.’s approach for each LU/LC 
class of Cagliari after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Arable land 0.217 0.210 0.029 0.028 0.893 0.015

Construction sites 0.206 0.199 0.021 0.025 0.914 0.012

Continuous urban fabric 0.252 0.240 0.037 0.036 0.879 0.022

Discontinuous dense urban 
fabric 0.234 0.224 0.035 0.035 0.879 0.020

Forests 0.106 0.101 0.017 0.016 0.961 0.007

Green urban spaces 0.207 0.200 0.041 0.041 0.971 0.012

Herbaceous vegetation 0.212 0.203 0.030 0.029 0.928 0.015

Industrial, commercial, public, 
military, and private units 0.259 0.252 0.058 0.056 0.859 0.031

Isolated structures 0.207 0.199 0.027 0.027 0.982 0.009

Land without current use 0.234 0.227 0.036 0.036 0.941 0.014

Discontinuous low-density 
urban fabric 0.219 0.208 0.029 0.029 0.874 0.018

Discontinuous medium-density 
urban fabric 0.224 0.214 0.032 0.031 0.917 0.016

Mineral extraction and dump 
sites 0.236 0.228 0.037 0.037 0.901 0.018

Open spaces 0.341 0.330 0.068 0.070 0.926 0.029

Other roads 0.238 0.230 0.040 0.038 0.884 0.020

Pastures 0.206 0.197 0.035 0.038 0.924 0.017

Port areas 0.295 0.293 0.064 0.065 0.965 0.017

Railways 0.251 0.247 0.042 0.043 0.967 0.012

Sports and leisure facilities 0.251 0.243 0.057 0.057 0.967 0.017

Discontinuous 
very-low-density urban fabric 0.213 0.205 0.016 0.016 0.927 0.010

Water 0.138 0.135 0.034 0.034 0.963 0.010

Wetlands 0.180 0.174 0.023 0.023 0.823 0.015

Source: extracted from Urban Atlas 2018 [39]
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Table 13. Main statistical metrics obtained using Liang’s approach for each LU/LC class of 
Cagliari after applying Tukey’s filter (L8 – Landsat 8; L9 – Landsat 9)

LU/LC class
μ SD

ρ RMSE
L8 L9 L8 L9

Arable land 0.138 0.133 0.021 0.020 0.897 0.011

Construction sites 0.123 0.119 0.014 0.017 0.891 0.009

Continuous urban fabric 0.132 0.125 0.024 0.023 0.886 0.013

Discontinuous dense urban 
fabric 0.129 0.123 0.023 0.022 0.882 0.013

Forests 0.039 0.038 0.017 0.017 0.963 0.005

Green urban spaces 0.127 0.123 0.030 0.030 0.975 0.008

Herbaceous vegetation 0.133 0.127 0.022 0.022 0.947 0.009

Industrial, commercial, public, 
military, and private units 0.144 0.139 0.031 0.030 0.861 0.017

Isolated structures 0.130 0.125 0.020 0.019 0.979 0.006

Land without current use 0.143 0.139 0.024 0.023 0.940 0.009

Discontinuous low-density 
urban fabric 0.131 0.125 0.019 0.020 0.887 0.011

Discontinuous medium-density 
urban fabric 0.130 0.123 0.022 0.022 0.921 0.011

Mineral extraction and dump 
sites 0.128 0.124 0.017 0.017 0.903 0.009

Open spaces 0.184 0.176 0.039 0.040 0.885 0.020

Other roads 0.130 0.125 0.023 0.023 0.887 0.012

Pastures 0.125 0.119 0.029 0.029 0.957 0.010

Port areas 0.150 0.149 0.035 0.034 0.964 0.009

Railways 0.136 0.133 0.021 0.021 0.953 0.007

Sports and leisure facilities 0.139 0.135 0.034 0.033 0.962 0.010

Discontinuous 
very-low-density urban fabric 0.130 0.126 0.009 0.010 0.906 0.006

Water 0.021 0.023 0.015 0.014 0.873 0.008

Wetlands 0.098 0.095 0.014 0.014 0.827 0.009

Source: extracted from Urban Atlas 2018 [39]
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3.3.	 Outlier Analysis Output

Figures 12 and 13 represent the outliers in the Palermo and Cagliari regions that 
were obtained after using da Silva et al.’s and Liang’s algorithms, respectively.

Most of the observed outliers in both areas overlapped (Figs. 14, 15). In Palermo, 
overlapping outliers represented more than 89% of the totals for both images and 
the applied method; in Cagliari, these accounted for more than 76% and 43% of the 
totals for da Silva et al.’s and Liang’s methods, respectively.

Fig. 12. Outlier positions in Palermo (a) and Cagliari (b) obtained using da Silva et al.’s approach
Source: Google Earth

a)

b)
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Figures 16–19 illustrate the outliers’ percentages in each Urban Atlas 2018 [39] 
Palermo and Cagliari LU/LC class. The outliers in Palermo tended to be found in 
“Industrial, commercial, and public, military, and private units”, “Herbaceous veg-
etation,” and “Mineral extraction and dump sites,” whereas the classes with most 
outliers in Cagliari were “Industrial, commercial, and public, military, and private 
units,” and “Port areas” (Figs. 16–19).

Fig. 13. Outliers’ positions in Palermo (a) and Cagliari (b) (extracted using Liang’s algorithm)
Source: Google Earth`

a)

b)
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Fig. 14. Pie diagrams of distributions of overlapping and non-overlapping outliers for 
Landsat 8 (a) and Landsat 9 (b) Palermo images as well as Landsat 8 (c) and Landsat 9 (d) 

Cagliari images: outliers obtained using da Silva et al.’s algorithm

	 a)	 b)

	 c)	 d)

Fig. 15. Pie diagrams of distributions of overlapping and non-overlapping outliers for 
Landsat 8 (a) and Landsat 9 (b) Palermo images as well as Landsat 8 (c) and Landsat 9 (d) 

Cagliari images: outliers obtained using Liang’s algorithm

	 a)	 b)

	 c)	 d)
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Fig. 16. Pie diagrams of outlier percentages for each Palermo LU/LC class in Landsat 8 (a) 
and Landsat 9 (b) images using da Silva et al.’s algorithm

a)

b)
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Fig. 17. Pie diagrams of outlier percentages for each Palermo LU/LC class in Landsat 8 (a) 
and Landsat 9 (b) images using Liang’s approach

a)

b)
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Fig. 18. Pie diagrams of outlier percentages for each Cagliari LU/LC class in Landsat 8 (a) 
and Landsat 9 (b) images using da Silva et al.’s approach

a)

b)
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Fig. 19. Pie diagrams of outlier percentages for each Cagliari LU/LC class in Landsat 8 (a) 
and Landsat 9 (b) images using Liang’s algorithm

a)

b)
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4.	 Discussion

This research aims to test da Silva et al.’s and Liang’s algorithms [30] for assessing 
the potentialities of the new Landsat 9 data for retrieving albedos in a Mediterranean 
urban context. For this purpose, the GEE platform and R open-source software were 
employed for the satellite-image processing and statistical analysis, respectively.

A first visual examination of the albedo maps (Figs. 5, 6) indicated that a com-
parable pattern of albedo values occurred across the territories of the investigated 
study sites (Palermo and Cagliari). Many pixels on the maps appeared to have al-
bedo values that were between 0.1 and 0.3, although some discrepancies between 
the two regions were possible owing to differences in the geomorphologic and 
LU/LC features. Furthermore, the albedo-value distribution that was derived from 
Landsat 8 and Landsat 9 was consistent for both sites and for both of the applied al-
gorithms. These assumptions were supported by the statistical analysis, which was 
valuable for retrieving the mean values and variability of the albedos over the two 
areas as well as for understanding the correspondences and discrepancies between 
the Landsat 8 and Landsat 9 estimations.

According to the statistical metrics that are reported in Table 4 for both case 
studies and algorithms, the Landsat 8 satellite data produced slightly higher μ, SD, 
and m values than the Landsat 9 data did (with a difference that was less than 10−2). 
The only exception was Liang’s algorithm for the Palermo study region; howev-
er, the albedo values that were obtained using Liang’s technique were lower than 
those that were achieved using da Silva et al.’s approach according to the literature. 
Indeed, the mean albedo values that were determined using da Silva et al.’s and 
Liang’s approaches for both Landsat  eries and the study areas 
were quite close to 0.20 and 0.10, respectively (Table 4). This was most likely due 
to the two cities’ comparable climates and latitudes. Furthermore, this conclusion 
corresponded to those that were presented in previous research publications when 
combined with the SD values: Taha [56] indicated that the albedo values in urban re-
gions ranged between 0.10 and 0.20 for several European cities, while Brivio et al. [57] 
reported that the albedo values in urbanized areas ranged between 0.12 and 0.21. 
Secondly, the ρ values were very high, whereas the RMSE values were low for both 
study sites and the applied algorithms (Table 4). This is supported by the scatterplots 
in Figure 9, which indicate an excellent correlation of the albedos for both regions 
(despite the fact that Cagliari had a higher number of mis-corresponding values). As 
a result, the Palermo region had a greater correlation and a smaller RMSE between 
the Landsat 8 and Landsat 9 estimations.

A combined visual inspection of the albedo maps and satellite images revealed 
that the mis-corresponding values for both areas were primarily due to the presence 
of small clouds (probably vapors) that did not coincide in the Landsat 8 and Land-
sat 9 images; alternatively, these were due to the radiometric differences in some 
pixels between the Landsat 8 and Landsat 9 images. According to Gross et al. [22] 
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(who performed the cross-calibration of the Landsat 8 and Landsat 9 instruments 
using images that were collected during the underfly event in November 2021), the 
three main sources of uncertainty were i) geometric (due to the pointing differences 
between the two sensors), ii)  spectral (due to the spectral alterations between the 
two sensors), and iii) angular (caused by the differences in the viewing/illumination 
angles). Furthermore, Cagliari had more small clouds (vapors) than Palermo, which 
might explain why the Cagliari scatterplot had a higher number of mis-correspond-
ing albedo values (Fig. 9). As a result of the statistical comparison, da Silva et al.’s 
method [30] could be applied to Landsat 9 images with a good approximation – even 
if some radiometric differences were detected between them. This conclusion can be 
extended to Liang’s method as well. Despite the fact that the latter method under-
stated the albedo values, a strong correlation was found for both research locations 
between the Landsat 8 and 9 pictures.

Tables 5 and 6 highlight that the LU/LC classes for the Palermo site did not af-
fect the main statistical metrics. In contrast, some issues were detected in Cagliari, 
where the RMSE value was greater than 0.030 for several LU/LC classes (such as “In-
dustrial, commercial, and public, military, and private units,” “Arable land,” “Dis-
continuous urban fabric,” and “Wetlands,” for instance) (Tables 7, 8). Similarly, the 
ρ values were below 0.065 with the employed approach for three categories (“Arable 
land,” “Discontinuous low density urban fabric,” and “Wetlands”). The “Wetlands” 
category (which was not present in the Palermo area) was the most critical one. 
Moreover, the Landsat 8 data revealed relatively higher μ values than the Landsat 9 
data for all of the LU/LC classes in Palermo and Cagliari; this was in accordance with 
the statistical metrics that were associated to the entire territories. In terms of SD 
(and solely for the Palermo area), the Landsat 8 satellite images produced somewhat 
higher values than the Landsat 9 data for most of the LU/LC categories. In Cagliari, 
however, the Landsat 9 SD values were found to be greater than those that were 
derived from the Landsat 8 data for numerous classes.

Previous studies have provided typical albedo values for the various LU/LC cat-
egories. According to Allen et al. [51], for instance, agricultural landscapes had al-
bedo values that ranged from 0.14 to 0.22, and water bodies had albedo values that 
ranged from 0.025 to 0.348. According to Brivio et al. [57], roads had albedo values 
that ranged between 0.10 and 0.28, bare soils – between 0.05 and 0.31, and vegeta-
tion – between 0.14 and 0.45 (depending on its phenological stage). When combined 
with the SD values, the main albedo values that were obtained in this study for the 
various classes in both the Palermo and Cagliari sites (Tables 5–8) were comparable 
to those that were reported in the aforementioned contributions.

Figure 8’s boxplots reveal that there were several outliers in both of the Palermo 
and Cagliari study areas; these outliers were identified and removed using Tukey’s 
filter. As a result, the original albedo datasets were filtered, and all of the statistics 
were recalculated. Even after Tukey’s filter, the Landsat 8 and Landsat 9 outputs 
had roughly identical values of μ, SD, and m (with somewhat higher values being 
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produced from the Landsat 8 data) (Table 9). Nonetheless, ρ was significantly im-
proved and RMSE slightly reduced for both of the used methods for Cagliari. For Pa-
lermo, the RMSE and ρ values that were derived from da Silva et al.’s technique were 
a bit lower and slightly greater, respectively, than those that were obtained from the 
unfiltered pictures. In fact, Tukey’s filter excluded only those outliers with albedo 
values that were greater than 0.4; therefore, Palermo (which had mis-corresponding 
values that ranged from 0 to 0.25 – Fig. 9) partially benefited from its application. 
Furthermore, the kurtosis decreased in both study areas after implementing the filter 
(albeit still positive); however, the skewness became negative in Palermo for da Sil-
va et al.’s algorithm and both Palermo and Cagliari for Liang’s algorithm (Fig. 10). 
The filtered distribution scatterplots (Fig. 11) demonstrate that Cagliari has greater 
mis-corresponding values between the Landsat 8 and Landsat 9 estimations than Pa-
lermo did; however, the difference was less in terms of ρ. As shown in Tables 10–13, 
Tukey’s filter results indicated a minor drop in RMSE and an increase for the majori-
ty of the analyzed LU/LC categories in both Palermo and Cagliari.

As detailed in Chapter 3, the positions of observed outliers were determined and 
mapped. Because most of them overlapped in both study zones (Figs. 14, 15), a con-
nection between the Landsat 8 and Landsat 9 estimations was not reached for a tiny 
percentage of them. With the exception of a 2–3% variation, the performances of the 
two satellite sensors may be considered to be similar. Nevertheless, Liang’s method 
detected more non-overlapping outliers than the other approach did (Fig. 15). How-
ever, similar results were extracted from the Landsat 8 and 9 images.

An outlier study based on the investigated LU/LC categories further confirmed 
these outcomes (Figs. 16, 17). In Palermo, outliers from both the Landsat 8 and Land-
sat 9 data were largely identified in the “Industrial, commercial, and public, military, 
and private units,” “Herbaceous vegetation,” and “Mineral extraction and dump 
sites” categories. The first two of the mentioned classes were also among the most 
widespread in Palermo (Fig. 3a). On the other hand, Figures 18 and 19 demonstrate 
that, in Cagliari, the outliers were mostly located in the “Industrial, commercial, and 
public, military, and private units” and “Port areas” classes. Even in this scenario, 
the results remained the same when both the Landsat 8 and Landsat 9 images were 
used. As a result, the fraction of the outliers that were obtained from the Landsat 8 
and Landsat  9 data (as well as the findings for both study regions) were almost 
comparable.

5.	 Conclusion

The purpose of this research was to evaluate the accuracy of the Landsat 9 data 
for albedo estimation in urban contexts. Da Silva et al.’s approach [30] (created for 
the Landsat  8 data) and Liang’s algorithm  [28] (introduced for handling various 
forms of EO satellite data) were evaluated in order to achieve this study objective.
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Palermo and Cagliari (cities in southern Italy) were selected as test sites because 
it was possible to acquire Landsat 8 and Landsat 9 images on the same day and with-
in a suitable time frame. Such open medium-resolution satellite data is preferable 
for environmental monitoring and climate change studies, as it allows us to esti-
mate many bio-geophysical variables as well as their spatial and temporal variabili-
ties [10, 16, 57–65]. Measuring and monitoring albedo levels is crucial for addressing 
issues such as UHI and drought, which are caused by changes in the energy fluxes 
between land surfaces and the atmosphere [1, 3, 5, 10–11, 18].

A comparison of the statistical measures that were produced from the Land-
sat 8 and Landsat 9 albedo maps showed an incredibly good correlation and very 
low RMSE for both study sites and the examined technique. With a few exceptions 
(most likely due to radiometric discrepancies or the existence of some tiny clouds 
[possibly vapors] in the Palermo and Cagliari areas), the results were largely en-
couraging. Such discrepancies resulted in a few mis-matched albedo values between 
the Landsat 8 and Landsat 9 computations. As a consequence, da Silva et al.’s [30] 
and Liang’s approaches appeared to be significantly relevant to the Landsat 9 data; 
however, it should be highlighted that substantial radiometric variations existed for 
some pixels between the images that were taken by the two platforms. This work 
does not intend to lay out the best technique for extracting albedo values from Land-
sat 8 and 9 data but rather to establish the potential of using the same algorithms 
on both images. The comparability of their outputs implies that such tried-and-true 
procedures may be extended to Landsat 9 and that the data that is generated by this 
satellite platform can be utilized in the Landsat 8 continuity.

Lastly, the GEE cloud-based platform has been demonstrated to offer advantag-
es over alternative desktop software when working with large amounts of geospa-
tial data, as it decreases the acquisition and operating times. Thus, it appears to be 
the ideal tool for addressing major environmental challenges through the processing 
and analysis of big remotely sensed data.
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