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1. Introduction

Planning is crucial to the whole production process. Good quality of plans should be
ensured through adequate modeling and optimization of the leading process. This matter is
of particular importance to the mining industry, with its specific and unique conditions of
production, which are described more widely in section 2.

On the basis of the literature review, it should be stated, that for the mining indus-
try, especially in underground exploitation, various methods and techniques in the field
of knowledge-based systems and evolutionary algorithms have been developed. Expert
systems were used e.g. for the monitoring and diagnosis of machines [1-3], consultation
for the exploration of minerals and issues regarding resources evaluation [4], equipment
selection [5], mine management [6, 7] and different exploitation methods [8]. While evo-
lutionary algorithms were used for production scheduling [9, 10], the selection of equip-
ment and machines [11], the assessment of the reliability of the machines [12], and also for
the localization of mine buildings [13] and the processing plant [14, 15]. They were also
recently used for project scheduling of the first mining face in coal mining [16]. There are
also solutions, already known to the industry, which connect a knowledge-based system
with elements of evolutionary computation for mining issues. For example: equipment
selection in open pits [17].

In this paper we demonstrate a modern approach to the modeling and optimization
of mining works in underground hard coal mines, based on a combination of knowledge
system elements and an evolutionary algorithm, as an optimization technique to provide
a supportive tool for the more precise planning of underground coal production, generally
described in [18].
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2. Characteristics of the planning process
in underground hard coal mines

Mining exploitation is a specific process, mainly due to internal conditions. This can de-
pend on the type of mine, the geological and mining conditions, the organizational and techni-
cal specifications, as well as the applied technologies for determining the production level. In
the times of free market economy, a mining enterprise, in order to survive on the free market,
has to prepare production plans well in advance and optimize its production process, so as to
be able to guarantee output with a strong focus on meeting the quality standards required by
customers. Deep mining of mineral deposits is an extremely complex and expensive process,
therefore all the activities aimed at the estimation of future production levels should be care-
fully and meticulously elaborated on the basis of reliable data of a particular mine’s activity,
which is stored on numerous computer data systems. These designed activities should also take
into account the experience and knowledge of existing mine exploitation in a given enterprise.
It should be emphasized that the mining process is of a random nature and this fact must be
taken into consideration when planning both the mining works and the output levels.

The main sources of production (output) in mining are longwall panels. As the longwall
panel is represented as a part of the exploitation panel, limited by a maingate, tailgate and long-
wall face. Each longwall is characterized by parameters related to the seam geology, dimensions,
natural hazards as well as organizational issues. Longwall production depends on the rate of the
longwall face advance, which is represented as the number of meters of the coal seam which
are extracted per unit of time. The rate of longwall face advance is a derivative of the longwall
parameters and the equipment used. In this approach it is also assumed as a random variable with
anormal probability density function, as a consideration of the risk inherent in the mining process.

The proposed approach is intended to help designers in their selection of equipment for
planned longwall faces across a multi-mine enterprise. The algorithm can also be used in the
evaluation of the variants for opening the deposit and the order of operation for a new part
of the coal seam or new levels, taking into account a further aspect — the selection of mining
equipment.

The issue of equipment selection for planned longwalls in the mining enterprise can be
described as a quest for a matrix of longwall equipment, for which the value of the objec-
tive function is optimal.

This matrix could be presented by the following form:

S8 S,
Zi By Br - Bu
MWS = Zz le ﬁz BZn (1)

Zz le BZZ an

where:
S. — longwall face,
Z, — longwall complex,
BU — possibility indicator of using longwall complex Z in longwall face S;
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To solve the formulated problem the proposed approach includes:

— use of knowledge about equipment used in longwalls in the past (knowledge researched
by Data Mining techniques),

— use of knowledge about the rate of longwall face advance conducted in the past for
specified conditions of longwalls and with particular equipment,

— application of the evolutionary algorithm as the optimization technique to search for
the best solutions in the engagement of longwall equipment for planned longwall faces,
according to assumed criteria.

The details of knowledge-based contents and the specific evolutionary algorithm used
are presented in the following sections.

3. Knowledge-based modeling of longwall characteristics
and the formula for optimization functions

A necessary element for modeling the planned longwalls is a correct knowledge base.

Stored on the base are the following [19]:

— characteristics of longwalls and equipment of the past, with parameters of probability
density function of longwall advance rate,

— rules allowing selection of the equipment according to mining and geological conditions
of the longwall face,

— rules for the composition of devices in longwall complexes.

Rules for the selection of equipment are obtained from classification trees, while rules
for the longwall complexes composition are obtained from association rules. At present the
advisory system, with the described knowledge base, is in the design phase, however, its
operating principles are already known. After the input of data concerning the planned long-
walls, complexes are proposed, which are suitable for given longwall conditions. According
to the equipment which has been proposed for the specified longwall conditions, the rates of
longwall advance are taken from the past (based on a similar principle to that of the longwall
characteristics and the equipment used in the comparison of longwalls). The rate of longwall
advance and characteristics required to calculate longwall output are passed on to a calcula-
tion module, where the objective function value is calculated.

During the modeling of the planned longwalls, the following tasks must be included:
— longwall face equipment installation,

— longwall exploitation,
— longwall face equipment removal.

The tasks mentioned above, are linked to an activity network, which enables the analy-
sis of the time dependence of the longwalls and arrangement of the equipment used.

Based on the network analysis, the following characteristics are calculated for each
month in the analyzed period:
— the duration of exploitation works [months],
— the expected value of the net output of coal from the mining company [t/months],
— the standard deviation of the net output of coal from the mining company [t/months].
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In this paper, the following objective function is proposed:

lo
F(x)= \/ z (Wdesr, —WdePlan,)* — min (2)
i=1
where:
Wdesr. — the expected value of the net output of coal from the mining company
L [t/months],
WdePlan, — the desired value of the net output of coal from the mining company
[t/months],
lo — the number of months in the analyzed period and x stands for a solution

to the optimization problem.

In order for the stability of the received output to be taken into consideration, a second
objective function is introduced, which is related to possible risks within the mining process:

F(x)= ’ﬁ:(Wdeosl.)2 — min 3)

Wdeos, — the standard deviation of the net output of coal from the mining com-
pany [t/months] and x stands for a solution to the optimization problem.

where:

It is worth noting that in the proposed approach, other auxiliary objective functions may

also be considered, such as:

— the expected value/standard deviation of the unit cost of the coal sold by the mining
enterprise, [PLN/t],

— the expected value/standard deviation of the unit profit of the coal sold by the mining
enterprise [PLN/t].

Considering the second objective function, which is obviously contradictory to the pri-
mary objective, it should be noted that it exceeds the classic framework of the regular opti-
mization problem and leads to a multi-objective optimization problem. For solving such op-
timization problems the focus is usually on finding the Pareto front described by solutions x,
so that:

Y E(0) S F() = F(x) < F(x) @)

i.e. for any solution x’, if the expected net coal output in solution x " is closer to the desired net
coal output than solution x, then the risk of the successful realization of solution x " is higher
than solution x. In such a case, the Pareto front can be depicted on a planar graph with the
values F(x) and F,(x) on the two axes as a curve.

There are many methods of solving multi-objective optimization problems, ranging
from classic analytical methods through to simple heuristic approaches, to efficient compu-
tational intelligence algorithms. In this paper an evolutionary algorithm, presented in detail
in section 5, is proposed.
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4. Multi-objective evolutionary algorithms

Multi-objective optimization is used when several objective functions have to be taken
into account simultaneously for a decision-making problem.
By introducing the dominant relationship defined as follows [20]:

Vk=1,...m f,(x) Vf,(»)

)
x >y when and only when 3k f,(x) <f,(»)

the optimization problems can be classified as:
— dominated,
— non-dominated.

Among multi-objective optimization problems, two special cases are distinguished:
— finding a non-dominated point,
— finding a set of non-dominated points (also called a Pareto set).

The first problem is easier and can sometimes be reduced by scalarising to find the solu-
tion (point).

The second problem is much more difficult, because identifying all non-dominated per-
mitted points, of which there may be very many, is often impossible. Due to this fact, the
problem is often simplified by indicating the greatest possible number of non-dominated
solutions (uniformly covering the set to which they belong).

The casiest way to scalarise is to treat individual components of a vector quality
indicator as limitations by defining their maximum permitted values, as a result of which
the solution boils down to searching for any permitted point and applying methods suit-
able for limited problems. Another method is to introduce an aggregating function in
which the arguments consist of the values of individual components of the vector qual-
ity indicator. This produces an aggregated, scalar quality indicator, which is optimised.
Depending on the aggregating function, the following scalarising methods are distin-
guished inter alia [20]:

— weighed objective summing,
— ideal point method,
— worst expected point method.

The methods above, referred to as classical, are reasonably common and well-known
algorithms for single-objective optimization. These methods, however, cannot always be ap-
plied to extremely complex problems. Currently, researchers are beginning to look to evo-
lutionary algorithms, which form an alternative to the traditional methods of solving multi-
-objective problems. Their ability to search through large numbers of solutions and generate
many alternative limitations within a single optimization algorithm, make them suitable for
finding the best solutions in a multi-dimensional space.

The idea of using genetic searches for multi-objective problems dates back to the earli-
est experiments with genetic algorithms and now there are over a dozen evolutionary algo-
rithms for multi-objective optimization, including:

— VEGA — vector evaluated genetic algorithm [21],
— HLGA — weighting-based genetic algorithm [22],
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— FFGA — multi-objective genetic algorithm [23],

— NPGA — niched Pareto genetic algorithm [24],

— NSGA — non-dominated sorting genetic algorithm [25],
— SPEA — strength Pareto genetic algorithm [26].

Evolutionary algorithms have been broadly used in multi-objective optimization, which
is evident by the steadily growing list of papers and publications [27].

5. Optimization of mining production
by a multi-objective evolutionary algorithm

In this paper, we propose a multi-objective evolutionary algorithm MOEA-MPO for
solving the problem of the optimization of mining production for d longwall faces and n
equipment installations with constraints as described in sections 2 and 3. This algorithm con-
structs the Pareto front for two objective functions F, indicated by (2) and F, indicated by (3).

As classic multi-objective evolutionary algorithms, MOEA-MPO deals with a popu-
lation of N individuals representing candidate solutions for the optimization problem. Each
individual encodes a integer vector x of length d, where each coordinate x, of vector x cor-
responds to the number of the equipment installations assigned to the i-th longwall (there-
fore, x, € {1, 2, ..., n}). Certainly, some integer vectors may represent solutions which are
not feasable and break some predefined constraints, for instance assigning a prohibited
equipment installation to a certain longwall face.

Algorithm 1 presents a framework of the multi-objective evolutionary algorithm for
the mining production optimization (MOEA-MPO). It starts with generating an initial
population P at random. After its creation, the population is evaluated according to objec-
tive functions /', and F,. After this the evolution begins. In parent selection, the roulette
wheel method is used N times to select N parent individuals for further recombination. As
in classic evolutionary algorithms, the probability of selecting an individual is defined by
its fitness value.

Next, each pair of parent individuals produces a pair of child individuals by a two-
point crossover and each child individual is mutated by one of three randomly chosen
mutation operators. The first mutation operator randomly draws a gene x, searches for
other longwall faces permitted for the equipment installation from gene x, randomly
picks one and exchanges the equipment installations at these positions. The second muta-
tion operator randomly draws a longwall face and assigns a randomly drawn equipment
installation permitted for that longwall face. The third mutation operator randomly draws
an equipment installation and assigns it to a randomly drawn longwall face permitted for
that equipment.

As in many popular multi-objective evolutionary algorithms, such as NSGA-II [28]
or SPEA2 [29], replacement concerns crowding distance and non-dominated sorting.
Each candidate solution is assigned to a non-dominated front (the first non-dominated
front is the Pareto front) and individuals from the successive non-dominated fronts consti-
tute the new population. Details of non-dominated sorting may be found in NSGA-II [28].
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P

= InitialPopulation (N)

PopulationEvaluation (P)
while

not TerminationCondition (P) do
P® = ParentSelection (P)
P© = CrossOver (P?®)

Mutation (P©)
Replacement (P,
PopulationEvaluation (P)

P(C))

Algorithm 1 Evolutionary Algorithm for the Optimization of Mining
Production

6. Results

In order to validate the approach, a number of computational experiments were per-
formed using benchmark data describing underground hard coal mines (60 longwall faces in
6 mines, 20 longwall complexes and some practical constraints restricting the usage of some
equipment installations in certain longwall faces) presented in Tables 1 and 2.

TABLE 1

Selected parameters of planned longwalls’

| Longwan Lonlgwall Length L.eng‘th of ex- | Coal l?ulk Rockburst | Methane |Class of coal

Mine height, |of longwall face,|ploitation panel,| density, hazard hazard | dust burst
name [m] [m] [m] [t/m?3] degree | category hazard
s111 2.5 200 1750 1.3 I 1 A
s112 2.5 200 1650 1.35 I I A
s113 2.5 200 1500 1.3 I I A
s121 3 220 1200 1.3 I II B

K1 s122 3 220 1200 1.3 | 1T B
s123 3 220 1200 1.3 I 1T B
s131 2.7 175 925 1.3 1 I B
s132 2.7 175 1000 1.35 I I B
s133 2.7 175 1100 1.3 | 1 B
s211 3 160 2000 1.32 11T v B
s212 3 160 1900 1.32 I v B
s213 160 1900 1.32 1 v B
s221 2.3 220 1500 1.32 11T v B

K2 §222 2.3 220 1500 1.33 I v B
s223 2.3 220 1400 1.33 I v B
s231 2.5 250 600 1.34 1 11 B
s232 2.5 250 640 1.34 I 111 B
s233 2.5 250 680 1.34 I I B
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TABLE 1 cont.

Longwall Longwall Length Length of ex- | Coal bulk | Rockburst| Methane | Class of coal
Mine name height, |of longwall face,|ploitation panel,| density, hazard | hazard | dustburst
[m] [m] [m] [t/m?] degree | category hazard
s311 4 200 1175 1.29 111 11 B
s312 4 200 1190 1.29 111 1T B
s313 4 200 1210 1.29 111 11 B
s321 3 180 1500 1.3 I v B
K3 | s322 3 180 1500 1.3 I I\ B
s323 3 180 1490 1.3 I v B
s331 2.8 230 700 1.31 I 1 B
s332 2.8 230 850 1.31 I 1 B
s333 2.8 230 900 1.31 I 1 B
s411 3.2 180 2100 1.3 I 1I B
s412 3.2 180 2000 1.3 111 11 B
5413 32 180 2000 1.3 111 11 B
s421 2.8 200 1400 1.29 I 111 B
K4 | s422 2.8 200 1400 1.29 111 111 B
s423 2.8 200 1350 1.29 11 111 B
s431 3 220 800 1.31 1 I\% B
s432 3 220 800 1.31 1 1\ B
s433 3 220 800 1.31 1 v B
s511 1.8 200 1160 1.33 111 111 B
s512 1.8 200 1160 1.33 111 111 B
s513 1.8 200 1160 1.33 J 1 11T B
s521 34 240 680 1.29 111 v B
s522 34 240 700 1.29 111 v B
K5 $523 3.4 240 700 1.29 111 1\ B
s531 2.4 220 1200 1.33 111 1\ B
s532 2.4 220 1220 1.33 111 v B
s533 2.4 220 1240 1.33 111 1\ B
s541 2.7 200 740 1.3 I 1T B
s542 2.7 200 755 1.3 1 1T B
s543 2.7 220 800 1.3 I 11 B
s611 2.1 230 1100 1.3 I v B
s612 2.1 230 1100 1.3 I v B
5613 2.1 230 1100 1.3 I I\% B
5621 3 240 700 1.29 I 11 B
5622 3 240 700 1.29 I 11 B
K6 5623 3 240 700 1.29 I 1I B
s631 4.4 220 2300 1.32 1 1 B
5632 4.4 220 2300 1.32 I I B
5633 4.4 220 2300 1.32 I 1 B
5641 1.9 200 1000 1.31 111 11 B
s642 1.9 200 1100 1.31 1 1I B
5643 1.9 200 1100 1.31 111 11 B
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Figure 1 depicts the best candidate solution found by MOEA-MPO with a population
of 1,000 individuals evolved during 250 iterations with a crossover probability of 0.95 and
a mutation probability of 0.05. Figure 1a shows the expected value of the net output of coal
and Figure 1b shows the standard deviation of the net output of coal. The desired level of the
net output of coal was 1, 200, 000 tonnes / month (to be achieved over a 12 month period
after planning of the mining production starts) and the solution found realizes the goal with
an acceptable deviation.

®
T

@
T

expected value of coal net output
expected value of coal net output

IS
T

N
~

L L L L L ]
0 5 10 15 20 25 0 5 10 15 20 25
month month

standard deviation of coal net output

Fig. 1. Expected value of the net output of coal (a) standard deviation of the net output of coal
in successive months of the test period for the best candidate solution found by MOEA-MPO (b)

Figure 2a depicts the expected value of the net output of coal for each of the 6 coal mines
separately. The solution found makes use of each mine uniformly. Figure 2b depicts the
Pareto front discovered by the algorithm, which is a set of 100 of the best candidate solutions,
with a minimal standard deviation, for different levels of the desired net output.
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expected value of col net output
0

standard deviation of coal net output
©

L L
8 9 10

. . .
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expected value of coal net output X10°

Fig. 2. Expected value of the net output of coal for each of the 6 coal mines separately
(a) the Pareto front discovered by the MOEA-MPO (a set of the 100 best candidate solutions
with minimal standard deviation for different levels of the desired net output) (b)

It is worth noting that the best solution found, not only outperforms the others in terms
of achieving the desired level of coal production (shown in Figure la), but also guaran-
tees a manageable level of the risk related to achieving the expected production (shown in
Figure 1b). However, in some practical cases, another solution from the Pareto front (shown
in Figure 2b) may be chosen, for instance, in order to decrease the risk (which would natu-
rally lead to a decrease in the production fitted to the desired level). From a practical point of
view, constructing the entire Pareto front allows the management of the enterprise to make
the correct decision by adjusting the level of risk to the level of production.

7. Conclusions

This paper has proposed knowledge-based modeling and an efficient multi-objective
evolutionary algorithm to optimize mining production in hard coal mines. The novelty of
the algorithm concerns the special encoding of the solution (an assignment of equipment
installations to longwall faces), a number of mutation operators as well as a multi-objective
replacement operator based on NSGA-II. Experiments performed on some of the benchmark
data describing longwall faces in a multi-mine enterprise, confirmed the efficiency of the
proposed algorithm and its practical relevance.

The results of the evolutionary algorithm calculations could be used for planning equip-
ment allocation in longwall faces taking into account the exact longwall face advance to
achieve the planned output or other assumed criteria.

The proposed approach could also be used in the evaluation of variants for opening a de-
posit and the order of operation on new levels in existing hard coal mines, taking into account
the aspect of mining equipment selection.
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The algorithm presented in this paper, is an example of a dedicated algorithm for the
modeling and optimization, associated with the complexity and characteristics of elements
which are subject of mine planning.
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