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GENERATING
THE EXPONENTIALLY STABLE C0-SEMIGROUP
IN A NONHOMOGENEOUS STRING EQUATION

WITH DAMPING AT THE END

Łukasz Rzepnicki
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Abstract. Small vibrations of a nonhomogeneous string of length one with left end fixed
and right one moving with damping are described by the one-dimensional wave equation

⎧⎪⎨
⎪⎩

vtt(x, t)− 1
ρ(x)

vxx(x, t) = 0, x ∈ [0, 1], t ∈ [0,∞),

v(0, t) = 0, vx(1, t) + hvt(1, t) = 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x),

where ρ is the density of the string and h is a complex parameter. This equation can be
rewritten in an operator form as an abstract Cauchy problem for the closed, densely defined
operator B acting on a certain energy space H. It is proven that the operator B generates
the exponentially stable C0-semigroup of contractions in the space H under assumptions
that Reh > 0 and the density function is of bounded variation satisfying 0 < m ≤ ρ(x) for
a.e. x ∈ [0, 1].

Keywords: nonhomogeneous string, one-dimensional wave equation, exponentially stable
C0-semigroup, Hilbert space.
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1. INTRODUCTION

Let us consider a finite nonhomogeneous string of length one with left end fixed and
right one moving with damping. If we denote v = v(x, t) as a vertical position of the
string in time on the interval [0, 1], then small vibrations are described by the wave
equation

vtt(x, t)− 1

ρ(x)
vxx(x, t) = 0, x ∈ [0, 1], t ∈ [0,∞), (1.1)
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with boundary conditions

v(0, t) = 0, vx(1, t) + hvt(1, t) = 0, (1.2)

and initial conditions

v(x, 0) = v0(x) vt(x, 0) = v1(x). (1.3)

We assume that the density function ρ is of bounded variation and satisfies

0 < m ≤ ρ(x) ≤ M for a.e. x ∈ [0, 1]. (1.4)

Parameter h ∈ C is allowed to be complex, since this kind of boundary conditions can
be used to describe an action of “smart materials”, e.g. piezoelectric actuators (see
[9] and references therein). The functions v0 and v1 are initial position and velocity,
respectively.

In what follows we will use the notation C = C[0, 1] for the space of continuous
functions with the supremum norm ‖ · ‖C and W 1

2 [0, 1] for the Sobolev space with the
first derivative in L2[0, 1]. Let Ŵ 1

2 [0, 1] = {y ∈ W 1
2 [0, 1] : y(0) = 0}, with the scalar

product

〈u1, u2〉1 =

1∫
0

u′1(x)u
′
2(x)dx, uj ∈ Ŵ 1

2 [0, 1], j = 1, 2, (1.5)

and let L̂2[0, 1] be the space L2[0, 1] equipped with the scalar product

〈v1, v2〉2 =

1∫
0

ρ(x)v1(x)v2(x)dx, vj ∈ L̂2[0, 1], j = 1, 2. (1.6)

We can rewrite problem (1.1)–(1.3) as an abstract Cauchy problem in a certain energy
space (see, for instance [11]). As the energy space we take the Hilbert space

H = Ŵ 1
2 [0, 1]⊕ L̂2[0, 1].

Let the linear operator B : D(B) → H be defined as follows

B =

[
0 I

1/ρ(x)D2 0

]
, D =

d

dx
, (1.7)

on the domain

D(B) =
{
(u, v) ∈ W 2

2 [0, 1]⊕ Ŵ 1
2 [0, 1] : u(0) = 0, u′(1) + hv(1) = 0

}
. (1.8)

Here I denotes the identity operator on Ŵ 1
2 [0, 1]. If we choose V (t) =

[
v(x,t)
vt(x,t)

]
, then

problem (1.1)–(1.3) has the form

d

dt
V (t) = BV (t), t > 0, (1.9)

V (0) =

[
v0(x)
v1(x)

]
. (1.10)
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The operator B is unbounded, closed, densely defined and has a compact in-
verse (see Section 2). We will prove that B is a generator of the exponentially stable
C0-semigroup T (t) = eBt, t ≥ 0, which means that a solution of problem (1.9)–(1.10)
converges exponentially to zero with respect to the energy norm. Consequently, phys-
ical energy of the string decays exponentially in time.

This fact is a generalization of results from [4], where some estimations of solutions
of the equation

y′′(x) + μ2ρ(x)y(x) = 0, x ∈ [0, 1], μ ∈ C, (1.11)

were provided. As a consequence of those estimations authors showed that the opera-
tor B induced by problem (1.1)–(1.3) generates the exponentially stable C0-semigroup
in the case when h = 1 (see [4, Theorem 4.1]). The problem of a string free at the left
end and damped at the right end with h = 1 was considered in [1] for ρ ∈ W 1

1 [0, 1],
where completely different methods were used (results for the damped homogeneous
string, i.e. ρ ≡ 1 can be found in [2]). When Reh > 0 we can deal with a broader
class of physical phenomena connected with the string equation.

We will use the following estimations to prove our main result.

Proposition 1.1 ([4, Proposition 1.3]). If y ∈ W 2
1 [0, 1] is the solution of (1.11), ρ

satisfies (1.4) and f ∈ Ŵ 1
2 [0, 1], then for any μ ∈ C \ {0} the following estimation is

valid ∣∣∣∣∣∣
1∫

0

y(t, μ)ρ(t)f(t)]dt

∣∣∣∣∣∣ ≤ 3|μ|−2‖y′‖C‖f ′‖L2 .

Theorem 1.2 ([4, Theorem 3.1]). Let the density functions ρ be of bounded variation
V(ρ) and satisfying (1.4). Then for μ �= 0 and any solution y ∈ W 2

1 [0, 1] of the equation
(1.11) the following inequalities hold for every x ∈ [0, 1]:(

|μ|2|y(0)|2 + |y′(0)|2/M
)
e−2α0(|τ |) ≤ |μ|2|y(x)|2 + |y′(x)|2/m, (1.12)(

|μ|2|y(x)|2 + |y′(x)|2/M
)
≤

(
|μ|2|y(0)|2 + |y′(0)|2/m

)
e2α0(|τ |), (1.13)

where τ = Imμ and α0(|τ |) = V(ρ)
2m + |τ |‖ρ1/2‖L1

.

2. GENERATING THE CONTRACTION C0-SEMIGROUP

We will first investigate some properties of the operator B. Simple calculations reveal
that the inverse B−1 : H → H of B is given by

B−1 =

[
B1 B2

I1 0

]
.

The operator B1 is defined by(
B1f

)
(x) = −hf(1)x, x ∈ [0, 1].
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According to [6, §1.4.5, Theorem 2] there is a continuous embedding Ŵ 1
2 [0, 1] ↪→

C[0, 1], thus B1 is a one-dimensional, compact operator acting on Ŵ 1
2 [0, 1]. The op-

erator B2 : L̂2[0, 1] → W 2
2 [0, 1] acts as follows

(
B2g

)
(x) =

x∫
0

(x− t)ρ(t)g(t)dt− x

1∫
0

ρ(t)g(t)dt, x ∈ [0, 1],

and is bounded. Moreover, by [6, §1.4.5, Theorem 2], we have a compact embedding
W 2

2 [0, 1] ↪→ W 1
2 [0, 1]. Note that

(
B2g

)
(0) = 0, hence B2 : L̂2[0, 1] → Ŵ 1

2 [0, 1] is com-
pact. Here I1 denotes a compact embedding I1 : Ŵ 1

2 [0, 1] ↪→ L̂2[0, 1] which exists again
by [6, §1.4.5, Theorem 2]. This implies that B−1 is compact on H and in particular B
is closed. One can show that D(B) = ran(B−1) = H and B is densely defined. As a
conclusion, the spectrum of B consists of at most a countable number of eigenvalues
with the accumulation point at infinity.

Let us recall that an operator B is dissipative in the Hilbert space H, if for all
x ∈ D(B)

Re〈Bx, x〉 ≤ 0. (2.1)

For more information about dissipative operators, see [3, Chapter II], [7, Chapter I],
[8]. It is well known that a densely defined, maximal dissipative operator generates a
contraction C0-semigroup (see [3, Chapter II, Theorem 3.15]). We will use this fact
to prove our first result.

Theorem 2.1. If the density function ρ satisfies (1.4) and Reh ≥ 0. Then the
operator B generates the contraction C0-semigroup in the space H.

Proof. We showed that B is densely defined. It suffices to prove that B is maximal
dissipative. Let w = (u, v) be from the domain of B. Using integration by parts and
(1.8), we obtain

〈Bw,w〉H =
〈
(v, u′′/ρ), (u, v)

〉
H

= 〈v, u〉1 + 〈u′′/ρ, v〉2 =

=

1∫
0

v′(x)u′(x)dx+

∫ 1

0

u′′(x)v(x)dx =

=

1∫
0

v′(x)u′(x)dx+ u′(1)v(1)−
∫ 1

0

u′(x)v′(x)dx =

= 〈v, u〉1 − 〈u, v〉1 − h|v(1)|2 = 2i Im〈v, u〉1 − h|v(1)|2,
thus

Re〈Bw,w〉H = −Reh|v(1)|2.
Consequently, the operator B is dissipative whenever Reh ≥ 0. Since the inverse
of B is bounded, zero belongs to the resolvent set ρ(B). The resolvent set is open,
therefore there exists λ > 0 in ρ(B), which implies B is maximal dissipative. This
ends the proof.
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Remark 2.2. In what follows we exclude the case when Reh = 0, because in this
case the operator B is skew-adjoint and there is no exponential stability of T (t).

3. GENERATING THE EXPONENTIALLY STABLE C0-SEMIGROUP

Recall the definition of a stable C0-semigroup (see [3, Chapter V, Definition 1.1]).

Definition 3.1. The C0-semigroup T (t) is exponentially stable if

ω0 = lim
t→∞

1

t
log ‖T (t)‖ < 0. (3.1)

It follows that, if ω0 < 0 then for all 0 < ω < |ω0|, there exists Mω > 0 such that

‖T (t)‖ ≤ Mωe
−ωt, t ≥ 0.

The well known Gearhart theorem [3, Chapter V, Theorem 1.11] states that the
C0-semigroup of operators in the Hilbert space with a generator B is exponentially
stable if and only if C+ = {μ ∈ C; Reμ > 0} ⊂ ρ(B) and

sup
Reμ>0

‖(B − μI)−1‖ < ∞.

We will use the following proposition, which is a consequence of the Gearhart
theorem, to prove that B is the generator of the exponential stable C0-semigroup.

Proposition 3.2. Let B be the linear operator acting on the Hilbert space H which
generates a uniformly bounded C0-semigroup of operators T (t), t ≥ 0. Suppose that
there exists the resolvent on the imaginary axis, which is uniformly bounded, i.e.

‖(B − iτI)−1‖ ≤ r, τ ∈ R, r > 0. (3.2)

Then the semigroup T (t) is exponentially stable and moreover for any 0 < δ < r−1

there exists a constant Mδ > 0 such that

‖T (t)‖ ≤ Mδe
−δt, t ≥ 0. (3.3)

Proof. Since the operator B is a generator of the uniformly bounded semigroup, the
Hille-Yosida theorem states that C+ is in the resolvent set and there exists r1 > 0
such that

‖(B − μI)−1‖ ≤ r1
Reμ

for Reμ > 0. (3.4)

Let 0 < δ < r−1. Then thanks to the inequality (3.2) for μ = s + iτ such that
|s| ≤ δ < r−1, the resolvent exists and is given by

(B − μI)−1 = (B − iτI)−1
[
I − s(B − iτI)−1

]−1
. (3.5)

From (3.2) and (3.5) we obtain the estimation

‖(B − μI)−1‖ ≤ r(1− δr)−1, |s| ≤ δ. (3.6)
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Combining (3.4) and (3.6), we obtain for any λ such that Reλ ≥ 0 the following
relation

‖(B + δ − λI)−1‖ = ‖(B − (λ− δ)I)−1‖ ≤ cδ = max{r1δ−1, r(1− δr)−1}.
Thus the Gearhart theorem yields the exponential stability of the semigroup e(B+δ)t

generated by the operator B + δ. By Definition 3.1,

0 > lim
t→∞

1

t
log ‖e(B+δ)t‖ = lim

t→∞
1

t
log ‖eBteδt‖ = lim

t→∞
1

t
log ‖eBt‖+ δ, (3.7)

so T (t) is exponentially stable and for all 0 < δ < r−1 there exists Mδ > 0 such that

‖T (t)‖ ≤ Mδe
−δt, t ≥ 0. (3.8)

For the convenience of further calculations we introduce the operator A defined
on D(A) = D(B) by

A = i

[
0 −I

−1/ρ(x)D2 0

]
, (3.9)

so that B = iA. More information about the operator A can be found in [4, 10, 11].
By Theorem 2.1 and Proposition 3.2, it is sufficient now to prove that the resolvent
of the operator A exists on the real axis and is bounded, but we will also provide the
lower bound of the spectrum of the operator A.

Lemma 3.3. Let the density function ρ be of bounded variation V(ρ) satisfying (1.4)
and let h = a+ ib be such that a = Reh > 0. Then all the eigenvalues μ = s+ iτ of
the operator A are uniformly separated from the real axis and the following inequality
holds

τ ≥ c(1 + 4c‖ρ1/2‖L1)
−1 > 0,

where c = am2

M2(m+|h|2)e
− 2V(ρ)

m .

Proof. Since B is dissipative, then Im〈Aw,w〉H ≥ 0 and every eigenvalue μ of the
operator A satisfies Imμ ≥ 0. The operator B has a compact inverse, hence μ = 0 is
not an eigenvalue of A. We want to prove that the spectrum of A is separated from
the real axis. If μ is an eigenvalue of A with an eigenfunction w = (u, v), then by (3.9)
we get v = iμu and u satisfies

u′′(x) + μ2ρ(x)u(x) = 0, x ∈ [0, 1], (3.10)

with boundary conditions

u(0) = 0, U [u](μ) := u′(1) + iμhu(1) = 0. (3.11)

Multiplying by u, dividing by μ and integrating by parts (3.10), thanks to (3.11) we
obtain

ih|u(1)|2 = μ

1∫
0

ρ(x)|u(x)|2dx− 1

μ

1∫
0

|u′(x)|2dx. (3.12)
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By taking the imaginary part of the above equation we obtain the equality

a|u(1)|2 = τ

1∫
0

ρ(x)|u(x)|2dx+
τ

|μ|2
1∫

0

|u′(x)|2dx. (3.13)

Thus (1.4) implies

a|u(1)|2 ≤ τ

(
M‖u(x)‖2L2

+
‖u′(x)‖2L2

|μ|2
)
. (3.14)

We want now to obtain a lower bound of |u(1)|. Using Theorem 1.2 and (3.11) we
have

|μ|2|u(1)|2(1 + |h|2m−1
)
= |μ|2|u(1)|2 + |u′(1)|2/m ≥
≥

(
|μ|2|u(0)|2 + |u′(0)|2/M

)
e−2α0(τ) ≥

≥ m

M2
|μ|2

(
M |u(x)|2 + |u′(x)|2

|μ|2
)
e−4α0(τ),

thus the integration yields

|u(1)|2 ≥ m2

M2(m+ |h|2)
(
M‖u(x)‖2L2

+
‖u′(x)‖2L2

|μ|2
)
e−4α0(τ). (3.15)

Combining (3.14) with (3.15) and using the inequality e−x ≥ 1 − x for x ≥ 0, we
obtain

τ ≥ am2

M2(m+ |h|2)e
− 2V(ρ)

m e−4τ‖ρ1/2‖L1 ≥

≥ am2

M2(m+ |h|2)e
− 2V(ρ)

m (1− 4τ‖ρ1/2‖L1),

hence

τ ≥ c(1 + 4c‖ρ1/2‖L1)
−1 > 0,

with a constant c = am2

M2(m+|h|2)e
− 2V(ρ)

m .

We can now state and prove our main theorem.

Theorem 3.4. Let the density function ρ be of bounded variation V(ρ) satisfying (1.4)
and Reh > 0. Then the operator B generates the exponentially stable C0-semigroup
in the space H.

Proof. Since B = iA and the resolvent of the operator A exists on the real axis, by
Proposition 3.2 it suffices to show that

‖(A− sI)−1‖H ≤ r, s ∈ R, r > 0. (3.16)
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The resolvent (A− μI)−1 of the operator A is defined by an equation(
A− μI

)
(u, v) = (f, g), (3.17)

where (u, v) ∈ D(A) and (f, g) ∈ H. Hence, our problem is reduced to finding a
solution of the boundary value problem

u′′(x) + μ2ρ(x)u(x) = L(x, μ), (3.18)
u(0) = 0, U [u](μ) = u′(1) + iμhu(1) = −ihf(1), (3.19)

where
L(x, μ) = ρ(x)[ig(x)− μf(x)], (3.20)

and v is expressed by the formula

v(x) = i
(
f(x) + μu(x)

)
. (3.21)

Let y1 = y1(x, μ), y2 = y2(x, μ) be a fundamental system of solutions of equation
(3.10) such that

y1(0, μ) = 0, y′1(0, μ) = 1, y2(0, μ) = −1, y′2(0, μ) = 0. (3.22)

A particular solution y0 = y0(x, μ) of the nonhomogeneous equation (3.18) is given
by the formula

y0(x, μ) = y2(x, μ)

x∫
0

y1(t, μ)L(t, μ)dt+ y1(x, μ)

1∫
x

y2(t, μ)L(t, μ)dt. (3.23)

We want to find the solution of the problem (3.18)–(3.19) of the form y(x, μ) =
Cy1(x, μ) + y0(x, μ). By using boundary conditions (3.19), we obtain

u(x, μ) = − ihf(1) + U [y0](s)

U [y1](μ)
y1(x, μ) + y0(x, μ). (3.24)

Thus the resolvent exists for all μ, which does not coincide with the roots of the
analytic function U [y1](μ). In particular U [y1](0) = 1 and the inverse of the operator
A exists and is bounded, which has been shown in Section 2.

For an arbitrary w = (f, g) ∈ H and s ∈ R, (3.21) implies the following estimation
of the resolvent

‖(A− sI)−1w‖2H =

1∫
0

|u′(x, s)|2dx+

1∫
0

ρ(x)|v(x, s)|2dx ≤ (3.25)

≤ ‖u′(x, s)‖2L2
+ 2Ms2‖u(x, s)‖2L2

+ 2M‖f(x)‖2L2
. (3.26)

In order to establish the main result we need the following estimations

‖u′(x, s)‖L2 ≤ c‖w‖H , ‖u(x, s)‖L2 ≤ cs−1‖w‖H .
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According to (3.24), we need a lower bound of |U [y1](s)|. In the case when s ∈ R,
the functions y1 and y2 are real-valued, and

|U [y1](s)|2 =
(
y′1(1, s)

)2
+ s2a2y21(1, s) + s2b2y21(1, s)− 2bsy1(1, s)y

′
1(1, s).

When b �= 0, using the Cauchy inequality 2xy ≤ ξx2 + y2

ξ in the last term yields

|U [y1](s)|2 ≥ (
y′1(1, s)

)2(
1− ξ−1

)
+ y21(1, s)s

2(a2 + b2 − b2ξ).

However we can always find ξ such that 1 < ξ < 1 + a2

b2 . Writing

k = min
{
m
(
1− ξ−1

)
, a2 + b2 − b2ξ

}
> 0,

we find that k = 1
2

(
|h|2 +m −√

(m− |h|2)2 + 4mb2
)
≥ k0 = a2m

|h|2+m > 0. Again by
Theorem 1.2 and (3.22), we obtain

|U [y1](s)|2 ≥ k0

(
s2y21(1, s) +

(
y′1(1, s)

)2
m

)
≥

≥ k0C
−1
1

(
s2y21(0, s) +

(
y′1(0, s)

)2
M

)
= k0C

−1
1 M−1 > 0,

where C1 = eV(ρ)/m. Consequently, we have

|U [y1](s)|−1 ≤ c0 = (k−1
0 C1M)

1
2 . (3.27)

If b = 0, take k0 = min{m, a2}.
In what follows we will need an even real function R � s �→ z(s) and its estimation.

Define

z2(s) = s2‖y1(x, s)‖2C + ‖y′1(x, s)‖2C + ‖y2(x, s)‖2C + s−2‖y′2(x, s)‖2C .

In the same way as in [4, (4.10)] we obtain

z(s) ≤ c1 = 2(M1(m
−1 + 1)C1)

1
2 , (3.28)

where M1 = max{1,M}. From the definition of z we obtain

‖y1(x, s)‖L2 ≤ ‖y1(x, s)‖C ≤ z(s)|s|−1 ≤ c1|s|−1,

‖y′1(x, s)‖L2 ≤ ‖y1(x, s)‖C ≤ z(s) ≤ c1,

‖y2(x, s)‖L2 ≤ ‖y2(x, s)‖C ≤ z(s) ≤ c1,

‖y′2(x, s)‖L2 ≤ ‖y′2(x, s)‖C ≤ z(s)|s| ≤ c1|s|. (3.29)
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We can now estimate |U [y0](s)|. Using Proposition 1.1 and (1.4), (3.29), we get

|U [y0](s)| = |y′2(1, s) + ishy2(1, s)|
∣∣∣∣∣∣

1∫
0

y1(t, s)L(t, s)dt

∣∣∣∣∣∣ ≤
≤ c1|s|(1 + |h|)

∣∣∣∣∣∣
1∫

0

y1(t, s)ρ(t)[ig(t)− sf(t)]dt

∣∣∣∣∣∣ ≤
≤ c1|s|(1 + |h|)

⎛⎝c1
√
M |s|−1‖g‖

̂L2
+ |s|

∣∣∣∣∣∣
1∫

0

y1(t, s)ρ(t)f(t)]dt

∣∣∣∣∣∣
⎞⎠ ≤

≤ c21(1 + |h|)(√M‖g‖
̂L2

+ 3‖f ′‖L2

)
. (3.30)

The estimation of ‖y0‖L2 is exactly the same as in the case when h = 1. It has been
proved in [4] in an analogous way as in (3.30) that the following inequality is true

‖y0‖L2 ≤ c21|s|−1
(
2
√
M‖g‖

̂L2
+ 6‖f ′‖L2

)
. (3.31)

Combining estimations (3.27), (3.29), (3.30), (3.31), we obtain

‖u(x, s)‖L2
≤ |h||f(1)|+ |U [y0](s)|

|U [y1](s)| ‖y1(x, μ)‖L2
+ ‖y0(x, μ)‖L2

≤

≤ c0c1|s|−1
(
|h|‖f ′‖L2 + c21(1 + |h|)(√M‖g‖

̂L2
+ 3‖f ′‖L2

))
+

+ c21|s|−1
(
2
√
M‖g‖

̂L2
+ 6‖f ′‖L2

)
. (3.32)

Finally let us estimate ‖u′(x, s)‖L2 . Thanks to (3.24) we have

u′(x, μ) = − ihf(1) + U [y0](s)

U [y1](s)
y′1(x, μ) + y′2(x, s)

∫ x

0

y1(t, s)L(t, s)dt+

+ y′1(x, s)
∫ 1

x

y2(t, s)L(t, s)dt, (3.33)

and analogously as in (3.32) we obtain

‖u′(x, s)‖L2 ≤ c0c1

(
|h|‖f ′‖L2 + c21(1 + |h|)(√M‖g‖

̂L2
+ 3‖f ′‖L2

))
+

+ c21

(
2
√
M‖g‖

̂L2
+ 6‖f ′‖L2

)
.

(3.34)

The estimations (3.32) and (3.34) give us

‖(A− sI)−1w‖H ≤ r‖w‖H ,

hence the theorem is proved.
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Remark 3.5. In general, the constant r has a rather complicated form

r2 = 2max
{(

k21(1 + 2M) +M
)
, k22(1 + 2M)

}
,

where

k1 = c0c1|h|+ 3c0c
3
1(1 + |h|) + 6c21, k2 = c0c

3
1(1 + |h|)

√
M + 2c21

√
M.

If M ≤ 1 then we can take r2 = 6(k21 + 1/3).

Remark 3.6. When the density function ρ satisfies (1.4) and belongs to the space
W 1

1 [0, 1], in order to prove Theorem 3.4 one can use asymptotic expressions for fun-
damental solutions y1 and y2 of the equation (3.10) from [5]. In this way one can
obtain estimations of the same growth as in (3.27), (3.29), (3.30), and this allows us
to complete the proof in the same way as in the proof of Theorem 3.4.

As a consequence of the previous theorem we obtain some information about the
solutions of the problem (1.9)–(1.10) (see [3, Chapter II, Proposition 6.2]).

Corollary 3.7. Under the assumptions of Theorem 3.4 there exists positive con-
stant r such that for any mild solution of the problem (1.9)–(1.10) with initial data(
v0(x), v1(x)

) ∈ H the following estimations are true

‖V (t)‖H ≤ ‖V (0)‖H , ‖V (t)‖H ≤ Mδ‖V (0)‖He−δt, ∀δ < r−1, t ≥ 0.
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