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MODELS OF AIR MIXING IN A MINE WORKING 

 

1. Introduction and aim of the paper 

Mixing is a physical process aimed at obtaining homogeneity of a mixture. Homoge-
neity is understood here as a state in which the concentrations of the mixture components 
are equal in the cross-section of the working or in the entire system. 

Mixing may occur on two levels: 

1) macroscopic — in an area defined by dimensions several times larger than the mole-
cular dimensions of the components constituting the mixture; 

2) molecular — when the state of homogeneity concerns an area defined by dimensions 
equal to the molecular dimensions of the mixture components. 

It is essential to notice that macroscopic mixing is a stage in the course of molecular 
mixing. In mine ventilation, the process of mixing accompanies the mass transfer effect in 
underground excavations. 

In theoretical dissertations on air flow in workings, usually three models of transfer are 
assumed. Two of these namely: 
1) the ideal mixing model, 
2) the piston flow model. 

are the extreme, ideal theoretical models of mass transfer. The third transfer model, the so-
called diffusion model, takes into account longitudinal diffusion. In some research of air 
flow in chamber workings other models may be applied [1], including those that take into 
consideration transverse diffusion. This article is not concerned with such cases. 

The actual mass flow model in a mine working may be different from the aforementio-
ned models, but at the same time it falls between the ideal mixing model and the piston 
flow model. In certain issues it is important to be able to point out which of these models 
used to represent the actual mass flow in the excavation yields lesser errors. 
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The aim of the article is to present the form of the transient function Γ and the weight 
function E for various mass transfer models in a mine working and to consider their use-
fulness in research mapping the actual effect of mass transfer in the working. 

2. The air dwell time in the working 

The dwell time of air molecules in the working is a parameter related to the nature of 
its flow. 

In case of turbulent flow in the mine working, vortices and stream disturbances of the 
flowing air result in the fact that the distance covered by particular elements of air volume 
in the area between the beginning and the end of the working is always different. In conse-
quence, the dwell times of these air volume elements in the working are also different. 
Taking into account that it is a process of stochastic nature, it is impossible to determine the 
dwell time of a given air volume element in the working. 

The value referred to as dwell time has the properties of a chance (random) variable 
and has distribution functions. 

One distinguishes the function E(t), called the dwell time spectrum. It is determined by 
interpreting the product of E(t) dt as a fraction of air volume leaving the working, 
characterized by the fact that its dwell time falls within the time range from t to t + dt. It is 
to be inferred from this definition that the function E(t) is the so-called dwell time 
probability density and the following relation occurs: 

 
0

( )d 1E t t
∞

=∫  

In physical system dynamics, the function E(t) with above properties is a weight 
function. Another function characterizing the dynamics of air flow in a working is the 
function F(t), called the distribution function or the cumulative distribution function of 
dwell time. The value of this function is determined by the fraction of air volume in the 
stream flowing out of the working, the dwell time of which falls within the time range from 
t = 0 to t. A relation known from statistics exists between these two functions: 

 ( )
0

( ) d .
t

F t E t t= ∫  

The function F(t) can assume values from the range: 

 ( )0 .F t t≤ ≤  

One can also consider the function J(t) being a complement of the function F(t) to unity: 

 ( ) 1 ( ).J t F t= −  
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This function determines the fraction of molecules whose dwell time is longer than t in 
the outlet air stream. In order to portray the physical sense of the functions E(t), F(t) and 
J(t) the following example could be used [1]. 

Let us imagine an abrupt change of marker concentration in the air stream at the 
beginning of the working, from the value of 0 to C1 at the moment τ = 0. After the time τ  at 
the end of the working, according to the definition of the value of F(τ), the volume fraction 
of the outlet air stream where the marker is located, i.e. whose molecules have stayed in the 
working for a period shorter than τ, amounts to F(τ). It can thus be reasoned that the 
remaining part of the stream (i.e. without the marker), equal to (1 – F(τ)) = J(τ), incorpo-
rates the remaining fraction of the volume stream comprised of molecules that have stayed 
in the working for a period longer than τ. Hence the equation for the concentration of the 
marker C in the outlet air stream in the working could be stated as follows: 

 ( ) ( )1 0 1 ,C C F F= τ + ⎡ − τ ⎤⎣ ⎦  

therefore: 

 ( ) ( )
1

.CF F t
C

τ = =  

Thus the function F(t) corresponds to the relative response of the working as a system 
to the abrupt change of the concentration at its inlet (at zero initial conditions). This pro-
perty grants possibilities of practical use of the function in researching actual air flow in 
mine workings. 

2.1. The Ideal Mixing Model 

It is assumed in this model that the stream flowing into the working immediately pro-
pagates in its entire volume, and the concentrations at any point of the working and at any 
given moment are identical and equal to the concentration in the stream flowing out of the 
working. The mass balance equation for the component in question, with the assumption 
that the mass source of that component is absent from the examined volume, takes the 
following form 

 1
d
d
CLS QC QC
t
= −  (1) 

where: 
 L — the length of the working [m], 
 S — the cross-sectional area of the working [m2], 
 Q — the air volume expenditure in the working [m3/s], 
 C1 — the concentration of the examined component at the inlet of the working, 
 C — the concentration of the examined component in the working. 
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The solution of this equation at the initial condition of C(t =0) = 0 is given by the 
function 

 ( ) 1 1 .
Q t
LSC t C e

−⎛ ⎞
= −⎜ ⎟⎝ ⎠

 (2) 

From the equation (2) and the interpretation of the function F(t) it can be inferred that 
the following relation occurs for the ideal mixing model 

 ( ) ( )
1 0

1 exp
C t tF t
C t

⎛ ⎞
= = − −⎜ ⎟⎝ ⎠

 (3) 

where 0
LSt
Q

= — is the so-called average dwell time of the air in the working. 

 
Utilizing the relation between F(t) and E(t), the formula for the function E(t) can be 

derived for the ideal mixing model in the form 

 ( )
0

1exp tE t
t t

⎛ ⎞
= −⎜ ⎟⎝ ⎠

  (4) 

2.2. The Piston Flow Model 

The piston flow model presumes that during the air flow through the working, mixing 
does not occur, i.e. a particular gas component is transferred to the control volume only 
through convection in the entire mass. 

If it is assumed that the gas component in question flows in only at the inlet of the 
working with a constant cross-sectional area (which means that there are no other sources 
of mass inflow to the working), one could state [2, 3]: 

— the mass balance equation for the total transient flow of the mass stream in the working 

 
( )v

t x
∂ ρ∂ρ

= −
∂ ∂

 (5) 

— the mass balance equation for the gas marker 

 
( )vCC

t x
∂∂

= −
∂ ∂

 (6) 
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If one assumes that air density is the same in the working and does not vary in time, then 
it can be inferred from the equation (5) that: 

 0 0 ,v v v vv v
x x x x x

⎛ ⎞∂ ∂ρ ∂ ∂ ∂
= − ρ + = − ρ + = − ρ = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 

which indicates that air velocity in the working as a position function is constant. 
Thus the equation (6) can be expressed in the form 

 C Cv
t x

∂ ∂= −
∂ ∂

 (7) 

This is a partial differential equation of the first degree, and the initial and boundary 
conditions of the problem in question are as follows 

 ( ) ( )00, 0C t x C x= = =  (8) 

 ( ) 10,C t x C= =  (9) 

Applying the Laplace transformation to the problem described by the equations (7–9), 
the following ordinary differential equation in the image plane was obtained 

 
( ) ( )d

0
d

C s
v sC s

x
+ =  (10) 

with the boundary condition in the image plane 

 ( ) 1
1, 0C s x C
s

= =  (11) 

The solution of the problem in the complex number plane is given by the function 

 ( ) 1
1,

x s
vC s x C e

s

⎛ ⎞−⎜ ⎟⎝ ⎠=  (12) 

After the inverse Laplace transformation of the equation (12), the following relation was 
obtained 

 ( ) 1, 1 xC t x C t
v

⎛ ⎞= −⎜ ⎟⎝ ⎠
 (13) 

where the function 1 xt
v

⎛ ⎞−⎜ ⎟⎝ ⎠
 — is a Heaviside unit step function. 
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Thus, the function F(t) for the piston air flow model in the working takes the form 

 ( ) ( )
1

,
1

C t x xF t t
C v

⎛ ⎞= = −⎜ ⎟⎝ ⎠
 (14) 

The function E(t) for the piston flow model therefore takes the form 

 ( ) xE t t
v

⎛ ⎞= σ −⎜ ⎟⎝ ⎠
 (15) 

where the function xt
v

⎛ ⎞σ −⎜ ⎟⎝ ⎠
 — is a Dirac pseudo-function. 

2.3. The Longitudinal Diffusion Model 

In the longitudinal diffusion model it is presumed that apart from the convection effect, 
an important role in mass transfer is played by the diffusion effect. This most often pertains 
to turbulent diffusion, which, aside from molecular diffusion, involves the effects of the 
nonideality of flow laws applied to actual conditions. 

Assuming the applicability of Fick’s law, the mass balance of the examined gas com-
ponent (marker) can be expressed in the form 

 C CvC D
t x x

⎛ ⎞∂ ∂ ∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (16) 

If it is presupposed that the turbulent longitudinal diffusion factor D and the velocity v 
are independent of the variable x, then the equation (16) can be stated as 

 
2

2

C C CD v
t xx

∂ ∂ ∂
= −

∂ ∂∂
 (17) 

The initial and boundary conditions for the examined problem are as follows: 

 ( ) 00, 0C t x C= = =  (18) 

for x = 0: 

 1
CvC D vC
x

∂− =
∂

 (19) 

for x = L: 

 0CD
x

∂ =
∂

 (20) 
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Introducing new variables in the equation (17) 

 ; ;
1

C x t
C L

Γ = ξ = θ =
τ

 (21) 

one derives 

 
( )
( )

( )
( )

( )
( )

2
1 1 1

2

C C C
D v

LL

∂ Γ ∂ Γ ∂ Γ
= −

∂ θτ ∂ ξ⎡ ⎤∂ ξ⎣ ⎦
 (22) 

which after transformations takes the form 

 
2

1 1 1
2 2

C C C
D v

LL
∂Γ ∂ Γ ∂Γ

= −
τ ∂θ ∂ξ∂ξ

 (23) 

Using the substitution 

 LvPe
D

=  (24) 

and the fact that 

 L
v

τ =  (25) 

the relation (23) can ultimately be expressed as 

 
2

2

1
Pe

∂Γ ∂ Γ ∂Γ
= −

∂θ ∂ξ∂ξ
 (26) 

with boundary and initial conditions in the form: 

 for ξ = 0   11
Pe

∂ΓΓ = +
∂ξ

 (27) 

 for ξ = 1   0∂Γ =
∂ξ

 (28) 

 for θ = 0 and for 1 ≥ ξ > 0    0Γ =  (29) 
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Assuming for simplification that Pe > 50, the boundary condition (27) can be appro-
ximated as 

 for ξ = 0   1Γ =  (30) 

After applying the substitution 

 ( ) ( ) 2
1, , 1

Pe

e
⎛ ⎞ξ⎜ ⎟⎝ ⎠Γ θ ξ = Γ θ ξ +  (31) 

the examined problem has the form 

 
( ) ( ) ( )

2
1 1

12

, ,1 ,
4

Pe
Pe

∂Γ θ ξ ∂ Γ θ ξ
= − Γ θ ξ

∂θ ∂ξ
 (32) 

In the equation (32) the term with the first derivative 1∂Γ
∂ξ

 has already been dropped, 

and the boundary conditions take the form: 

— for 0ξ =  

 
( ) ( ) ( )

( )

0

0

0
1 1

1

, 0 1 , 0 1 , 0 1

, 0 0

eΓ θ ξ = = = Γ θ ξ = + = Γ θ ξ = +

⇒ Γ θ ξ = =
 (33) 

— for 1ξ =  

 

( )

( ) ( )

1 12 2
1 1

1 1

1
1

1

, 1
0

2 2

,
, 0

2

Pe PePe Pee e

Pe

⎛ ⎞ ⎛ ⎞ξ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

ξ = ξ =

ξ =

∂ Γ θ ξ = ∂Γ ∂Γ⎛ ⎞ ⎛ ⎞
= = + Γ = + Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ξ ∂ξ ∂ξ

⎛ ∂Γ θ ξ ⎞
⇒ + Γ θ ξ =⎜ ⎟∂ξ⎝ ⎠

 (34) 

— for 0θ =  

 
( ) ( )

( ) ( )

2
1

02
1 1

0, 0 0, 1

0,

Pe

Pe

e

e

⎛ ⎞ξ⎜ ⎟⎝ ⎠

⎛ ⎞− ξ⎜ ⎟⎝ ⎠

Γ θ = ξ = = Γ θ = ξ +

⇒ Γ θ = ξ = − = Γ ξ

 (35) 
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Thus, after the above transformations, the initial problem described by the formulae 
(26–29) has been turned into the problem determined by the equations (32–35). This problem 
is homogeneous. 

A non-trivial solution in the following form is sought 

 ( ) ( ) ( )1 , X TΓ θ ξ = ξ ⋅ θ  (36) 

Substituting (36) in the equation (32), one obtains after reduction 

 
( )
( )

( )
2

© ( )
4

( )

PePe T TX
X T

⋅ θ + θξ′′
=

ξ θ
  (37) 

The boundary conditions have the form: 

 (0) 0X =  (38) 

 ( ) ( )©

1

0
2

PeX X
ξ =

⎛ ⎞ξ + ξ =⎜ ⎟⎝ ⎠
 (39) 

Both sides of the equation (37) must be constants. Considering that constant as ( )2 ,i−λ  
the equation (37) could be replaced by the following system: 

( ) ( )

( ) ( )

2

2
©

0, 0 1

0
4

X X

PeT T
Pe

⎧ ξ + λ ξ = ≤ ξ ≤′′
⎪
⎪
⎨ ⎛ ⎞λ⎪ θ + + ⋅ θ =⎜ ⎟⎪ ⎝ ⎠⎩

 

(40)

(41)

The solution of the equation (40) is the function 

 ( ) ( ) ( )1 2cos sinX C Cξ = ⋅ λξ + λξ  (42) 

The first boundary condition will be satisfied when 1 0,C = which means that the form 
of the function (42) is as follows 

 ( ) ( )2 sinX Cξ = λξ  (43) 

The second boundary condition will be satisfied for the roots of the following equation 

 2tan
Pe

λ = − ⋅ λ  (44) 
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If the values iλ satisfy the equation (44), then the solution of the equation (40) along 
with boundary conditions takes the form 

 ( ) ( )2 sin 1, 2, ...,iX C i nξ = λ ⋅ξ =  (45) 

The solution of the equation (41) is given by the following function 

 ( )
2

3 exp
4

iPeT C
Pe

⎡ ⎤⎛ ⎞λ
θ = ⋅ − + ⋅θ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

 (46) 

The function 1Γ has the form 

 ( ) ( )
2

1 , exp sin
4

i
i i

PeA
Pe

⎡ ⎤⎛ ⎞λ
Γ θ ξ = ⋅ − + ⋅θ ⋅ λ ⋅ξ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

 (47) 

The factor ,iA equal to the product of ( )2 3 ,C C⋅ has a value attributed to the value i re-
sulting from the equation (45). 

Using the principle of superposition applicable to homogeneous equations, the solution 
can be expressed in the form 

 ( ) ( )
2

1
1

, exp sin
4

i
i i

i

PeA
Pe

∞

=

⎡ ⎤⎛ ⎞λ
Γ θ ξ = ⋅ − + ⋅θ ⋅ λ ⋅ξ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑  (48) 

For the function 1( , )Γ θ ξ  to satisfy the initial condition determined by the equation (35), 
the following relation must occur 

 ( )
1

sin exp
2i i

i

PeA
∞

=

⎛ ⎞⋅ λ ⋅ξ = − − ⋅ξ⎜ ⎟⎝ ⎠∑  (49) 

The factors in this series must satisfy the relation 

 ( )
1

0

2 exp sin d
2i i

PeA ⎡ ⎤⎛ ⎞= − − ⋅ξ ⋅ λ ⋅ξ ξ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫  (50) 

Once the above integral has been calculated, the factors in the series are expressed by 
the relation 

 
( )

2
2

2

2

i
i

i

A
Pe

− λ
=
⎛ ⎞ + λ⎜ ⎟⎝ ⎠

 (51) 
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Substituting the above relation in the formula (48), one obtains 

 ( )
( )

( )
2

2
21

2
, exp exp sin1 4

2

i i
i

i
i

Pe
PePe

∞

=

⎡ ⎤
⎢ ⎥⎛ ⎞− λ −λ⎛ ⎞ ⎢ ⎥θ ξ = − ⋅θ × ⋅ ⋅θ ⋅ λ ⋅ξΓ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎛ ⎞ + λ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑  (52) 

Utilizing the substitution described by the formula (31), the ultimate formula can be 
presented 

 ( )
( )

( )
2

42
2

21

2
, 1 sin

2

iPePe
Pei

i
i

i

e e
Pe

⎛ ⎞λ⎛ ⎞ ∞ − + ⋅θ⎜ ⎟⋅ξ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

⎡ ⎤
⎢ ⎥− λ⎢ ⎥Γ θ ξ = − × ⋅ ⋅ λ ⋅ξ
⎢ ⎥⎛ ⎞ + λ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑  (53) 

In the examined problem of the longitudinal diffusion model, (for the value Pe ≥ 50) the 
transient function F(t) has the form 

 ( ) ( )
( )

( )
2

042
2

21

2
, 1 1 sin

2

iPe tPe
Pe ti

i
i

i

F t t e e
Pe

⎛ ⎞λ⎛ ⎞ ∞ − + ⋅⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

=

⎡ ⎤
⎢ ⎥− λ⎢ ⎥= Γ ξ = = − × ⋅ ⋅ λ
⎢ ⎥⎛ ⎞ + λ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑  (54) 

The weight function E(t) for this model is as follows 

 ( ) 2

0

2

101 4

d ( , ) d 2 sin
d d i

Pe
i

iPe t
i

Pe t

E t e
t Pe t

e

⎛ ⎞ ∞⎜ ⎟⎝ ⎠
⎛ ⎞λ

+ ⋅= ⎜ ⎟ξ = ⎝ ⎠

⎡ ⎤
λ⎢ ⎥Γ θ ξ θ⎛ ⎞= ⋅ = − ⋅ × ⋅ λ⎜ ⎟ ⎢ ⎥⎝ ⎠θ ⋅ ⎢ ⎥

⎣ ⎦

∑  (55) 
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