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1. INTRODUCTION

In this paper we study the following discrete boundary-value problem
{
−∆(φp(∆u(k − 1))) + qkφp(u(k)) = λf(k, u(k)) + µg(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0,
(1.1)

where T is a fixed positive integer, [1, T ] is the discrete interval {1, . . . , T},
f, g : [1, T ]× R→ R are two continuous functions, λ > 0, µ ≥ 0 are two parame-
ters, ∆u(k) = u(k + 1)− u(k) is the forward difference operator and qk ∈ R+

0 for all
k ∈ [0, T ] and φp(s) = |s|p−2s, 1 < p < +∞.

The theory of nonlinear difference equations has been widely used to study dis-
crete models in many fields such as computer science, economics, neural network,
ecology, cybernetics, etc. In recent years, a great deal of work has been done in
the study of the existence and multiplicity of solutions for discrete boundary value
problems, by using classical methods such as fixed point theorems lower and upper
solution methods, critical point theory, variational methods, Morse theory and the
mountain-pass theorem. For background and recent results, we refer the reader to
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[1–4, 6, 8–12, 14, 15, 17, 18, 20, 25–29] and the references therein. For instance, Can-
dito and Giovannelli in [11], employing three critical point theorem established the
existence of at least three solutions for the following problem

{
−∆(φp(∆u(k − 1))) = λf(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0,
(1.2)

where T is a fixed positive integer, [1, T ] is the discrete interval {1, . . . , T},
f : [1, T ]× R→ R is a continuous function, λ > 0 and 1 < p < +∞. Bonanno and
Candito in [6], based on critical point theorems in the setting of finite dimensional
Banach spaces, studied the multiplicity of solutions for the nonlinear difference equa-
tions (1.2), while the same authors in [4], using critical point theory investigated the
existence of infinitely many solutions for the discrete non-linear Dirichlet problem
(1.1) when µ = 0, under appropriate oscillating behaviours of the non-linear term.
In [9], based on three critical points theorems, the authors investigated different sets
of assumptions which guarantee the existence and multiplicity of solutions for a non-
linear Neumann boundary value problem, while in [10] using critical point theory,
they also studied the existence of at least three solutions for a perturbed nonlinear
Dirichlet boundary value problem for difference equations depending on two positive
parameters.

In the present paper, motivated by the above papers, using two kinds of three
critical point theorems obtained by Bonanno and Candito in [5], and Bonanno and
Marano in [7] (see Theorems 2.1 and 2.2 below) we are interested to ensure the
existence of at least three solutions for the problem (1.1); see Theorems 3.1 and 3.2.
We point out that in Theorems 3.1 and 3.2, precise estimates of parameters λ and µ
are given.

A special case of Theorem 3.1 is the following theorem in which we have no sym-
metric assumption on f .

Theorem 1.1. Let f : R → R be a non-negative continuous function. Put F (t) :=∫ t
0
f(ξ)dξ for each t ∈ R. Assume that

lim inf
ξ→0

F (ξ)

ξp
= lim sup

ξ→+∞

F (ξ)

ξp
= 0.

Then, for each continuous function g : [1, T ] × R → R satisfying the asymptotical
condition

lim sup
|ξ|→+∞

∑T
k=1G(k, ξ)

|ξ|p < +∞,

there exists δ > 0 such that, for each µ ∈ [0, δ), the problem
{
−∆(φp(∆u(k − 1))) = f(u(k)) + µg(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0,

admits at least three solutions.
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It is worth to mention that Galewski and Głąb in [13], using critical point theory,
studied the following anisotropic (unperturbed) problem

{
−∆(|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λfk(u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0.
(1.3)

In fact, firstly they applied the direct method of the calculus of variations and the
mountain pass technique in order to reach the existence of at least one non-trivial
solution. Secondly they derived some version of a discrete three critical point theorem
which they applied in order to get the existence of at least two non-trivial solutions.
In particular, Molica Bisci and Repovs in [22], using related variational arguments
employed in the present paper, studied the problem (1.3), and substantially improved
the results obtained by Bonanno and Candito in [4].

For a through review of the subject, we also refer the reader to [19,21,23].

2. PRELIMINARIES

Our main tools are the following three critical point theorems. In the first one the
coercivity of the functional Φ − λΨ is required, in the second one a suitable sign
hypothesis is assumed.

Theorem 2.1 ([7, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X → R
be a coercive continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive is compact such that Φ(0) = Ψ(0) = 0. Assume that there exists r > 0 and v ∈ X,
with r < Φ(v) such that

(a1)
supΦ(u)≤r Ψ(u)

r < Ψ(v)
Φ(v) ,

(a2) for each λ ∈ Λr :=
(

Φ(v)
Ψ(v) ,

r
supΦ(u)≤r Ψ(u)

)
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points
in X.

Theorem 2.2 ([5, Theorem 3.3]). Let X be a reflexive real Banach space, Φ : X → R
be a convex, coercive and continuously Gâteaux differentiable functional whose deriva-
tive admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux
differentiable functional whose derivative is compact, such that:

1. infX Φ = Φ(0) = Ψ(0) = 0,
2. for each λ > 0 and for every u1, u2 ∈ X which are local minima for the functional

Φ− λΨ and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.



750 Shapour Heidarkhani and Mohsen Khaleghi Moghadam

Assume that there are two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) < r2
2 ,

such that:

(b1)
supu∈Φ−1((−∞,r1)) Ψ(u)

r1
< 2

3
Ψ(v)
Φ(v) ,

(b2)
supu∈Φ−1((−∞,r2)) Ψ(u)

r2
< 1

3
Ψ(v)
Φ(v) .

Then, for each

λ ∈
(

3

2

Φ(v)

Ψ(v)
, min

{
r1

supu∈Φ−1(]−∞,r1[) Ψ(u)
,

r2
2

supu∈Φ−1((−∞,r2)) Ψ(u)

})
,

the functional Φ − λΨ has at least three distinct critical points which lie in
Φ−1((−∞, r2)).

For an overview on three critical point theorems we refer to [24].
For the reader’s convenience we state the following consequence of the strong

comparison principle [3, Lemma 2.3] (see also [4, Theorem 2.2] which we will use in
the sequel in order to obtain positive solutions to the problem (1.1), i.e. u(k) > 0 for
each k ∈ [1, T ].

Lemma 2.3. Let

−∆(φp(∆u(k − 1))) + qkφp(u(k)) ≥ 0, k ∈ [1, T ],

u(0) ≥ 0, u(k + 1) ≥ 0.

Then either u is positive or u ≡ 0.

In order to give the variational formulation of the problem (1.1), on a
T -dimensional Banach space

W := {u : [0, T + 1]→ R : u(0) = u(T + 1) = 0},
equipped with the norm

‖u‖ :=

{
T+1∑

k=1

|∆u(k − 1)|p + qk|u(k)|p
}1/p

,

we set

Φ(u) :=
‖u‖p
p

and Ψ(u) :=

T∑

k=1

(
F (k, u(k)) +

µ

λ
G(k, u(k))

)
(2.1)

for every u ∈ W , where F (k, t) :=
∫ t

0
f(k, ξ)dξ and G(k, t) :=

∫ t
0
g(k, ξ)dξ for every

(k, t) ∈ [1, T ]×R. An easy computation ensures that Φ and Ψ turn out to be of class
C1 on W with

Φ′(u)(v) =
T+1∑

k=1

[
φp(∆u(k − 1))∆v(k − 1) + qk|u(k)|p−2u(k)v(k)

]

= −
T∑

k=1

[
∆(φp(∆u(k − 1))v(k)− qk|u(k)|p−2u(k)v(k)

]
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and

Ψ′(u)(v) =

T∑

k=1

[
f(k, u(k)) +

µ

λ
g(k, u(k)))

]
v(k)

for all u, v ∈W . It is clear that the critical points of Φ−λΨ are exactly the solutions
of the problem (1.1).

In the sequel, we will use the following inequality

max
k∈[1,T ]

|u(k)| ≤ (T + 1)(p−1)/p

2
‖u‖, (2.2)

for every u ∈W . It immediately follows, for instance, from Lemma 2.2 of [16].

3. MAIN RESULTS

For our convenience, set

Gc :=
T∑

k=1

max
|ξ|≤c

G(k, ξ) for all c > 0 and Gd :=
T∑

k=1

G(k, d) for all d > 0.

In order to introduce our first result, fix c, d > 0 such that

(2 +
∑T
k=1 qk)dp

∑T
k=1 F (k, d)

<
(2c)p

(T + 1)p−1
∑T
k=1 max|ξ|≤c F (k, ξ)

and pick

λ ∈ Λ :=

(
(2 +

∑T
k=1 qk)dp

p
∑T
k=1 F (k, d)

,
(2c)p

p(T + 1)p−1
∑T
k=1 max|ξ|≤c F (k, ξ)

)
.

Moreover, put

δλ,g := min

{
(2c)p − λp(T + 1)p−1

∑T
k=1 max|ξ|≤c F (k, ξ)

p(T + 1)p−1Gc
,

∣∣∣ (2 +
∑T
k=1 qk)dp − λp∑T

k=1 F (k, d)

pmin{0, Gd}
∣∣∣
} (3.1)

and

δλ,g := min



δλ,g,

1

max
{

0, p(T+1)p−1

2p−1 lim sup|ξ|→+∞
∑T
k=1 G(k,ξ)

|ξ|p
}



 , (3.2)

where we read 1
0 := +∞ whenever this case occurs.
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Theorem 3.1. Assume that there exist two positive constants c and d with

2c < d
(

2 +
T∑

k=1

qk

) 1
p

(T + 1)
p−1
p

such that:

(A1)
∑T
k=1 max|ξ|≤c F (k,ξ)

cp < 2p

(T+1)p−1(2+
∑T
k=1 qk)

∑T
k=1 F (k,d)

dp ,

(A2) lim sup|ξ|→+∞
∑T
k=1 F (k,ξ)

|ξ|p <
∑T
k=1 max|ξ|≤c F (k,ξ)

2cp .

Then, for any λ ∈ Λ and for every continuous function g : [1, T ]× R→ R such that

(A2) lim sup|ξ|→+∞
∑T
k=1 G(k,ξ)

|ξ|p < +∞,

there exits δλ,g > 0 given by (3.2) such that, for each µ ∈ (0, δλ,g), the problem (1.1)
has at least three solutions.

Proof. Our aim is to apply Theorem 2.1 to our problem. To this end, take X = W ,
Φ and Ψ as given in (2.1). Put r = (2c)p

p(T+1)p−1 and

v̄(k) =

{
d, k ∈ [1, T ],
0, otherwise. (3.3)

Clearly v̄ ∈W and Φ(v̄) = dp

p (2 +
∑T
k=1 qk). Since 2c < d(2 +

∑T
k=1 qk)

1
p (T + 1)

p−1
p ,

we get r < Φ(v̄). Taking (2.2) into account, we obtain

supu∈Φ−1((−∞,r]) Ψ(u)

r
=

sup
‖u‖≤(pr)

1
p

∑T
k=1

[
F (k, u(k)) + µ

λG(k, u(k))
]

(2c)p

p(T+1)p−1

≤
∑T
k=1 max|ξ|≤c

[
F (k, ξ) + µ

λG(k, ξ)
]

(2c)p

p(T+1)p−1

=

∑T
k=1 max|ξ|≤c F (k, ξ)

(2c)p

p(T+1)p−1

+
µ

λ

Gc

(2c)p

p(T+1)p−1

.

From this, if Gc = 0, clearly we get

supu∈Φ−1((−∞,r]) Ψ(u)

r
<

1

λ
, (3.4)

while, if Gc > 0, it turns out to be true bearing in mind that µ < δλ,g. Moreover, one
has

Ψ(v̄)

Φ(v̄)
=

∑T
k=1

[
F (k, d) + µ

λG(k, d)
]

dp

p (2 +
∑T
k=1 qk)

.

Hence, if Gd ≥ 0, it follows
Ψ(v̄)

Φ(v̄)
>

1

λ
, (3.5)
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and if Gd < 0, Ψ(v̄)
Φ(v̄) >

1
λ again holds since µ < δλ,g. Thus, from (3.4) and (3.5), (a1)

of Theorem 2.1 follows. Now, we prove the coercivity of the functional Φ− λΨ. First,
we assume that

lim sup
|ξ|→+∞

∑T
k=1 F (k, ξ)

|ξ|p > 0.

Therefore, fix

lim sup
|ξ|→+∞

∑T
k=1 F (k, ξ)

|ξ|p < ε <

∑T
k=1 max|ξ|≤c F (k, ξ)

2cp
,

from (A2) there is a positive constant hε such that

T∑

k=1

F (k, ξ) ≤ ε|ξ|p + hε for each ξ ∈ R.

Taking (2.2) into account and since λ < (2c)p

p(T+1)p−1
∑T
k=1 max|ξ|≤c F (k,ξ)

, it follows that

λ

T∑

k=1

F (k, u(k)) ≤ λε|u(k)|p + λhε ≤ ε
cp

p
∑T
k=1 max|ξ|≤c F (k, ξ)

‖u‖p

+ hε
(2c)p

p(T + 1)p−1
∑T
k=1 max|ξ|≤c F (k, ξ)

(3.6)

for each u ∈ X. Moreover, taking µ < δλ,g into account, it follows that

lim sup
|ξ|→+∞

∑T
k=1G(k, ξ)

|ξ|p <
2p−1

µp(T + 1)p−1
,

then, for some constant τµ > 0 and for every ξ ∈ R, one has

T∑

k=1

G(k, ξ) ≤ 2p−1

µp(T + 1)p−1
|ξ|p + τµ.

Hence, by using again (2.2) for each u ∈ X, we get

T∑

k=1

G(k, u(k)) ≤ 2p−1

µp(T + 1)p−1
|u(k)|p + τµ ≤

‖u‖p
2pµ

+ τµ. (3.7)

Therefore, from (3.6) and (3.7) we have

Φ(u)− λΨ(u) ≥ 1

p

(
1

2
− ε cp

∑T
k=1 max|ξ|≤c F (k, ξ)

)
‖u‖p

− hε
(2c)p

p(T + 1)p−1
∑T
k=1 max|ξ|≤c F (k, ξ)

− µτµ.
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On the other hand, if

lim sup
|ξ|→+∞

∑T
k=1 F (k, ξ)

|ξ|p ≤ 0,

there exists hε such that
∑T
k=1 F (k, ξ) ≤ hε for all ξ ∈ R, and arguing as before we

obtain

Φ(u)− λΨ(u) ≥ 1

2p
‖u‖p − hε

(2c)p

p(T + 1)p−1
∑T
k=1 max|ξ|≤c F (k, ξ)

− µτµ.

Both cases lead to the coercivity of Φ−λΨ. Thus, (a2) holds. By using relations (3.4)
and (3.5) one also has

λ ∈
(

Φ(v)

Ψ(v)
,

r

supΦ(u)≤r Ψ(u)

)
.

Finally, Theorem 2.1 ensures the conclusion.

Now, we present a variant of Theorem 3.1 in which no asymptotic condition on
the nonlinear term is requested.

For our goal, let us fix positive constants c1, c2 and d such that

3

2

dp(2 +
∑T
k=1 qk)

∑T
k=1 F (k, d)

<
2p

(T + 1)p−1
min

{
cp1∑T

k=1 max|ξ|≤c1 F (k, ξ)
,

cp2

2
∑T
k=1 max|ξ|≤c2 F (k, ξ)

}
,

and taking

λ ∈ Λ′ :=

(
3

2

dp

p (2 +
∑T
k=1 qk)

∑T
k=1 F (k, d)

,

2p

p(T + 1)p−1
min

{
cp1∑T

k=1 max|ξ|≤c1 F (k, ξ)
,

cp2

2
∑T
k=1 max|ξ|≤c2 F (k, ξ)

})
.

Theorem 3.2. Assume that there exist three positive constants c1, c2, d with

2
2
p c1 < d

(
2 +

T∑

k=1

qk

) 1
p
(T + 1

2

) p−1
p

< c2

such that:

(B1) f(k, t) ≥ 0 for every (k, t) ∈ [1, T ]× [0, c2),
(B2) ∑T

k=1 max|ξ|≤c1 F (k, ξ)

cp1
<

2

3

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

∑T
k=1 F (k, d)

dp
,
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(B3) ∑T
k=1 max|ξ|≤c2 F (k, ξ)

cp2
<

1

3

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

∑T
k=1 F (k, d)

dp
.

Then, for each λ ∈ Λ′ and for every continuous function g : [1, T ]×R→ R such that
is nonnegative in [1, T ]× [0, c2), there exists δ∗λ,g > 0 given by

min

{
(2c1)p − λp(T + 1)p−1

∑T
k=1 max|ξ|≤c1 F (k, ξ)

p(T + 1)p−1Gc1
,

(2c2)p − 2λp(T + 1)p−1
∑T
k=1 max|ξ|≤c2 F (k, ξ)

2p(T + 1)p−1Gc2

}
.

such that, for each µ ∈ [0, δ∗λ,g), the problem (1.1) admits at least three solutions ui
for i = 1, 2, 3, such that

0 ≤ ui(k) < c2, for each k ∈ [1, T ], (i = 1, 2, 3).

Proof. Fix λ, g and µ as in the conclusion and take Φ and Ψ as in the proof of
Theorem 3.1. We observe that the regularity assumptions of Theorem 2.2 on Φ and
Ψ are satisfied. Then, our aim is to verify (b1) and (b2).

To this end, put v as given in (3.3), as well as r1 = (2c1)p

p(T+1)p−1 and r2 = (2c2)p

p(T+1)p−1 .
By using condition

2
2
p c1 < d

(
2 +

T∑

k=1

qk

) 1
p
(T + 1

2

) p−1
p

< c2,

and bearing in mind that Φ(v̄) = dp

p (2 +
∑T
k=1 qk), we get 2r1 < Φ(v̄) < r2

2 .
Since µ < δ∗λ,g and Gd ≥ 0, one has

supu∈Φ−1((−∞,r1)) Ψ(u)

r1
=

supu∈Φ−1((−∞,r1))

∑T
k=1(F (k, u(k)) + µ

λG(k, u(k)))

r1

≤
∑T
k=1 max|ξ|≤c1 F (k, ξ) + µ

λG
c1

(2c1)p

p(T+1)p−1

<
1

λ
<

2

3

∑T
k=1 F (k, d) + µ

λGd
dp

p (2 +
∑T
k=1 qk)

=
2

3

Ψ(v)

Φ(v)
,

and

2 supu∈Φ−1((−∞,r2)) Ψ(u)

r2
=

2 supu∈Φ−1((−∞,r2))

∑T
k=1(F (k, u(k)) + µ

λG(k, u(k)))

r2

≤ 2
∑T
k=1 max|ξ|≤c2 F (k, ξ) + 2µλG

c2

(2c2)p

p(T+1)p−1

<
1

λ
<

2

3

∑T
k=1 F (k, d) + µ

λGd
dp

p (2 +
∑T
k=1 qk)

=
2

3

Ψ(v)

Φ(v)
.
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Therefore, (b1) and (b2) of Theorem 2.2 are verified. Finally, we verify that Φ − λΨ
satisfies the assumption 2 of Theorem 2.2. Let u1 and u2 be two local minima for
Φ − λΨ. Then u1 and u2 are critical points for Φ − λΨ, and so, they are solutions
for problem (1.1). Then, since Φ is convex, by Lemma 2.3, we deduce u1 and u2 are
positive. Thus, it follows that su1 + (1− s)u2 ≥ 0 for all s ∈ [0, 1], and that

(λf + µg)(k, su1 + (1− s)u2) ≥ 0,

and consequently, Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1].
By using Theorem 2.2, for every

λ ∈
(

3

2

Φ(v)

Ψ(v)
, min

{
r1

supu∈Φ−1((−∞,r1)) Ψ(u)
,

r2/2

supu∈Φ−1((−∞,r2)) Ψ(u)

})
,

the functional Φ− λΨ has at least three critical points which are the solutions of the
problem (1.1) and the desired conclusion is achieved.

As a special case of problem (1.1), we consider the following problem
{
−∆(φp(∆u(k − 1))) + qkφp(u(k)) = λh1(k)h2(u(k)) + µg(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0

(3.8)
where h1 : [1, T ]→ R is continuous and h2 ∈ C(R,R). Put

H2(t) =

t∫

0

h2(ξ)dξ for all t ∈ R.

Note that
T∑

k=1

max
|ξ|≤c

F (k, ξ) = max
|ξ|≤c

H2(ξ)
T∑

k=1

h1(k) for c > 0,

Theorems 3.1 and 3.2 take the following simple forms, respectively.
Fix c, d > 0 such that

(2 +
∑T
k=1 qk)dp

H2(d)
∑T
k=1 h1(k)

<
(2c)p

(T + 1)p−1 max|ξ|≤cH2(ξ)
∑T
k=1 h1(k)

and pick

λ ∈ Λ :=

(
(2 +

∑T
k=1 qk)dp

pH2(d)
∑T
k=1 h1(k)

,
(2c)p

p(T + 1)p−1 max|ξ|≤cH2(ξ)
∑T
k=1 h1(k)

)
.

Moreover, put

δ′λ,g := min

{
(2c)p − λp(T + 1)p−1 max|ξ|≤cH2(ξ)

∑T
k=1 h1(k)

p(T + 1)p−1Gc
,

∣∣∣ (2 +
∑T
k=1 qk)dp − λpH2(d)

∑T
k=1 h1(k)

pmin{0, Gd}
∣∣∣
} (3.9)
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and

δ′λ,g := min



δ
′
λ,g,

1

max
{

0, p(T+1)p−1

2p−1 lim sup|ξ|→+∞
∑T
k=1 G(k,ξ)

|ξ|p
}



 , (3.10)

where we read 1
0 := +∞ whenever this case occurs.

Theorem 3.3. Assume that there exist two positive constants c and d with 2c <

d(2 +
∑T
k=1 qk)

1
p (T + 1)

p−1
p such that

(A4) max|ξ|≤cH2(ξ)
∑T
k=1 h1(k)

cp < 2p

(T+1)p−1(2+
∑T
k=1 qk)

H2(d)
∑T
k=1 h1(k)

dp ,

(A5) (
∑T
k=1 h1(k)) lim sup|ξ|→+∞

H2(ξ)
|ξ|p <

H2(c)
∑T
k=1 h1(k)

2cp .

Then, for any λ ∈ Λ and for every continuous function g : [1, T ]×R→ R satisfying
(A3), there exits δ′λ,g > 0 given by (3.10) such that, for each µ ∈ (0, δ′λ,g), problem
(3.8) has at least three solutions.

Let h1 : [1, T ] → R be a nonnegative continuous function and h2 ∈ C(R,R). Fix
positive constants c1, c2 and d such that h2 is nonnegative in [0, c2) and

3

2

dp(2 +
∑T
k=1 qk)

H2(d)
<

2p

(T + 1)p−1
min

{
cp1

max|ξ|≤c1 H2(ξ)
,

cp2
2 max|ξ|≤c2 H2(ξ)

}
,

and taking

λ ∈ Λ′ :=

(
3

2

dp

p (2 +
∑T
k=1 qk)

H2(d)
∑T
k=1 h1(k)

,

2p

p(T + 1)p−1
min

{
cp1

max|ξ|≤c1 H2(ξ)
∑T
k=1 h1(k)

,

cp2

2 max|ξ|≤c2 H2(ξ)
∑T
k=1 h1(k)

})
.

Theorem 3.4. Assume that there exist three positive constants c1, c2 and d with

2
2
p c1 < d

(
2 +

T∑

k=1

qk

) 1
p
(T + 1

2

) p−1
p

< c2

such that

(B4)
max|ξ|≤c1 H2(ξ)

cp1
<

2

3

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

H2(d)

dp
,

(B5)
max|ξ|≤c2 H2(ξ)

cp2
<

1

3

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

H2(d)

dp
.
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Then, for each λ ∈ Λ′ and for every continuous function g : [1, T ]×R→ R such that
it is nonnegative in [1, T ]× [0, c2), there exists δ∗λ,g > 0 given by

min

{
(2c1)p − λp(T + 1)p−1 max|ξ|≤c1 H2(ξ)

∑T
k=1 h1(k)

p(T + 1)p−1Gc1
,

(2c2)p − 2λp(T + 1)p−1 max|ξ|≤c2 H2(ξ)
∑T
k=1 h1(k)

2p(T + 1)p−1Gc2

}
.

such that, for each µ ∈ [0, δ∗λ,g), the problem (3.8) admits at least three solutions ui
for i = 1, 2, 3, such that

0 ≤ ui(k) < c2 for all k ∈ [1, T ], (i = 1, 2, 3).

Now, we present two examples to illustrate the results of Theorems 3.3 and 3.4.

Example 3.5. Choose c = 1
7500 , d = 1

2 , p = 4, T = 10,
∑T
k=1 qk = 2 and

h1(k) = 1, h2(ξ) = ξ4(5− 6ξ), g(k, ξ) =
1

(k2 + k)(1 + ξ2)

for all k ∈ [1, 10] and ξ ∈ R. Therefore, since in this case,

H2(c)

cp
= 0.0001,

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

H2(d)

dp
= 0.0007 and lim sup

|ξ|→+∞

H2(ξ)

|ξ|p = −∞,

we see that all assumptions of Theorem 3.3 are satisfied, and hence Theorem 3.3
follows that for any λ ∈ (0.4, 2.2) and µ ∈ (0, 10−15(5−2.2λ)

0.532 ), the following problem





−∆(φ4(∆u(k − 1))) + qkφ4(u(k)) = λu(k)4(5− 6u(k)) + µ 1
(k2+k)(1+u(k)2) ,

k ∈ [1, 10],

u(0) = u(11) = 0,

has at least three solutions.

Example 3.6. The following problem
{
−∆2u(k − 1) + qku(k) = λ 2

5 ln(k+1
k ) (sinhu(k))3 coshu(k)

1+(sinhu(k))8 + µkeu(k), k ∈ [1, 10],

u(0) = u(11) = 0,

has at least three positive solutions with ‖u‖∞ ≤ 20, for any λ ∈ (46, 94) and for each
µ ∈ (0, 1600−16.6λ

1174099770471.7 ). Indeed, it is enough to apply Theorem 3.4 by choosing

c1 =
1

20
, c2 = 20, d = 1, T = 10, p = 2,

T∑

k=1

qk = 14
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and

h1(k) =
1

10
ln
(k + 1

k

)
, h2(ξ) =

4 (sinh ξ)
3

cosh ξ

1 + (sinh ξ)
8 and g(k, ξ) = keξ

for all k ∈ [1, 10] and ξ ∈ R, taking into account that in this case, H2(c1)
c21

= 0.002,
H2(c2)
c22

= 0.004 and

1

3

2p

(T + 1)p−1(2 +
∑T
k=1 qk)

H2(d)

dp
= 0.008.

Finally, we prove Theorem 1.1 given in Introduction.

Proof of Theorem 1.1. From the condition

lim inf
ξ→0

F (ξ)

ξp
= 0,

there is a sequence {cn} ⊂ (0,+∞) such that limn→∞ cn = 0 and

lim
n→∞

max|ξ|≤cn F (ξ)

cpn
= 0.

Indeed, one has

lim
n→∞

max|ξ|≤cn F (ξ)

cpn
= lim
n→∞

F (ξcn)

ξpcn

ξpcn
cpn

= 0,

where F (ξcn) = max|ξ|≤cn F (ξ). Hence, there exists c > 0 such that

max|ξ|≤c F (ξ)

cp
< min

{
2p

(T + 1)p−1(2 +
∑T
k=1 qk)

F (d)

dp
;

2p

pλT (T + 1)p−1

}

and c < d. The conclusion follows by using Theorem 3.1.
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