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Digital Cartographic Generalization –  
Study of Its Thresholds and Stages  
in Example of Cartographic Line

Abstract: Digital generalization of spatial data has been the goal of the research in many 
research centers around the world. This article presents the evolution of car-
tographic generalization, drawing the reader’s attention to the change of its 
nature from analog to digital. Despite the passage of time and developing 
technologies, scientists have unfortunately yet to develop a uniform automat-
ic generalization algorithm. One of the factors that hinder this process is the 
high complexity and complication of the whole process. The article is an at-
tempt to answer this problem and addresses the issue of digital cartographic 
generalization by creating a proposal of thresholds and stages of cartograph-
ic generalization depending on the ratios of the numbers of points of general-
ized objects. The publication attempts to examine the possibility of applying an 
objective criterion of drawing recognition by examining digital generalization 
algorithms and setting its thresholds. The practical aim of the publication is 
to present generalization thresholds on the example of Chrobak’s algorithm. 
The proposal to make the selection of generalization thresholds dependent on 
the percentage share of points is a solution that is as simple to use as it is to 
implement. The method of defining intervals based on the three-sigma rule 
is a solution that guarantees that the obtained results will be characteristic of 
the probability density function of the normal distribution, which will define 
individual intervals most objectively.
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1. Introduction – Research Issues

Cartographic generalization is a process that consists of the selection and sim-
plification of selected map content; it is an intentional and logical process that causes 
changes in visualized objects [1]. The overriding goal of generalization is the abili-
ty to create maps at various scales while maintaining spatial relationships between 
objects on the Earth’s surface [2]. According to this rule, the map should present 
the surrounding space in the simplest possible way (or one that will have a utilitar-
ian character). This means that, due to the carefully selected (simplified) content, 
the map will be a valuable source of information about a given phenomenon [3]. 
Content selection is strongly correlated with map scale; large-scale studies can be 
considered to be more objective due to the smallest possible percentages of omitted 
objects or their parts [4].

Initially, cartography was often treated as an art; the created studies had the 
character of unique works. Over time, cartography gained a new meaning; for 
example, through the need to register owned lands, which affected the amounts 
of taxes [5]. A more utilitarian character of cartography was revealed at the stage of 
great geographical discoveries. Then, it turned out that an accurate map that showed 
the coastlines of continents, countries, or rivers was often worth its weight in gold.

Another milestone in the development of cartography was accelerating global-
ization and, thus, commercialization, which forced the need to systematize the rules 
that governed the objects that were presented on maps at different scales.

In addition to the method of mapping and presenting relief, the problem of gen-
eralization was already defined as an important scientific problem in the 19th cen-
tury due to the need to change the approach to the method of creating maps. The 
subjective process of generalization that existed from the beginning (which was 
completely dependent on the knowledge and experience of cartographers) was re-
placed by attempts to systematize the principles of cartographic generalization and 
unify the method of generalization [6–10]. The advent of computers opened up new 
possibilities for cartographers to systematize and specify the rules of generalization 
in the forms of mathematical formulas. The algorithmization of the generaliza-
tion process led to clarifications of the generalization rules in the forms of mathe-
matical formulas that were intended to ensure its objectivity and repeatability. The 
new research problem hid its potential under the concept of digital cartographic 
generalization, which has been highlighted in this publication on the example of 
line generalization.

The publication deals with the topic of the digital generalization of a line on an 
example of the Vistula River.

The choice of a specific example for the analysis was dictated by the desire to 
popularize the region and one of the largest European rivers. In addition, the Vistula 
is interesting in its middle course due to a lack of regulation, which also translates 
into the fact that the river meanders.
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2. Literature

Digital cartographic generalization ostensibly provided objectivity in the search 
for unbiased and commonly used criteria [11]. The unification of the map-develop-
ment method led to a situation where the experience, workshop, and knowledge of 
a person who supervised the generalization process could seem irrelevant. Of course, 
there is a lot of truth in this if we only consider the technical process of carrying it 
out (i.e., reducing the number of objects or their components as a result of changing 
a map’s scale). It is worth noting, however, that the digitization of maps resulted in the 
emergence of new algorithms for automatic cartographic generalization, the use of 
which giving different results depending on the type of object and the initial adopted 
conditions. In the 1960s, the first algorithms for automatic cartographic generalization 
using computers were developed by Perkal [12], Tobler [13], and Lang [14], among 
others. The first research focused on the generalization of linear objects [13–15]. Ini-
tially, digital methods of generalization provided support and were tools for improv-
ing the work of cartographers [16]. Nowadays, the process of generalization is related 
to the generalization of the contents of spatial databases, not maps as such [17, 18].

Scientists agree on the need to automate the generalization process [18]. Re-
search on the generalization process that was conducted by Li Zhilin [19] divided 
the simplification algorithms into those that take the scales of the ultimately created 
map into account as well as those that eliminate the polyline vertices. The last of the 
mentioned groups is characterized by the selection of the so-called critical points 
of the primary line and the elimination that results from the target scale. Within 
this group, there is a classification that divides algorithms into independent uncon-
ditional processing procedures of a local nature as well as procedures of a global 
nature [8, 20]. The group of local algorithms includes those that were created by the 
following scientists: Jenks, Reumann–Witkam, and Lang. Examples of global algo-
rithms are the Douglas–Peucker and Chrobak algorithms [21].

An important problem from the point of view of science is also defining the method 
of generalization. One of the most important models is that of Ratajski (1973) [22] in 
which the stages and thresholds of generalization can be distinguished. Ratajski defined 
the limit (limes) of generalization as the moment of reaching the limiting capacity of 
a map within which further generalization would not be possible without renewing the 
map’s capacity. Morison’s model [17] is based on the types of generalization that were 
distinguished by Robbinson – arranging them in a series of transformations and distin-
guishing such elements as classification, simplification, symbolization, and induction. 
Another example of a more advanced model is that of Nickerson and Freeman [20]. This 
model defined the concept of an intermediate scale, which implied the creation of an 
output map by reducing the map to a scale of 1 : k · m and the area to (w · h)/k2 (where: 
w · h is the area of the symbol on an intermediate scale; k – enlargement of the symbol 
on an intermediate scale; m – denominator of map scale). Another advanced example 
of a model is that of Brassel and Weibel [23], which distinguished between the so-called 
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statistical generalization (which boiled down to content filtering) and cartographic gen-
eralization (which affected changes of a map’s structure to improve its visual message).

The new work of Professor Chrobak showed successful attempts to create a uni-
fied methodology of geometry that was visible from the scale of generalization. The 
first of the introduced methods concerned the verification of the resolution of draw-
ing lines in the mode of simplified dimensions of line recognition, line widths, and 
scales of operational maps. The verification was based on patterns in the forms of el-
ementary triangles [24] that specified the number of vertices of the generalized line. 
The step-generation algorithmization search function affected the geometrical and 
structural properties of a road network. Among the problems of cartographic gen-
eralizations based on winding mountain roads, deep-learning algorithms of neural 
networks are also used to solve them [25]. These are the algorithms that are used 
by scientists to generalize and smooth out winding roads [26]. Despite the errors 
in the results of the algorithms’ work (which attracted the attention of the authors 
of this algorithm), artificial neural networks have attracted attention as a tool of the 
future. This was also confirmed by Zang’s works [27] as well as Jensen’s [28]. The 
issue of generalization also appears in the works of Weibel [29]. A contribution to the 
methodology of generalizing the geometry of features was also made by scientists 
from Poland [30], whose work was taken into account on the use of the characteris-
tic features of metric spaces that represented the restrictive conditions of Lipschitz 
and Cauch, the measures of Salishchev’s triangles, and Banach’s theorem due to the 
uniqueness of the general process. Thanks to this research, the process became trans-
parent and made it possible to present features at every map scale.

3. Purpose, Scope, and Methodology – Research Problem

The scientific aim of the publication is to examine the possibility of applying an 
objective criterion of drawing recognition by examining digital generalization algo-
rithms and determining their thresholds. The practical aim of the publication is to 
present generalization thresholds on the example of Chrobak’s algorithm. The most 
commonly used generalization algorithms with their implementations in GIS soft-
ware and Chrobak’s algorithm (whose implementations were carried out using a Py-
thon code script) were selected for comparison.

Jenks’s algorithm eliminates a point if its distance from a line that connects two 
adjacent points is less than a given threshold value. All of the points of the simplified 
line coincide with the points of the original line.

The Reumann–Witkam algorithm is an algorithm that belongs to the group of 
unconditional local processing procedures, which examines both directly adjacent 
points but also evaluates groups of lines. In the mathematical sense, two straight 
lines are drawn on both sides of a line parallel to the segment that connects the 
first two points of it. Then, the algorithm looks for the next line segment that inter-
sects one of the lines. All of the points between the first and last intersections of the 
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segment and the straight line are removed from the result line. Then, the algorithm 
examines the next segment between the left point and its next neighbor.

Lang’s algorithm belongs to the group of conditional extended local process-
ing procedures. In this group, the algorithms are required to specify the number of 
points to be grouped in a tested line in addition to their linear and angular toleranc-
es. In the algorithm, the first point of the line is connected by a segment with the 
point that is located at the nth key point. The next step is to calculate all of the dis-
tances from this segment to the nodal points between the individual vertices. If the 
calculated distance is greater than the specified tolerance, the procedure is repeated 
for the segment between the first and n – 1 points until all of the distances between 
the line and the intermediate points are less than the tolerance. The whole procedure 
is repeated several times from the nth point toward the first point.

The Douglas–Peucker algorithm is an example of a global algorithm that takes 
an entire line (or its specified fragment) into account when solving, selecting extreme 
points by an iterative method, taking the distance from the chord in the segment into 
account. The algorithm preserves the general character of the original line. All of the 
simplified points are in line with the points of the original line [31].

Chrobak’s algorithm belongs to the group of global algorithms. Due to the ap-
plication of the recognition standard, the algorithm enables the simplification pro-
cess to be carried out in an automated manner without the participation of the oper-
ator; this guarantees an unambiguous test result [21, 32] (Fig. 1).

Fig. 1. Elementary triangle

The operation of the algorithm boils down to the selection of intermediate verti-
ces based on the determined elements of the primary line. The selection of extremes 
begins with a triangle that is formed on the examined polyline from the points of 
the base: the initial, final, and most distant vertex of the polyline. Verification of the 
standard is based on the following formula:

 ε01 = 0.5 mm ∙ M ∈ [(0.5–0.7 mm) ∙ M] (1)  ε02 ≤ 0.5 mm ∙ M ∈ [(0.4–0.5 mm) ∙ M]

where:
 ε01, ε02 – length of the shorter leg in the triangle,
 M – denominator of map scale.
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A fragment of the Vistula River in its middle course was selected as a test area 
for the individual algorithms. Both the left and right banks of the Vistula River 
were vectorized based on a high-resolution orthophotomap that was downloaded 
by WMS (Fig. 2). The vectorization process was deliberately chosen as a way to ob-
tain information due to the need to verify the algorithms in the context of selecting 
the right key points that are involved in the generalization process. Both banks of the 
river have been vectorized for an approximate length of about 5500 m. As a result of 
the vectorization, two broken lines were obtained with 138 points for the right bank 
of the river and 213 for the left bank, respectively.

Fig. 2. Part of vectorized Vistula River

Figures 3–6 present the results of the generalization that was made with the 
tested methods. The figures confirmed that the selection of the boundary scales for 
the studied section of the Vistula was appropriate. This was evidenced by the high 
compliance of the fragment of the examined Vistula ribbon with all of the gener-
alization algorithms for the scale of 1:30,000, which confirmed the assumption of 
the similarity stage and the transition to the simplification stage. The algorithms 
behaved similarly for the next scale threshold (which can be seen in Figure 4). For 
this scale, the stage of simplification ends and the schematization begins. For the 
next scale, it was decided to present two drawings due to the fact that the tested 
algorithms were subject to symbolization. This was evidenced not only by Figures 5 
and 6 but, above all, by the table that showed the percentage share of the vertices of 
the generalized band (Table 1).

The generalization models that are commonly known from the literature try to ad-
dress the issue in a comprehensive way, which makes them complicated; this requires 
a lot of knowledge from the operator, who must take the specific task that the resulting 
map is intended to serve into account when using them. The solution that is proposed 
by the authors boils down to a partial modification of the Ratajski model [22] and refer-
ring it to generalized linear objects. This way of application as well as the simplicity of 
the rules of the defined solution make it possible to use it even among operators who 
do not have much experience in the field of cartography. The lack of complicated algo-
rithms means that the applied solution will not cause problems with implementation.
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Fig. 3. Result of generalization of fragment of Vistula River for 1:30,000 scale

Fig. 4. Result of generalization of fragment of Vistula River for 1:80,000 scale
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Fig. 5. Result of generalization of fragment of Vistula River for 1:1,000,000 scale

Fig. 6. Result of generalization is visible for entire section of Vistula under study

The proposal includes the creation of four generalization thresholds, making 
the generalization thresholds dependent on the ratio of the number of points remain-
ing after the generalization to the number of points before the generalization. In the 
opinion of the authors, defining the thresholds of the range should be supported by 
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the probability density function of the normal distribution with mean μ and variance 
σ2 an example of which is the Gaussian function [33]. The rationale for using the 
function is that the normal distribution is the distribution over the expected value 
(mean). It follows that the results are on the left side and on the right side of the 
graph. According to the three-sigma criteria, approximately 68% of the results are in 
the range of one standard deviation to one plus one standard deviation. The situation 
is similar for two and three sigmas. This rule is used to analyze the distribution of 
scores and examine the outliers that drive the conduct distribution figure to a normal 
distribution. This means that, even if the original score distribution is not normal, the 
generalization score distribution should be approximated by a normal distribution:

 
2

µ ,σ 2

( µ)1)  e( xp
2σσ 2π
xf x − −

=  (2)

Taking the fact that the value of the statistical variable is located at a distance of 
not less than and not more than one standard deviation from the mean into account, 
the probability is about 68%, which also defines the generalization threshold range. 
Using the classic measure of function variability that is most often used in statistics 
(the so-called three-sigma rule), a probability of 95% will be the next point of the 
designated generalization threshold.

The proposed proposal for examining the thresholds and stages of the general-
ization boils down to defining the following ranges:

 – similarities defined at level of ≥95% are understood as form of mutual close 
relationships that can be indicated based on their properties or features;

 – simplification within range of (for 68% to 95%), resulting in reduction in com-
plications and complexity of graphics (which is easier to understand) with-
out significantly affecting key points;

 – schematization included within range of (for 10% to 68%), which should be 
understood as creating ordered structure that greatly facilitates interpreta-
tion or analysis, affecting key points;

 – symbology for which generalization threshold would be less than 10%, and 
lines are represented by characters that are about to reach limit of map capac-
ity (further generalization will no longer be possible).

In the case of applying the three-sigma rule at a probability level of 99.7%, there 
is a risk of omitting important terrain details and omitting the bridge next to the riv-
er (the representations of which would be limited to single points). Generalization 
at this stage should, therefore, be monitored very carefully.

The vertical axis of the graph (Fig. 7) shows the percentage value of the points 
that remain in the generalization that was previously calculated for each of the out-
put scales. The successive values of the denominators of the output scales are placed 
on the horizontal axis. The classic case of the solution can be used for each of the 
simplification algorithms, with a particular emphasis on the Chrobak’s algorithm 
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(which is the only one of the existing algorithms that allows for not only reductions 
of the vertices but also their addition).

Fig. 7. Chart of thresholds and stages of generalization

Then, the general formula is as follows:

 
3
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n

p
n

= ⋅  (3)

where:
 n3 – number of points after generalization,
 n0 – number of points before generalization.

This would have to take the following form:

 3
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n

p
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+
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where:
 n3 – number of points after generalization,
 n0 – number of points before generalization,
 n2 – number of added points.

Chrobak’s model would also require us to calculate the length of the side of an el-
ementary triangle, which would be implemented according to the following formula:

 ε 0.5 m  m
1000j

M
= ⋅  (5)

where:
 M – denominator of scale,
 εj – length of side of elementary triangle.
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Information regarding the number of vertices was obtained on the basis of the.
shp layer data in the postprocessing process using the vector-analysis tool. In the 
case of Chrobak’s algorithm, information on the points before and after the gener-
alization as well as the added points was generated in the form of a text file report. 
The use of Chrobak’s algorithm (including the addition of points) in the process of 
determining the generalized broken line was aimed at presenting the river banks on 
the map; this corresponds to the optics that have been presented in scientific publi-
cations [32].

4. Results

Figure 8 was constructed based on the test results presented in Table 1. The 
graph shows the percentage share of the remaining vertices in terms of the vertices 
of the original curve. Comparing the algorithms, it should be stated that their be-
haviors were similar (although a detailed analysis showed that Chrobak’s algorithm 
stood out with a smaller number of rejected vertices as compared to the other algo-
rithms).

Fig. 8. Graph showing percentages of vertices after simplification  
depending on denominator of map scale

Regardless of the chosen algorithm, it is possible to specify four generalization 
thresholds depending on the percentages of the remaining points (Table 1).
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The method of conversion and graphical interpretation was presented based on 
Chrobak’s algorithm, which was rated the best. This algorithm caused the smallest 
percentage and numerical drops of generalized vertices (Table 1, Fig. 8), which af-
fected the correct graphical representation of the points; also, the method of calcu-
lating the generalization thresholds was different from the other algorithms due to 
the possibility of creating new vertices (Table 2).

Regardless of the selected algorithm, the generalization thresholds can be de-
fined for each of them; it can also be noticed that the selection of the thresholds de-
pended not only on the type of algorithm that was used but also on the nature of the 
input object, its shape, and the number of vertices (Figs. 2, 8, Table 1).

As we can see in the results, the simplification interval that was most effective 
occurred for the range of mean scales between 15,000 and 60,000 after taking the 
analyzed Chrobak’s algorithm into account (Figs. 9, 10).

Table 2. Selection of generalization scales on example of Chrobak’s algorithm  
for right bank of Vistula River
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5. Conclusions and Discussion

When analyzing the obtained results, it should be stated that the recogni-
tion standard that was introduced into the generalization process produced good 
results, causing the smallest possible changes in the geometry of the curve; this 
was also confirmed by research that was conducted by other scientists [34, 35]. 
The research results were presented with the example of Chrobak’s algorithm; 
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the smallest number of vertices that were removed from the curve proved the 
most precise reflection of reality. The algorithms that were selected for analysis 
had a common feature, which was their rejections of vertices (the difference be-
ing the rate of rejection depending on the denominator of the target map scale). 
The proposal to make the selection of generalization thresholds dependent on the 
percentage share of points is a solution that is as simple to use as it is to imple-
ment. The method of defining intervals based on the three-sigma rule is a solution 
that guarantees that the obtained results will be characteristic of the probability 
density function of the normal distribution (which will define individual intervals 
most objectively). This interval is characterized by high correspondence with the 
input object while optimizing the number of vertices and reducing the compli-
cations and complexity of the graphics (which is easier to understand) without 
significantly affecting the key points. The introduced generalization proposal de-
fines the framework of the intervals in a strict (mathematical) way, leaving no 
room for subjective interpretations; this should be considered to be its undoubted 
advantage.

References

[1] Raus A.: Map Generalization. [in:] Shekhar S., Xiong H. (eds.), Encyclopedia of 
GIS, Springer, Boston 2008, pp. 631–632. https://doi.org/10.1007/978-0-387-
35973-1_743.

[2] Jiang B., Liu X., Jia T.: Scaling of geographic space as a universal rule for map gen-
eralization. Annals of the Association of American Geographers, vol. 103(4), 
2013, pp. 844–855. https://doi.org/10.1080/00045608.2013.765773.

[3] Chrobak T.: Podstawy cyfrowej generalizacji kartograficznej. Uczelniane Wy-
dawnictwa Naukowo-Dydaktyczne AGH, Kraków 2007.

[4] Müller J.-C.: GIS, Multimedia und Zukunft der Kartographie. KN – Journal of 
Cartography and Geographic Information, vol. 47(2), 1997, pp. 41–51. https://
doi.org/10.1007/BF03548789.

[5] Budkowski S., Litwin U., Gniadek J.: Kataster wielowymiarowy – nowoczesny 
sposób opisu przestrzeni. Wydawnictwo Uniwersytetu Rolniczego w Krako-
wie, Kraków 2022.

[6] Eckert M.: Die Kartenwissenschaft: Forschungen und Grundlagen zu einer Karto-
graphie als Wissenschaft. 2 Bad. Walter de Gruyter & Co., Berlin – Leipzig 1925.

[7] McMaster R.B.: A statistical analysis of mathematical measures for linear simplifi-
cation. The American Cartographer, vol. 13(2), 1986, pp. 103–116. https://doi.
org/ 10.1559/152304086783900059.

[8] Buttenfield B., McMaster R. (eds.): Map Generalization: Making Rules for Knowl-
edge Representation. Longman, Harlow 1991.

https://doi.org/10.1007/978-0-387-35973-1_743
https://doi.org/10.1007/978-0-387-35973-1_743
https://doi.org/10.1080/00045608.2013.765773
https://doi.org/10.1007/BF03548789
https://doi.org/10.1007/BF03548789
https://doi.org/10.1559/152304086783900059
https://doi.org/10.1559/152304086783900059


92 S. Budkowski

[9] Sirko M.: Teoretyczne i metodyczne aspekty obiektywizacji doboru osiedli na ma-
pach: Studium na przykładzie Polski Środkowo-Wschodniej. Rozprawy Wydziału 
Biologii i Nauk o Ziemi – Uniwersytet Marii Curie-Skłodowskiej. Rozprawy 
Habilitacyjne, 32, UMCS, Lublin 1988.

[10] Szostak M.: Organizacja struktury bazy danych topograficznych do automatycz-
nej generalizacji kartograficznej. Akademia Górniczo-Hutnicza w Krakowie, 
Wydział Geodezji Górniczej i Inżynierii Środowiska, Kraków 2007 [Ph.D. 
thesis].

[11] Steward H.J.: Cartographic Generalisation: Some Concepts and Explanation. Car-
tographica Monograph, 10, University of Toronto Press, Toronto 1974.

[12] Perkal J.: Próba obiektywnej generalizacji. Geodezja i Kartografia, t. VI(2), 1958, 
pp. 130–142.

[13] Tobler W.R.: Numerical Map Generalization. Michigan Inter-Universities Com-
munity of Mathematical Geographers, Discussion Paper, no. 8, University of 
Michigan, Ann Arbor 1966.

[14] Lang T.: Rules for robot draughtsman. The Geographical Magazine, vol. 42(1), 
1969, pp. 50–51.

[15] Perkal J.: On the length of empirical curves. Michigan Inter-University Commu-
nity of Mathematical Geographers, Discussion Paper, no. 10, University of 
Michigan, Ann Arbor 1966.

[16] Vanzella L.: Computer assisted map generalization in Alberta. Euro Carto 7, En-
schede, The Netherlands 1988.

[17] Muller J.-C.: Generalization of Spatial Databases. [in:] Maguire D.J., Good-
child M.F., Rhind D.W. (eds.), Geographical Information Systems: Volume 1: 
Principles, Longman, Harlow, pp. 457–475.

[18] Stoter J., van Altena V., Post M., Burghardt D., Duchene C.: Automated gen-
eralization within NMAs in 2016. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. XLI-B4, 2016, 
pp. 647–652. https://doi.org/10.5194/isprs-archives-XLI-B4-647-2016.

[19] Li Z.: Digital map generation at the age of the enlightemment: A review from the 
first forty years. The Cartographic Journal, vol. 44(1), 2007, pp. 80–93. https://
doi.org/10.1179/000870407X173913.

[20] McMaster R.B., Shea K.S.: Generalization in Digital Cartography. Association of 
American Geographers, Washington 1992.

[21] Kozioł K.: Algorytm upraszczania linii z wykorzystaniem interpolacji [A line sim-
plification algorithm using interpolation]. Roczniki Geomatyki – Polskie Towa-
rzystwo Informacji Przestrzennej, t. 11(3), 2013, pp. 45–59.

[22] Ratajski L.: Rozważania o generalizacji kartograficznej. Część 2. Polski Przegląd 
Kartograficzny, t. 5(3), 1973, pp. 103–110.

[23] Brassel K.E., Weibel R.: A review and conceptual framework of automated map 
generalization. International Journal of Geographical Information Systems, 
vol. 2(3), 1988, pp. 229–244. https://doi.org/10.1080/02693798808927898.

https://doi.org/10.5194/isprs-archives-XLI-B4-647-2016
https://doi.org/10.1179/000870407X173913
https://doi.org/10.1179/000870407X173913
https://doi.org/10.1080/02693798808927898


Digital Cartographic Generalization – Study of Its Thresholds and Stages... 93

[24] Chrobak T., Lupa M., Szombara S., Dejniak D.: The use of cartographic con-
trol points in the harmonization and revision of MRDBs. Geocarto International, 
vol. 34(3), 2017, pp. 260–275. https://doi.org/10.1080/10106049.2017.1386721.

[25] Courtial A., El Ayedi A., Touya G., Zang X.: Exploring the potential of deep 
learning segmentation for mountain roads generalisation. ISPRS Internation-
al Journal of Geo-Information, vol. 9(5), 2020, 338. https://doi.org/10.3390/
ijgi9050338.

[26] Liu Y., Li W.: A new algorithms of stroke generation considering geometric 
and structural properties of road network. ISPRS International Journal of Geo -
Information, vol. 8(7), 2019, 304. https://doi.org/10.3390/ijgi8070304.

[27] Zeng J., Gao Z., Ma J., Shen J., Zhang K.: Deep graph convolutional networks 
for accurate automatic road network selection. ISPRS International Journal of 
Geo-Information, vol. 10(11), 2021, 768. https://doi.org/10.3390/ijgi10110768.

[28] Jepsen S.T., Jensen C.S., Nielsen D.: Relation Fusion Networks: Graph Convolu-
tional Networks for road networks. IEEE Transactions on Intelligent Transpor-
tation Systems, vol. 23, 2022, pp. 418–429. https://doi.org/10.1109/TITS. 2020. 
3011799.

[29] Weibel R.: Three essential building blocks for automated generalization. [in:] La-
grange J.-P., Weibel R., Muller J.-C. (eds.), GIS and Generalisation: Methodology 
and Practice, CRC Press, Boca Raton 2020, pp. 56–69.

[30] Barańska A., Bac-Bronowicz J., Dejniak D., Lewiński S., Krawczyk A., Chro-
bak T.: A unified methodology for the generalisation of the geometry of features. 
ISPRS International Journal of Geo-Information, vol. 10(3), 2021, 107. https://
doi.org/10.3390/ijgi10030107.

[31] GIS Support: Generalizer3. 16.10.2020. https://gis-support.pl/baza-wiedzy-2/
wtyczki-do-qgis/generalizer/ [access: 13.01.2023].

[32] Kozioł K.: Porównanie wybranych algorytmów upraszczania linii na przykładzie 
reprezentatywnego obszaru testowego [Comparison of selected simplification algo-
rithms on the example of a representative test area]. Roczniki Geomatyki – Pol-
skie Towarzystwo Informacji Przestrzennej, t. 9(1), 2011, pp. 49–57.

[33] DeGroot M., Schervish M.: Probability and Statistics. 3rd ed. Pearson, 2001.
[34] Chrobak T., Kozioł K.: Cyfrowa generalizacja kartograficzna warstwy budynków 

w tworzeniu danych topograficznej bazy danych [Digital cartographic generaliza-
tion of the building layer in the creation of topographic database data]. Archiwum 
Fotogrametrii, Kartografii i Teledetekcji, vol. 19, 2009, pp. 59–69.

[35] McMaster R.B.: Automated line generalization. Cartographica: The Internation-
al Journal for Geographic Information and Geovisualization, vol. 24(2), 1987, 
pp. 74–111. https://doi.org/10.3138/3535-7609-781G-4L20.

https://doi.org/10.1080/10106049.2017.1386721
https://doi.org/10.3390/ijgi9050338
https://doi.org/10.3390/ijgi9050338
https://doi.org/10.3390/ijgi8070304
https://doi.org/10.3390/ijgi10110768
https://doi.org/10.1109/TITS.2020.3011799
https://doi.org/10.1109/TITS.2020.3011799
https://doi.org/10.3390/ijgi10030107
https://doi.org/10.3390/ijgi10030107
https://gis-support.pl/baza-wiedzy-2/wtyczki-do-qgis/generalizer/
https://gis-support.pl/baza-wiedzy-2/wtyczki-do-qgis/generalizer/
https://doi.org/10.3138/3535-7609-781G-4L20



