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Abstract: Walkability entails measuring the degree of walking activity, a non-motorized 
mode of active transportation crucial in fast-developing urban settings and 
combating sedentary lifestyles. While there has been extensive objective re-
search focusing on factors related to the physical environment that influence 
walkability, there has been a comparatively limited exploration into objectively 
evaluating a pedestrian’s visual perception. This study in Khulna, Bangladesh, 
aimed to develop a novel method for objectively measuring walkability based 
on pedestrian-level visual perception using machine learning. In this research, 
ResNet, a computer vision model, analyzed 127 panoramic Google Street 
View images taken at 200-meter intervals from seven major roads. The model, 
trained with the “deeplabv3plusResnet18CamVid” algorithm, quantified five 
selected visual features. The results, including walkability rankings, correlation 
analysis, and spatial mapping, highlighted that greenery and visual enclosures 
significantly influenced the walkability index. However, the impact of other 
visual features was less distinctive due to an overall poor streetscape condition. 
This study bridged the gap between human perception and scientific intelli-
gence, allowing for the evaluation of previously “unmeasurable” streetscape 
designs. It provides valuable insights for more human-centered planning and 
transportation strategies, addressing the challenges of modern urbanization 
and sedentary behavior.
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1. Introduction

According to [1], 27.5% of the Earth’s population is not efficiently physically 
active. Rapid urbanization and vehicular dependency tend to result in sedentary 
lifestyles, which increases the risk of cardiovascular disease, stroke, Type-2 diabetes, 
and other non-communicable diseases [2–4]. Walking is considered to be an active 
mode of non-motorized transportation, as it requires greater physical exertion, pro-
motes walking behavior as a mode of transportation for short trips or errands, and 
highlights human-oriented transportation. However, walkability is a measurable 
quality that is distinct from simple walking [5]. Walkability refers to the degree of 
friendliness to which an area is designed and accessible for walking [6]. Research on 
walkability (a widely studied topic) has shown a two-fold connection between walk-
ability and the built environment: a well-designed environment promotes walking 
as a mode of transportation and contributes to health benefits from the mutual con-
venience of an economic aspect [7].

Walkability is variably influenced by walking environments that consist of 
physical and non-physical elements. Physical components like street connectivity, 
accessibility, block size, land use, street amenities, retail floor area ratio, vegetation, 
and horizontal-vertical road elements are generally measured at a macro-scale using 
GIS or Point of Interest data [8]. Non-physical elements constitute the perceptual 
judgment of the feeling of attractiveness, comfort, pleasurability, place proximity, 
safety from crime, and social cohesion. Human-oriented walkability refers to the 
perspective of pedestrians, which deals with the non-physical qualitative design and 
functionality of a built environment. According to [9, 10], walkability components 
can be categorically measured into direct and indirect approaches of objective and 
subjective measures. Also, [11, 12] explored that physical elements alone might not 
be attributed to the walking experience. Arguably, walking behavior may be implic-
itly impacted by the subjective dimension of perceptual opinions, visual intuitions, 
and environmental psychology. Eventually, [13] critically addressed that the chal-
lenge to moving from a subjective measure to an objective one is to ensure technical 
reliability. In developing countries, this challenge is unbeatable without a standard 
objective method that can counter the limitations of time, cost-effectiveness, micro- 
scale data availability, and the inconsistency of judgments among the raters for any 
individual qualities.

Google Maps and Google Earth’s Google Street View (GSV) feature offer us-
ers’ images of cities from more than 20 nations worldwide. This allows users to 
see panoramic images of public streets as if they were walking down the streets in 
person [14]. It is easily accessible to anyone with internet connectivity and can be 
used to objectively determine pedestrian counts on a street and analyze walkability 
trends to gain insights into the pedestrian activity in a city. The advancement of 
machine-learning technology combined with GSV images significantly contributes 
to urban research [15, 16].
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The use of GSV for evaluating streetscape elements was reliable for micro-scale 
analysis according to [17]. The greenery and building-to-street ratio (enclosure) [18] 
and sidewalk-to-street proportion [19] showed a correlation with the walk score. Some 
GSV-based studies estimated only greenery pixels to find their influence on walking 
behavior more specifically over walking time [20–24]. The evaluation of urban design 
quality in three ways using sky proportion as calculated by [16] also showed itself to be 
reliable with pedestrian counts and walk scores. An alternative method for manual pe-
destrian counting through object detection has been proposed [25]. However, focusing 
on only one or two physical features fails to provide a comprehensive understanding 
of a visual environment’s impact on walkability. Much of the walkability research 
was correlation-oriented; the researchers analyzed complex visual environments using 
GSV image detection and showed their concordance with manual walking behavior 
data from their field observation. Very few of the studies were able to provide a direct 
method where walkability was measured by and correlated with the same variables that 
were processed by image segmentation [26]. Developed countries have predominantly 
adopted objective measures for walkability, while in the developing countries of South 
America, Africa, Southeast Asia, and Southern Asia, it is subjectively oriented [27]. For 
Bangladesh, existing walking-related studies are incommensurate, qualitative, and 
policy review- oriented [28–32]; even more, none of the studies have applied a computer 
vision model and GSVs to measure micro-scale walkability in Khulna to date.

Considering the study gaps, this study aims to propose a comprehensive program-
matic walkability index that takes the design factors of streetscapes into account and 
converts subjective assessments into objective ones. The index ranks walkability based 
on visual factors and examines the correlations between different features; the results 
are presented in terms of percentage and spatial analysis for all of the studied roads. 
The study hypothesizes that the visual appearances of streetscapes have a significant 
impact on walkability, and the proposed index provides an objective measure through 
sensing technology. The research questions that are addressed by this study are related 
to how street design affects walkability and the effectiveness of the objective measure:

 – How can visual streetscape features be quantified objectively?
 – How can visual streetscape features be applied to measure walkability?
 – How is walkability correlated to visual streetscape features?

The study’s outcomes can guide urban planners, architects, and policymakers 
in addressing walkability and improving urban health by incorporating the findings 
into developmental plans. It may also inspire similar studies for walkability in other 
metropolitan cities in Bangladesh.

2. Study Area

Situated in the southwest of Bangladesh, Khulna is the third-largest city and is 
bounded by the Bay of Bengal to its south. Khulna City Corporation (KCC) consists 
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of a population of 720,000 with an area of 45.17 km2. Khulna has a robust multimodal 
transportation system that includes roads, rivers, and railways; over time, however, 
the road network is gaining a competitive advantage over maritime and rail trans-
portation. The total road network of Khulna includes 1215 roads that total 824.47 km 
(primary, secondary, and tertiary roads). Several inclusive transportation develop-
ment projects have been conducted over time that have facilitated convenient walking 
behavior via the construction of footpaths/walkways and extensions of existing roads 
(including 88 km of separate slow-moving vehicle lanes) [33]. Researchers have found 
that main roads that cover mixed land use areas, roads that connect multiple desti-
nations over short distances, and access to primary roads that have potential street-
scape infrastructure encourage pedestrians regarding both leisure and utilitarian 
walking [34]. In the city areas of Bangladesh, secondary and tertiary roads are usual-
ly poorly attributed to road enclosures (disproportionate street-building ratios) [35], 
openness (congested roads with low sky proportions), and attractiveness elements 
(greenery); these are the significant influential features that demotivate pedestrians 
due to comfort and safety concerns. Considering these facts, only seven major prima-
ry roads were selected as study roads, and a total of 127 GSV images were accepted 
as study samples (Fig. 1). The total lengths of the study roads are described in Table 1.

Fig. 1. Study road map of Khulna



Measuring Objective Walkability from Pedestrian-Level Visual Perception... 9

Table 1. Selected study roads

Study Roads Start and End Points Lengths [km]

Outer Bypass Road Notun Rasta to Gollamari 7.1

Old Jessore Road Goalkahli Bus Stand to Jora Gate 3.4

KD Ghosh Road Thanar More to Zilla School 1.6

Jalil Sarani Boyra Girls’ College to Rayer Mahal 2.2

Khan Jahan Ali Road Rupsa Ghat Road to Ferry Ghat Road 3.1

KDA Avenue Shibbari More to Royal More 2.0

Sher-E-Bangla Road Gollamari to Power House More 3.2

3. Methodology

3.1. Methodological Framework

The methodology was initiated 
by conceptualizing a “street level” 
walkability study design that incor-
porated four phases, including street 
view data collection, image process-
ing, calculating and evaluating visual 
walkability, and addressing the eval-
uative impact (Fig. 2). First, a data set 
that was comprised of 127 panoramic 
street view images was created by 
using Google Earth. Second, the po-
tential physical components that im-
pacted or might impact the contextual 
built environment and physical activi-
ty were classified pixel-wise by apply-
ing the ResNet computer vision model 
after an extensive literature review. 
Classified physical components were 
converted into five visual features by 
applying the proposed formulas, and 
the walkability was analyzed by calcu-
lating the OVW index. The evaluation 
part was comprised of three parts, in-
cluding walkable road-rank determi-
nation, mapping representation of 
visual features, and a correlation anal-
ysis of the visual features and OVW. Fig. 2. Methodological framework
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3.2. Overview of Streetscape Features

Understanding its multidimensional nature, walkability has become a complex 
concept that encompasses multiple factors that influence pedestrian walkability. In 
recent years, this topic has been examined from different perspectives (such as ur-
ban planning, public health, and analytical techniques), and researchers have ex-
plored numerous features and sub-features in order to assess walkability based on 
these perspectives in attempts to capture its comprehensive nature (Fig. 3) [36, 37].

All of these streetscape features and sub-features have been previously used in 
the literature (categorized in Table 2).

Table 2. List of walkability literature using reviewed streetscape features and sub-features

Streetscape features Studies

Functional Environment
(Accessibility, Street Connectivity, Land Use, Density)

[2], [38], [39], [40], [41], [42], [43], [44], [45]

Urban Design Quality
(Transparency, Coherence, Imageability, Complexity, 
Human Scale, Legibility, Enclosure, Crowdedness)

[9], [16], [25], [26], [27], [46], [47], [48], [49], [50]

Safety
(Traffic Safety, Crime Security)

[39], [40], [44], [45], [51], [52], [53]

Streetscape Design Quality
(Comfort, Sense of Place, Pleasurability, Aesthetics, 
Attractiveness)

[17], [23], [38], [39], [44], [45], [54] 

Pedestrian Facility
(Sidewalk Widths, Sidewalk Slopes, Parking Spaces, 
Obstacles on Sidewalks, Cleanliness on Sidewalks, 
Pedestrian Infrastructures)

[17], [27], [39], [44], [52], [53], [54]

Functional Definition of Key Streetscape Visual Features
Before the image processing and pixel calculation, five key visual design fea-

tures were generated from the 11 initial physical features that were viewed in the 
panoramic GSV image. This selection focused on how frequently the features were 
used in urban design studies, how easily their functional definitions could be under-
stood, and their computational compatibility with existing machine-learning models 
(including SegNet, ResNet, DeepLab, and YOLO) [55–58]. Publications [12, 13, 59] 
first addressed the visual characteristics that covered a majority of the complex ur-
ban design and spatial analytics.

Greenness
Street vegetation has been shown to act as a stimulant for the promotion of out-

door activity, and researchers significantly emphasize this factor in the assessment 
of walkability. More precisely, it has been shown that an increase in the amount of 
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visible flora in an area has a positive impact on easing unpleasant psychological 
symptoms [60]. The counterpart ascendancy of greenness and visual crowdedness on 
walking is positively attributed to greenness; on the other hand, crowding the obsta-
cles of streets limit smooth walking activities. Greenness is the strongest visual attri-
bute that directly captivates pedestrians’ visual senses of aesthetics and beauty. Even 
though vegetation is being measured by the conventional GIS-based NDVI indices, 
advanced machine learning and GSV are being employed to objectively quantify sub-
jective greenery in health, social, environmental, and psychological studies [61–63].

Openness
Though openness is related to an enclosure, it conceptually refers to the degree 

of the exposure to the sky. Openness generates a wide and well-lit visionary impact 
that induces comfort and relaxation in users [64]. In this study, openness has been 
quantified as the sky proportion that is visible from a standing stance to the total 
environment’s pixel number. The presence of proportionate vertical structures and 
trees with wide horizontal elements of roads, sidewalks, and setbacks creates a rela-
tively high exposure of openness [65]. Also, a road with a relatively higher openness 
may question the feeling of safety and create discomfort and emptiness.

Visual Enclosure
In the walkability study, enclosure defines how pedestrians visualize a street’s 

walking environment to be separated and surrounded by its horizontal and vertical 
elements [66]. The visual enclosure is estimated with the proportions of the road 
widths, sidewalks, setbacks, and vertical structures and canopies. The majority of 
the time, vertical features determine how roadways are enclosed; it will be a more 
successful place when the outdoor area is distinctively proportioned in shape as 
compared to the nearby buildings [67]. The visual confinement of the enclosure has 
a profound impact on walking willingness; a higher vertical and lower horizontal 
ratio can be oppressive and discomforting [9].

Visual Crowdedness
Street elements like vehicles, billboards, signboards, electric poles, lamp posts, 

and sign-symbols (which tend to create disquietness and unwillingness to walk) 
are compositely considered to be obstacles. A higher number of obstacles tend to 
make a walking environment noisier and visually crowded. From some conceptual 
aspects, crowdedness and complexity represent the same meaning but are different 
in their direction of perception [68, 69]. Complexity refers to the aesthetical diversity 
of streetscape and architectural embellishments [9]; on the contrary, pedestrian en-
vironments with higher complexities or that are monotonously established are dis-
couraging to walkers. Two methods for evaluating complexity have been suggest- 
ed by a thorough architectural study on visual complexity: the first involves ambiguɪ 
ÖÜÚɯpatterns, and the second involves patterns that are created by environmental 
ÍÈÊtors [70].
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Visual Pavement
Visual pavement represents the degree of the arrangement of horizontal com-

ponents. The proportionate appearance between the road width and the sideways 
elements like sidewalks, footpaths, and fences are calculated to measure the visual 
pavement. A higher proportion of the sideways parts allows for suitably arranged 
pathways for walking [71].

3.3. Data Processing: Objective Visual Walkability (OVW)
Street View Image Collection
The data-collection phase started by selecting seven study roads from the unit-

ed road network of Khulna (using Google Earth) and generating the study points 
by splitting the roads into 200 m intervals (using ArcGIS 10.5). A reconnaissance 
survey on the study roads revealed that a 200-meter-distance interval was sufficient 
for capturing relevant information on roadside features, traffic density, land use, 
transportation infrastructure, and key points of interest. This interval was aligned 
with the standard practices in related studies [72] and was systematically effective 
for minimizing data overload. Choosing this interval was practical and feasible in 
terms of time, budget, and computing resources while allowing for efficient data 
collection and maintaining the necessary level of detail for analysis. Accordingly, 
the data set was created by capturing a 360° panoramic-street-view image for each 
of the study points by compiling Google Maps and Street View Download 360. Goo-
gle Maps is an open-accessible street-view image resource that is available in Ban-
gladesh; it is provided with high resolution and substantial detailed information 
on the studied roads. This study required panoramic views of the roads to make 
them equivalent to the visual experiences of pedestrians. So, iStreetView software 
was used to get the panorama URL link of the study points, and the 360° panoramic 
images were downloaded from Street View Download 360 software using Panora-
ma ID. These 360° panoramic images were dimensioned with 360° horizontal and 
180° vertical coverage of the street sites. However, for those points where land-
marks and structures were changed or erected over time, GSV was not appropriate 
for showing accurate views. For those points, real-time 360° panoramic images were 
captured using Google Camera, and both types of images from Google Maps and 
Google Camera were resized. In this method, the field-of-view (FoV) (or the central 
field of human vision for the panoramic image boxes) was set to 60°. FoV generally 
refers to the extent of the angle that is viewed in a virtual image that is equiva-
lent to the eye-level pedestrian experience for a specific study point. This is how 
six 60° images can cover a 360° horizontal surrounding area [73]. Figure 4 shows 
that the FoV that was extracted from the panorama was represented in the frames 
of the vision boxes for analyzing the visual perspectives of pedestrians. Setting the 
necessary FoV is important for achieving real-time perspectives from each part of 
the images.
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Image Feature Recognition:  
ResNet Training, Image Segmentation, and Pixel Quantification
MATLAB was used for the segmentation process, where a machine-learning 

algorithm was utilized to make the machine recognize streetscape features accord-
ing to the classified pixels. To operate these algorithms, an artificial neural net-
work (ANN) called a residual neural network (ResNet) was devised. This is the first 
fully functional very deep feedforward neural network with hundreds of layers with 
a deep convolutional encoder-decoder architecture for semantic pixel-wise labeling 
for increasing segmentation accuracy (far better than prior neural networks) [74]. 
There are 18 deep layers in the architecture’s 72 tiers; first, a convolution layer of 
a size of 33 receives the input, while the batch normalization, activation, and pool-
ing layers are the following three layers. ReLU (rectified linear unit) is the activation 
function that is utilized. The pooling layer has a stride of 2 and measures 33. There 
is a “residual learning unit” that makes use of any skip connections between two 
such units. The “fully connected” layer with the “Softmax” activation function is 
employed at the network’s termination. The network’s input size is 224 × 224 × 3, 
which has been predetermined. Due to its intricate layer structure and the fact that 
each layer receives input from other layers and outputs to other layers, the network 
is considered to be a DAG network. Its goal is to make it possible for numerous 
convolutional layers to operate well. ResNet’s main concept is the usage of jumping 
connections – often known as identity connections or shortcut connections. Most 
of the time, these connections work by jumping over one or more levels to provide 
shortcuts between them. The purpose of establishing these shortcut connections was 
to address the primary problem of disappearing gradients that deep networks com-
monly experience. By reusing the activations from the prior layer, these shortcut 
connections fix the vanishing gradient problem.

ResNet uses reinforcement learning to infer pixel-wise class labels, where it re-
quires a training data set that consists of a large number of GSV images. For this cur-
rent image segmentation, a pre-trained network algorithm called “deeplabv3plus-
Resnet18CamVid” (developed by Cambridge University) was used for validation; 
it contained a data set of 701 training images, 140 test images, and 140 images. This 
whole mechanism is represented in Figure 4; it shows the application of the pre-
trained “deeplabv3plusResnet18CamVid” network algorithm on its training set in 
the convolutional encoder-decoder of the ResNet architecture, which optimizes the 
machine to recognize the features and segment a whole image into feature-wise pix-
el classification according to the designated RGB colors. This involves the whole 
process of image training, testing, and validation. When the machine was optimized 
with supervision learning, the study area’s GSV image was inserted as input, and 
the final segmented output was derived (shown in Figure 5).
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Objective Visual Walkability (OVW) Calculation
The ResNet architecture was supervised for feature-wise pixel segmentation ac-

cording to RGB inferences. Using the necessary codes in MatLab, the feature-wise 
pixel number from each segmented image was extracted. A total of 11 features were 
defined in the initial segmentation and, thereafter, re-classified into a total of seven 
features (shown in Figure 6) for the calculative convenience of the OVW index 
(shown in Table 3). After the total 11 features were recognized by the RGB character-
izations, their pixel numbers were estimated.

Table 3 shows that the feature-wise classified pixel numbers from all six 60° part-
ed sub-images of Royal More were calculated in order to obtain the total pixel num-
ber of the panoramic image. In the same way, the total pixel count was determined 
from all of the sample images.

Table 3. Estimated pixel counts of segmented features (Royal More)

Features

Images

Sky 199,377 128,303 238,332 241,860 280,436 241,330 1,336,917

Buildings 75,507 99,633 19,374 39,303 41,354 62,561 482,591

Poles 125 315 63 549 1412 88 673

Roads 216,276 238,098 266,439 269,601 225,859 276,977 1,529,158

Sidewalks 46,495 24,075 12,392 28,734 26,083 28,595 77,038

Trees 207 102 367 355 3141 32 40,886

Sign symbols 21,082 44,051 31,442 6051 50 2460 22,258

Fences 695 542 400 638 642 591 2166

Cars 18,366 26,913 40,051 27,847 34,557 13,441 236,712

Pedestrians 497 185 118 112 175 110 1216

Bikes 660 476 343 502 520 492 2385

Total pixels 641,750 621,591 628,747 608,383 623,128 608,401 3,732,000
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To calculate the objectively measured walkability, these features were com-
piled to build five key formulas that indicated five key features; these five features 
constructed a walkability formula called “objective visual walkability” (shown in 
Table 4), which is a modified adaptation from [26]. Greenness, openness, visual 
crowdedness, visual enclosure, and visual pavement were the five key features for 
calculating the OVW index. The calculated values were the pixel numbers where the 
higher the values were, the better the level that the features represented (except for 
the visual crowdedness feature). In the same way, a higher index value represented 
the better walkability of that location (for this study, this ranged between 3 and 8 on 
a scale of 1–10).

Table 4. Formulations and definitions of OVW Index

Key 
features

Functional 
definition Formula

Openness

Degree to 
which sky por-
tion is exposed 
to pedestrians 

O-level = Sum of sky pixels
Sum of total pixels

Greenness

Degree to 
which street 
greenery expo-
sure can affect 
how pedestri-
ans feel

G-level = Sum of tree pixels
Sum of total pixels

Visual 
crowded-
ness 

Degree to 
which obstruc-
tion visibility 
can affect how 
pedestrians 
feel

C-level =  

=
Sum of obstacle (Pole,  sign-symbols,  car,  pedestrian,  and bike) pixels

Sum of total pixels

Visual 
enclosure 

Way outdoor 
area resembles 
room (ratio of 
vertical objects 
to horizontal 
features)

E-level = 
Sum of vertical objective (Building and tree) pixels

Sum of horizontal featured  (Pavement,  road and fence) pixels

Visual 
pavement

Effects of 
proportions 
of sideways 
and roads on 
perceptions of 
pedestrians

P-level = 
Sum of sideway (Pavement and fence) pixels

Sum of road pixels

Objective visual walkability (OVW) = (O G C E P) 5+ + + + ⋅
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The objective visual walkability (OVW) index calculation was started by apply-
ing the formula that was constructed by assembling the five visual indices that are 
shown in Equation (1). Next, the OVW values of each study point of each study road 
were summed up, and this cumulative value was averaged by the total number of 
study points that existed on that study road.

 
OVW of study pointsOVW for each road  
No. of study points

∑
=  (1)

4. Results
4.1. Walkability Ranking
After the composite OVW index calculations for the seven study roads, a rank-

ing is illustrated in Table 5 according to their value priority. Here, KD Ghosh Road 
appears to be ranked first (with the highest walkability index value – 6.0046), and 
KDA Avenue ranks last (with the lowest index score – 4.1753). KD Ghosh Road is 
a popular route for leisure walking for locals, despite the fact that it is the shortest 
route; this is due to its location near important government buildings (like Circuit 
House, Khulna Divisional Court, and the police station) and its abundance of street 
amenities and greenery. On the contrary, KDA Avenue is less inviting for walking be-
cause it is surrounded by fast-growing economic development, high-rise infrastruc-
ture, and multiple mixed crowds (making it even more visually less enclosed). On-
going disruptions throughout the year for road maintenance and repair by various 
authorities make it unable to walk due to a lack of adequate coordination. The study 
showed that walkability is influenced by the visual appeal of a street, which is affect-
ed by factors like the availability of street amenities and the level of maintenance.

Table 5. OVW calculation and ranking of study roads

Study roads ∑OVW  
of study points

No.  
of study points

∑OVW of study points/  
No. of study points Ranking

Outer Bypass Road 199.3215 41 4.8615 4

Old Jessore Road 95.9934 18 5.3329 2

KD Ghosh Road 42.0322 9 6.0046 1

Jalil Sarani Road 86.6761 16 5.0985 3

Khan Jahan Ali Road 76.4345 16 4.7771 5

Sher-E-Bangla Road 73.5244 17 4.3249 6

KDA Avenue Road 45.9284 10 4.1753 7
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Figure 7 represents one set of sample images from each study road; these imag-
es provide insight into how real-time pedestrian environments have been segment-
ed by feature-wise pixel classification.

Fig. 7. Sample segmented images of study roads

4.2. Correlation Analysis of Initial Elements  
and Generated Key Visual Features

To identify the statistically meaningful relationship among multiple vari-
ables, a two-tailed significance-tested multiple correlation analysis was conduct-
ed over a sample data set of 127 GSV images (shown in Table 6). The corre-
sponding relationship was represented as the Pearson correlation coefficient in 
a comparison matrix. The first part of the four-stage correlation analysis evalu-
ated the multi- collinearity among the visual indices and the degree of influence 
of the independent visual indices on the dependent variable (“walkability”). The 
relatively low (or negative) correlation among the visual indices indicates that 
the seven initial explanatory elements were individual, and the five key visual 
indices that were generated from the initial components did not overlap (inde-
pendently influencing the walkability). This made the comparison matrix valid 
without an interpretation bias. The correlation coefficients (0.614, 0.750, 0.483) 
showed that greenness and visual enclosure had a strong positive effect, and 
visual pavement had a moderate positive influence on walkability. Conversely, 
openness (−0.511) and visual crowdedness (−0.070) had a negative correlation 
with walkability, which was systematically valid because congested roads with 
crowds make it disturbing for walking.
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Table 6. Correlation analysis of walkability index,  
key walkability features, and initial elements

Part A: Correlation coefficient of five streetscape features and walkability (OVW)

Features Openness Greenness
Visual 

crowded-
ness

Visual 
enclosure

Visual 
pavement IVW

Openness 1 −0.651** −0.001 −.0754** 0.014 −0.511**

Greenness −0.651** 1 −0.400** 0.765** −0.204* 0.614**

Visual 
crowdedness −0.001 −0.400** 1 −0.213* 0.200* −0.070

Visual enclosure −0.754** 0.765** −0.213* 1 −0.142 0.750**

Visual pavement 0.014 −0.204* 0.200* −0.142 1 0.483**

IVW −0.511** 0.614** −0.070 0.750** 0.483** 1

Part B: Correlation coefficient of visual crowdedness and its visual elements

Features Visual 
crowdedness Pole Sign-

symbols Car Pedestrian Bike

Visual 
crowdedness 1 −0.124 0.164 0.863** 0.247** 0.236**

Pole −0.124 1 −0.060 −0.142 −0.092 −0.033

Sign-symbol 0.164 −0.060 1 −0.010 0.167 0.259**

Car 0.863** −0.142 −0.010 1 0.187* 0.141

Pedestrian 0.247** −0.092 0.167 0.187* 1 0.051

Bike 0.236** −0.033 0.259** 0.141 0.051 1

Part C: Correlation coefficient of visual enclosure and its visual elements

Features Visual 
enclosure Building Tree Sidewalk Road Fence

Visual enclosure 1 0.216* 0.662** −0.225* −0.023 0.203*

Building 0.216* 1 −0.456** 0.117 −0.130 −0.142

Tree 0.662** −0.456** 1 −0.262** 0.165 0.325**

Sidewalk −0.225* 0.117 −0.262** 1 −0.584** 0.295**

Road −0.023 −0.130 0.165 −0.584** 1 −0.095

Fence 0.203* −0.142 0.325** 0.295** −0.095 1

Part D: Correlation coefficient of visual pavement and its visual elements

Features Visual  
pavement Sidewalk Road Fence

Visual pavement 1 0.914** −0.682** 0.315**

Sidewalk 0.914** 1 −0.584** 0.295**

Road −0.682** −0.584** 1 −0.095

Fence 0.315** 0.295** −0.095 1

 * Correlation is significant at the 0.05 level (2-tailed).
 ** Correlation is significant at the 0.01 level (2-tailed).
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The next three parts of the correlation analysis evaluated the relationships 
among the visual indices and the streetscape elements from which they were gen-
erated. Openness and greenness were not included in this analysis, as they were 
determined using a single component.

Part B revealed that the sub-elements of car, pedestrian, bike, and sign-symbol 
had strong (correlation coefficient range of 0.7 to 0.9), moderate (range of 0.5 to 0.7), 
and weak (range of 0.2 to 0.5) positive correlations with visual crowdedness, respec-
tively. The pole had a negative relationship (with a coefficient range of −0.1 to −0.3), 
as it was considered to be less disruptive to walkability as a vertical infrastructure. Pe-
destrians and bikes had the highest correlation, with a maximum of four co-elements.

Part C found that the vertical features of buildings, trees, and fences had strong 
influences on the visual enclosure, with positive correlations ranging from 0.2 
to 0.65. Meanwhile, horizontal elements were found to have a negative correlation, 
indicating that the construction and combination of vertical elements were more 
important for a proportionate streetscape design. All of the co-elements were indi-
vidually important for the visual enclosure, resulting in negative or zero interactive 
correlations among them.

In the comparison matrix for visual pavement, pavement, and fence, it had a pos-
itive correlation (coefficient range from 0.3 to 0.9), while road had a negative correla-
tion. The interactive correlations among the co-elements followed a similar trend, 
with sidewalks and fences positively correlating, and roads negatively correlating.

4.3. Percentage-Level Representation of Visual Walkability Features
The stacked columns in Figure 8 show at what percentages all of the five visu-

al indices are present and viewed from a totality of vision from a standpoint. So, 
the percentage level of the five visual indices at each of the study points for all of 
the study roads is shown. Since the walkability index for each study point is de-
rived by compositing the five visual indices, the degree of the walkability of a study 
point is combinedly dependent on all of the five key features. In the OVW ranking, 
KD Ghosh Road ranked first, with a comparatively higher degree of proportioned 
greenness, enclosure, and sidewalk (which made the road visually open, comfort-
able, and pleasant). Although the lowest level of greenery reduced the shades result-
ed in increasing openness, a comparatively lower degree of road pavement, enclo-
sure, and greater crowdedness compositely made KDA Avenue the least walkable 
in the OVW index.

A correlation analysis of enclosure suggested vertical elements to be influential, 
which is reflected in the graphical representation of road-wise feature distribution. 
Also, the study roads with approximately the same widths and sidewalks impact-
ed relatively the same over the horizontal part of the enclosure. Accordingly, the 
buildings with comparatively lower building heights and the higher setbacks of the 
residential building along with the trees on Old Jessore Road represented higher 
ranges of the enclosure.
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Fig. 9. Spatial distribution of visual features and walkability index:
a) openness; b) greenness; c) visual crowdedness; d) visual enclosure;  

e) visual pavement; f) objective visual walkability (OVW)

KCC Boundary 0 0.5 1  2 Kilometers

Openness

Visual Crowdedness

Visual Pavement

Greenness

Visual Enclosure

OVW

0.072200–0.219500
0.219501–0.317600
0.317601–0.366400
0.366401–0.405000
0.405001–0.502200

0.001000–0.030700
0.030701–0.067300
0.067301–0.133800
0.133801–0.201600
0.201601–0.312100

0.021900–0.044800
0.044801–0.062600
0.062601–0.082800
0.082801–0.108300
0.108301–0.154200

0.089500–0.185800
0.185801–0.270800
0.270801–0.389700
0.389701–0.567100
0.567101–0.819400

0.017400–0.070400
0.070401–0.140000
0.140001–0.223900
0.223901–0.368000
0.368001–0.550500

3.288580–3.913500
3.913501–4.549900
4.549901–5.203100
5.203101–6.009500
6.009501–7.281100

 a) b) 

 c) d) 

 e) f)
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4.4. Spatial Distribution of Visual Walkability

The study conducted a spatial analysis where the choropleth mapping in Fig-
ure 8 showed how the five walkability measuring indices values varied spatially 
within the 127 study points. Figure 9a represents a lower degree of openness in 
KD Ghosh and Old Jessore Roads. In contrast, these two roads had a higher degree 
of greenness with trees and canopies in Figure 9b, which minimized sky exposure. 
This implied a fact that, even though a road that has a moderate horizontal- vertical 
enclosure can be distorted by lower openness, large vertical canopies provide shad-
ing and reduce sky exposure. However, the greenness mapping indicated that 
roads that were ranked less-walkable in the OVW index had lower ranges of green-
ness. In Figure 9c, the values are quite interspersed where Old Jessore Road is the 
least-crowded road because it is surrounded by residential land use (where the hu-
man crowd and vehicular movement was less). Oppositely, Khan Jahan Ali Road, 
KDA Avenue, and Sher-E-Bangla Road had a higher range of crowdedness because 
they run across the CBD and the major economic hub of Khulna. The enclosure 
mapping in Figure 9d tends to illustrate a similar trend of crowdedness in Out-
er Bypass Road, since this long route covers multiple land uses. Theoretically and 
functionally, the overall pavement conditions of Khulna’s roads are not suitable for 
overall walking, so the overall values in Figure 9e are distorted. Finally, Figure 9f 
illustrates the aggregated OVW index scores that were obtained from the respective 
five indices. This is the final understanding of the spatial walkable conditions for all 
of the study points, where KD Ghosh Road appeared to be the most-walkable road, 
and KDA Avenue was the least-walkable.

5. Discussions

Studies from various fields such as behavioral geography, urban planning, and 
cognitive psychology have discovered the concept of a “sense of place” that involves 
how individuals visually perceive and connect with their surroundings. Despite 
this, visual street design elements have been less explored – only 5% [27]; this is due 
to the lack of a standard and user-friendly objective method. An objective measure 
combined with an advanced machine-learning algorithm and GSVs for assessing the 
visual designs of streets offers a robust tool. For this objective approach, it is no lon-
ger obscured to relate visionary notions for cityscape designing and planning – even 
at a micro-scale level – as visual elements are calculated through human-scale ob-
servation (which is automated and can be replicated without manual observation). 
The image-segmentation process that is applied through the ResNet architecture has 
enormous advantages for achieving the study goal, as ResNet models can be pre-
trained on large data sets and then fine-tuned on smaller data sets; this can be useful 
in built-environment analysis where labeled data is limited [75]. The deeper net-
work principle makes it capable to extract a detailed number of features to alleviate 
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the vanishing gradient problem. The current study used 11 physical features syn-
thesized into five key visual features that were compositely framed for pedestrian- 
oriented comfort; this has significantly contributed to visual cognitive studies, urban 
planning, and architectural design. The results showed that roads that are close to 
CBD or economic-commercial zones distress its visual comfort for crowded side-
walks, multi-modal traffic flow, and high-rise infrastructure. The roads with higher 
walkable values ranked the presence of visible greenness and enclosure higher than 
other features, which attributed them as the predominant features. The remaining 
features could not resonate with distinctive influence, as the overall roads were not 
accommodating enough with diversified and standard streetscape facilities. This 
is the perverse effect of prioritizing motorized transportation over non-motorized 
traffic. In contrast with human scale intelligence, this method can supplementarily 
be used as a technical tool for zoning rules, land-use resizing, and architectural de-
sign guidelines like “Active Design Guidelines” [76]; to identify problematic roads 
and determine the features that were difficult to examine. It can be simulated in the 
comparative analysis with the conventional subjective approach and a GIS-based 
objective measure. The current research can be extended to evaluate socio-economic 
behavioral and planning studies. Also, it scopes up the opportunities to integrate 
multidimensional research interests, including public health, real estate, medical 
research [77], and cycling behavior. From a futuristic viewpoint, a global online sys-
tem can be generated that enables image-segmentation services to be available for 
relevant types of image data sets and integrated into walkability indexes like Neigh-
borhood Environment Walkability Scale (NEWS) [78] and Walkscore® [79].

Policies and strategies that address sustainability and transportation are essen-
tial for promoting a walkable city. The BRT (Bus Rapid Transit) Walkability Strategy 
aims to promote a sustainable and walkable city through improved access, securi-
ty, and vibrancy in its streets, parks, and public spaces [80]. National transporta-
tion policies such as the National Land Transport Policy (2004) and the Integrated 
Multi-Modal Transport Policy (2013) focus on safe and developed transportation 
systems and infrastructure investment [32]. However, market-driven land-use pol-
icies and financial interests can hinder progress. Major cities in Bangladesh (like 
Khulna) face challenges in promoting walkability due to their heavy traffic flows 
and inadequate road infrastructures. This is due to the lack of coordination between 
urban and transportation planning authorities, which prioritize automotive mobili-
ty over pedestrian needs. The proposed visual walkability may encourage planners 
and policymakers to prioritize walkability as a sustainable planning strategy and 
approach it from a technologically driven human-centered visual perspective.

The study of the visual walkability index has limitations, as it only analyzed 
certain aspects of the walking environment and did not take other sensory factors 
like smell, sound, and mental perception into account. It also did not consider sub-
jectively measured elements such as social cohesion, comfort, safety, and pleasur-
ability [2]. Vision-oriented perceptual features were analyzed without the inclusion 
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of other sensual features that are oriented to smells, sounds, and cognitive sensitiv-
ity. Conventional methods of assessing walkability use spatial factors like land-use 
mix, road networks, dwellings, and intersection densities, which is a different ap-
proach from this study. This study is not a complete replacement for other methods 
of assessing the multidimensional aspects of walkability. In addition, conducting 
GSV-based studies in developing countries like Bangladesh can be challenging due 
to the lack of updated Street View images in Google Maps and the unavailability of 
GSVs in rural areas (which restricts the study’s reach).

6. Conclusion

To conclude, this objective approach proposed a visual walkability in Khulna 
that was intended to quantitatively measure “unmeasurable” visual streetscape el-
ements using an artificial pedestrian’s visual level perception, which was difficult 
with a subjective approach. The application of a machine learning-based ResNet 
model with the input of Google Street View images was able to extract five key visu-
al streetscape features through image segmentation, providing a cost-effective and 
scalable solution to objectively measure walkability. A quantitative analysis of clas-
sified features and the OVW index showed quite satisfactory real-time performance. 
This study highlights the potential for using machine-learning technology to support 
urban planning and design efforts by providing objective data on the walkability of 
a given area, which can help when making decisions to ensure diversified cityscape 
design elements, greenery, and other pedestrian-friendly infrastructures. With the 
responsive supervision of planners, scholars, and decision-makers, this scopes up the 
further development and research opportunities that are related to a “sense of place.”
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