Roman Kinasz*

REZERWA WYTRZYMAŁOŚCI RYGLI SYSTEMU RAMOWEGO SZKIELETU ŻELBETOWEGO**

1. Wstęp

Ze względu na uniemożliwienie poziomego przesuwu podpór już od początku obciążenia pojawiają się w belce zginanej statycznie wyznaczalnej podłużne siły ściskające. Belka będzie pracować w części jak płaskie sklepienie, dlatego efekt ten nazwano efektem sklepieniowym [1].

Jak wiadomo, siły rozporowe, które powstają na podporach rygli w szkielecie żelbetowym, mają dodatni wpływ na ich pracę i w efekcie podwyższają ich wytrzymałość. W trakcie wykonywania ekspertyzy prefabrykowanej czterokondygnacyjnej sześcioprzęsłowej ramy budynku magazynowego dokonano oceny charakteru podziału sił rozporowych na podporach rygli w obrębie wszystkich ich kondygnacji ze szczególnym uwzględnieniem przegubowego połączenia rygli ze słupami [2, 3]. Wyniki przeprowadzonych badań potwierdziły istnienie wpływu sił rozporowych na podporach rygli żelbetowych na podwyższenie ich wytrzymałości, co teoretycznie przewidzieli w swoich pracach Grygorian G. S. [4], Gijon I. [5], Zajcew L. N. [6], Pogrebnoj J. F. [7] i inni.

Problem wyznaczenia i wykorzystania rezerwy wytrzymałości rygli, którą można zabezpieczyć przy uwzględnieniu sił rozporowych, powstających na podporach rygli przy ich pracy na różnych kondygnacjach w realnym sztywnym systemie słupów ramy szkieletu, jest ważnym zagadnieniem technicznym w budownictwie.

2. Metoda badań

Dla obliczeń rezerw wytrzymałości rygli żelbetowych na różnych piętrach poziomej sprężystej przesuwalności ich podpór w przedziałach ograniczonego systemu ramowego wy-konano:

^{*} Wydział Górnictwa i Geoinżynierii, Akademia Górniczo-Hutnicza, Kraków

Artykuł powstał w ramach pracy statutowej nr 11.11.100.588

- 1) Obliczenia rygli według wypracowanego algorytmu [8] (dla wszystkich klas betonów) dla dwóch grup stanów granicznych:
 - jako belek wolno podpartych (wykresy podano na rys. 1-4);
 - dla Π-podobnego schematu obliczeniowego [8], w granicach przyjętego jednokondygnacyjnego jednoprzęsłowego schematu obliczeniowego ramy (wykresy podano na rys. 1–4).

Podczas obliczeń:

- zmieniano sztywność słupów w jednoprzęsłowej ramie od 0 do 168 kN/mm (rys. 1);
- zmieniano klasy betonu rygli: B20, B25, B30, B35;
- przyjęto stały stopień zbrojenia rygli $\rho = 1,137\%$ (podobnie jak w ryglach ramy);
- przyjęto stałą długość wsporników $l_{cons} = 525 \text{ mm}$ (od osi słupa).
- 2) Dla porównania obciążenia charakterystycznego q_{nr} , które przejmują rygle żelbetowe z obciążeniem rzeczywistym q_{nf} , które działa na rygle badanej ramy, przy przyjęciu dopuszczalnych obciążeń charakterystycznych q_{nc} dla rygli ramy, wykonano odpowiednie obliczenia. Na podstawie tych obliczeń otrzymano zależności teoretyczne:
 - sił rozporowych H_n od sumarycznych przemieszczeń poziomych $2\Delta_{xB,n}$ (rys. 1);
 - obciążenia charakterystycznego q_n w funkcji sił rozporowych H_n (rys. 2);
 - obciążenia charakterystycznego q_n w zależności od ramienia wypadkowej sił wewnętrznych dla przekroju z_n (rys. 3);
 - rozwartości rys w_{crc2} w zależności od obciążenia charakterystycznego q_n (rys. 4);
 - obciążenia charakterystycznego q_n w zależności od wysokości ściskanej strefy betonu w przekroju krytycznym x_n (rys. 5).
- Dla wyznaczenia wartości sił rozporowych H_n we wszystkich ryglach ramy wykonano obliczenia statyczne, przy tym przyjęto:
 - rozstaw ram 6 m;
 - schemat obliczeniowy ramy i Π-podobny schemat rygla w czterokondygnacyjnej sześcioprzęsłowej ramie (rys. 6);
 - faktyczne obciążenia charakterystyczne działające na rygle (równomiernie rozłożone $q_{nf} = 113$ kN/m, przy obciążeniach na strop $v_{n,f} = 14,5$ kPa, $v_{n,f,long} = 0,67 \times v_{nf} =$ 9,72 kPa, $v_{n,f,shot} = 0,33 \times v_{nf} = 4,78$ kPa przy obciążeniu stałym $g_{n,f} = 4,33$ kPa);
 - faktyczne obciążenia charakterystyczne działające na rygle (równomiernie rozłożone q_{nf} = 29,4 kN/m, przy obciążeniu długotrwałym v_{n,f,shot} = 0,5 kPa oraz obciążeniu stałym g_{n,f} = 4,4 kPa);
 - faktyczne obciążenia słupów pochodzące od płyt ściennych i aktywnego parcia gruntu na ściany piwnicy i innych obciążeń;
 - parametry sztywności elementów ramy z uwzględnieniem ich parametrów geometrycznych i modułów sprężystości betonu na ściskanie (przy uwzględnieniu obliczeniowych sztywności zginania rygli B_{red} i ich parametrów przy obciążeniu faktycznym $q_{nf} = 113$ kN/m), z obliczeń wykonanych według algorytmu [8] (tab. 1).

Rys. 1. Teoretyczne zależności charakterystyczne H_n od $2\Delta_{xB,n}$ przy $\rho = 1,137\%$, $l_{cons} = 525$ mm oraz różnych klasach betonu

Rys. 2. Teoretyczne zależności q_n od H_n dla porównania q_{nr} z q_{nf} i przyjęcia q_{nc}

Rys. 3. Teoretyczne zależności q_n od Z_n dla porównania q_{nr} z q_{nf} i przyjęcia q_{nc}

Rys. 4. Teoretyczne zależności a_{crc2} Big q_n dla porównania q_{nr} z q_{nf} i przyjęcia q_{nc}

244

Rys. 5. Teoretyczne zależności charakterystyczne q_n od X_n dla różnych stopni zbrojenia, klas betonu oraz $l_{cons} = 525$ mm

Rys. 6. Przekrój poprzeczny (a), wraz ze schematem obliczeniowym ramy oraz II-podobnym kształtem rygli (b), w czterokondygnacyjnej sześcioprzęsłowej ramie

Na podstawie obliczeń statycznych otrzymano:

- wykresy charakterystycznych sił rozporowych H_{nc} w ryglach badanej ramy (rys. 7),
- schemat odkształceń ramy wskutek działających obciążeń (rys. 8).

TABELA 1 Parametry obliczeniowe rygli przy uwzględnieniu sił rozporowych w przyjętym schemacie ramy z rozpiętością obliczeniową $l_0 = 4,95$ m, przy $q_{nf} = 113$ kN/m

Klasa betonu rygli, <i>B</i>	Ramie sił wewnętrznych, Z _{nr} , mm	Sztywność zginania rygla, B _{red} , <i>kNm</i> ²	Moduł sprężystości betonu, E_c, MPa	Moment bezwładności rygla, $I_{red}=\!B_{red}/E_b, m^4$	Wysokości ściskanej strefy betonu <i>X, mm</i>	Faktyczna wysokość ściskanej strefy betonu, x ^{exp} =X/0, <i>mm</i>	Siła rozporowa H _n , kN
B20	500	64735,1	24000	0,00269730	284	375	124,1
B25	550	71902,3	27000	0,00266305	210	286	71,0
B30	560	76358,0	29000	0,00263300	170	238	50,0
B35	580	79350,0	31000	0,00256000	145	209	35,0

1,52 1,5,18 22,90 24,28 24,28 18,48 4,18

Rys. 7. Wartości charakterystycznych sił rozporowych H_n (kN) na podporach rygli ramy: "+"— rozciąganie, "–" — ściskanie

Rys. 8. Schemat odkształceń ramy oraz faktyczne klasy betonu rygli (klasa betonu słupów B25)

246

3. Analiza wyników badań

- Do obliczenia rezerw wytrzymałości rygli żelbetowych przy różnych wartościach ich poziomego przesunięcia podpór w granicach badanego systemu ramowego wykonano:
- wykres zależności q_n od H_n (rys. 2) uwzględniający minimalne wartości sił rozporowych $H_{n,c}$ dla każdej kondygnacji ramy. Z wykresu odczytać można wartości dopuszczalnych równomiernie rozłożonych obciążeń $q_{n,c}$;
- porównanie $q_{n,c} \ge q_{nf} = 113$ kN/m przyprowadzono w formie tabeli (tab. 2), z której można odczytać dopuszczalne obciążenia każdego rygla. Minimalne wartości charakterystycznych obciążeń rygli q_{nf} podano w tabeli 2 osobno dla każdej kondygnacji na poziomach: +0,00 m, +4,80 m, +9,60 m. W ten sposób otrzymano maksymalne dopuszczalne charakterystyczne obciążenia na stropy $v_{n,c}$. Rezerwy wytrzymałości rygli $v_{n,c}/v_{n,r}$, z uwzględnieniem działania na ich czoło sił rozporowych, obliczono na poziomach +0,00 m, +4,80 m, +9,60 m i podano w tabeli 2. Przeprowadzono również ich porównanie z wolnopodpartymi ryglami, na czole których nie działają siły rozporowe.
- 2) Obliczenia wykazały (tab. 2), że minimalne rezerwy wytrzymałości rygli $v_{n,c}/v_{n,r}$ są zmienne i wynoszą na następujących kondygnacjach:
- poz. $\pm 0,00 \text{ m}$ 40,4%, co wystarczy aby przenieść działające na rygle faktyczne obciążenia charakterystyczne: $q_{nf} = 113 \text{ kN/m}$, $v_{n,f} = 14,5 \text{ kPa}$, $g_{n,f} = 4,33 \text{ kPa}$;
- poz. +4,80 m 5,1%; oraz poz. + 9,60 m 4,5%, co nie wystarcza aby przenieść działające na rygle faktyczne obciążenia charakterystyczne: $q_{nf} = 113$ kN/m, $v_{nf} = 14,5$ kPa, $g_{nf} = 4,33$ kPa (na tych poziomach — według tabeli 2 — dopuszczalne obciążenia charakterystyczne na te rygle wynoszą: $q_{nc} = 109$ kN/m, $v_{n.c} = 13,84$ kPa przy $g_{n.f} =$ 4,33 kPa. Dopuszczalne obciążenie charakterystyczne na te rygle na poziomach + 4,80 m ra + 9,60 m jest mniejsze od faktycznego na (14,5 – 13,84)/14,5 × 100% = 4,55%;
- w ryglach na poz. +14,4 m powstają zamiast sił rozporowych (ściskających) *H*, a siły rozciągania *N*, których wartość waha się od 1,52 kN do 24,3 kN, co powoduje że w elemencie konstrukcyjnym występuje równocześnie zginanie i rozciąganie. To potwierdzają wyniki badań rygli na tym poziomie. Rzeczywista rozwartość rys w ryglach $w_{crc.f} = 0,25 \div 0,28$ mm jest większa niż ich wartość obliczeniowa $w_{crc.1} = 0,206 \div 0,239$ mm przy znacznie mniejszych faktycznych obciążeniach charakterystycznych $V_{n,f} = 0,5$ kN/m² (śnieg) w stosunku do obliczeniowych obciążeń długotrwałych $v_n = 3,516 \div 3,692$ kN/m². Ponieważ $w_{crc.f} = 0,25 \div 0,28$ mm $< w_{crc.1.u} = 0,3$ mm, nie jest konieczne wzmacnianie rygli dachu.
- rozwartość rys normalnych w ryglach stropów przy działaniu obciążeń dopuszczalnych oraz klasie betonu B20 można wyznaczyć z rysunku 3. Wynosi ona: w_{crc.2} = 0,243÷0,255 mm < w_{crc.2,u} = 0,4 mm;
- długość ramienia sił wewnętrznych Z_n w ryglach stropów przy działaniu obciążeń dopuszczalnych oraz klasie betonu B20 można wyznaczyć z rysunku 3. Wynosi ona: $Z_n = 510$ mm i jest mniejsza o 4,5% od wartości ramienia sił wewnętrznych $Z_n = 534$ mm

(dla wolnopodpartego rygla bez uwzględnienia działania na jego czoło sił rozporowych);

 wartość obliczeniowa wysokości strefy ściskanej betonu X w przekrojach krytycznych rygli stropów oraz klasy betonu B20 można wyznaczyć z wykresu podanego na rysunku 3. Z tabeli 2 wynika, że: X = 284 mm i jest większa o 21,9% od wysokości strefy ściskanej betonu X = 233 mm (dla wolnopodpartego rygla bez uwzględnienia działania na jego czoło sił rozporowych).

TABELA 2

				Rygle z uwzględnieniem sił rozporowych			Rygle wolno podparte		v_{nc}/v_{nr}	Obciążenie dopuszczalne	
Numer kondygnacji	Numery rygla (od lewej do prawej)	Klasa betonu B	g _{ıf} , kN/m	H_n , kN	q_{nc} , kN/m	v_{nc} , kN/m ²	<i>q_{nr},</i> kN/m	v_{nr} , kN/m ²	Rezerwa wytrzymałości	v_n , kN/m ²	$q_n,$ kN/m
1	1	35	4,33	295,66	141,0	19,17	107,53	13,59	1,410	$14,5 < v_{nf} = 16,67$	$113 < q_{nf} = 126$
	2	25		289,91	137,0	18,50	102,76	12,80	1,446		
	3	35		289,66	150,0	20,67	107,53	13,59	1,521		
	4	20		290,6	126,0	16,67	97,17	11,87	1,404		
	5	30		290,85	145,0	19,84	105,42	13,24	1,498		
	6	20		299,43	127,0	16,84	97,17	11,87	1,419		
2	1	30	4,33	32,13	110,0	14,00	105,42	13,24	1,058	$13,92 < \nu_{\eta f} = 14,5$	$109, 5 < q_{nf} = 113$
	2	25		62,01	113,0	14,50	102,76	12,80	1,133		
	3	25		72,75	113,5	14,59	102,76	12,80	1,140		
	4	25		70,97	113,2	14,54	97,17	11,87	1,225		
	5	25		57,12	110,0	14,00	102,76	12,80	1,094		
	6	30		27,31	109,5	13,92	105,42	13,24	1,051		
3	1	30	4,33	24,78	109,0	13,84	105,42	13,24	1,045	$13,84 < v_{ijf} = 14,5$	$109 < q_{nf} = 113$
	2	35		33,06	113,0	14,50	107,53	13,59	1,067		
	3	30		40,37	112,0	14,34	105,42	13,24	1,083		
	4	25		43,31	109,6	13,94	102,76	12,80	1,089		
	5	25		40,64	109,0	13,84	102,76	12,80	1,081		
	6	30		30,97	110,0	14,00	105,42	13,24	1,058		

Wyniki obliczeń rygli ramy z uzupełnieniem faktycznych obciążeń charakterystycznych $(q_{nf} = 113 \text{ kN/m}, v_{n,f} = 14,5 \text{ kPa}, g_{n,f} = 4,33 \text{ kPa})$

4. Podsumowanie

Rezerwy wytrzymałości rygli żelbetowych stropów (poziom +0,00 m, +4,80 m, +9,60 m) badanej ramy szkieletu z uwzględnieniem działania na nie sił rozporowych wahają się od 40,4 do 4,5% w zależności od ich położenia w systemie ramowym szkieletu budynku.

Rygle dachu (poziom +14,40 m) praktycznie nie mają rezerw według drugiej grupy stanów granicznych (stan użytkowalności) w związku z dużą faktyczną rozwartością rys $w_{crc.1,f} = 0.25 \div 0.28 \text{ mm} < w_{crc.1,u} = 0.3 \text{ mm}.$

LITERATURA

- Starosolski W.: Konstrukcje żelbetowe: według PN-B-03264:2002 i Eurokodu 2. Tom 1. Warszawa, Wyd. Naukowe PWN 2006
- [2] Кінаш Р.І., Гладишев Д.Г.: Визначення висоти проникнення вертикальних тріщин ультразвуковим імпульсним методом в залізобетонних ригелях поперечних рам. (Збірник наукових праць. "Ресурсоекономні матеріали, конструкції, будівлі та споруди"). Вип. 10. Рівне, 2003, 104–112
- [3] Кінаш Р.І., Гладишев Д.Г.: Натурні дослідження ригелів багатоповерхових багатопролітних залізобетонних рам для виявлення розпірних зусиль на опорах ригелів. (Збірник наукових праць. "Науково-практичні проблеми сучасного залізобетону". Вип. 59, книга 2). Київ: НДІБК, 2003, 124–130
- [4] Григорян Г.С.: Распор в изгибаемых элементах железобетонных статистически неопределимых систем. Изв. АН Армянской ССР, №6, 1946, 6–9
- [5] Guyon Y.: Etude des Phenomenes de reformation elastique revetant l'apparence plastique avant fissuration. Cinquieme Congres de l'AIPC (Lisbon-Porto). Publication preliminaire. 1956, 425–430
- [6] Зайцев Л.Н.: Влияние распора на несущую способность железобетонных конструкцій. Новое в технологии и конструировании бетонных и железобетонных конструкций. М.: Стройиздат, 1966, 131–136
- [7] Погребной Я.Ф.: Расчёт балочных систем с горизонтально-неподвижными опорами. Львов, ЛПИ, 1957, 71
- [8] Кінаш Р.І., Гладишев Д.Г.: Рекомендації до розрахунку залізобетонних згинаних елементів з урахуванням утворення розпірних зусиль в межах рамної системи. НУ, "Львівська політехніка". Львів, 2004, 49
- [9] СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. Госстрой СССР. М.: ЦИТП Госстроя СССР, 1989, 80
- [10] PN-B-03264:2002 Konstrukcji betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie