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Abstract. We derive differential relations between the Dunkl spherical and solid means
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1. INTRODUCTION

During the last few years there is a growing interest in the study of Dunkl harmonic
functions, i.e., solutions to ∆κu = 0, where ∆κ is a second order differential-difference
operator invariant under the action of a discrete reflection group, see (2.1). The op-
erator ∆κ was introduced by Dunkl in [2, 3], in the context of the theory of orthogo-
nal polynomials in several variables. Afterwards the whole theory related to ∆κ was
elaborated including analogues of Fourier analysis, special functions connected with
root systems, algebraic approaches and an application to the solution of quantum
Calogero-Sutherland models (see [5] for an excellent survey). In particular, Mejjaoli
and Triméche proved in [12] that the operator ∆κ is hypoelliptic on Rn and that
smooth Dunkl harmonic functions on Rn can be characterized by the Dunkl spherical
mean value property. Furthermore, they derived a Pizzetti type formula for smooth
functions on Rn. Maslouhi and Yousffi solved in [10] the Dirichlet problem for ∆κ on
the unit ball B and derived a characterization of C2 Dunkl harmonic functions on B
by the Dunkl spherical mean value property. Recently, Hassine has obtained in [7] the
characterization without smoothness assumptions. Maslouhi and Daher proved in [11]
Weil’s lemma for ∆κ and gave a characterization of Dunkl harmonic functions in a
class of tempered distributions in terms of invariance under Dunkl convolution with
suitable kernels. The Pizzetti series associated with ∆κ was studied by Salem and
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Touahri in [15], they proved its convergence for a real analytic function and derived
some Liouville type results for Dunkl polyharmonic functions. Some other results
related to the Dunkl spherical mean value operator were also derived in [9, 14,16].

In this paper we first derive differential relations between the Dunkl spherical
and solid means of functions. Next, we use the relations to give a short proof of
an analogue of the Beckenbach-Reade theorem stating that equality of the Dunkl
spherical and solid means of a continuous function implies its Dunkl harmonicity.
Taking full advantage of the relations we also give simple inductive proofs of the
Dunkl solid and spherical mean-value properties for the Dunkl polyharmonic functions
and their converses in arbitrary dimension. The paper is a continuation of [8], where
analogous results were obtained for polyharmonic functions.

2. PRELIMINARIES

Recall that for a nonzero vector α ∈ Rn \ {0} the reflection with respect to the
orthogonal to the α hyperplane Hα is given by

σα(x) = x− 2〈α, x〉
‖α‖2 α, x ∈ Rn,

where 〈·, ·〉 is the euclidian scalar product on Rn and ‖·‖ the associated norm. A finite
set R of nonzero vectors is called a root system if R ∩ Rα = {±α} and σαR = R for
all α ∈ R. The reflections σα with α in a given root system R generate a finite group
W ⊂ O(n), called the reflection group associated with R. For a fixed β ∈ Rn\⋃α∈RHα

one can decompose R = R+ ∪ R− where R± = {α ∈ R : ±〈α, β〉 > 0}; vectors in
R+ are called positive roots. A function κ : R → R is called a multiplicity function
if it is invariant under the action of the associated reflection group W . Its index γ is
defined by

γ =
∑

α∈R+

κ(α).

Throughout the paper we shall assume that κ ≥ 0 and γ > 0.
The Dunkl operators Tj , j = 1, . . . , n, associated with a root system R and a

multiplicity function κ were introduced by C. Dunkl [3] as

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

κ(α )
f(x)− f(σα(x))

〈α, x〉 αj for f ∈ C1(Rn).

Clearly, Tjf is well defined for f ∈ C1(Ω) where Ω is a W -invariant open subset of
Rn and it reduces to ∂

∂xj
f if f is W -invariant. The Dunkl Laplacian ∆κ is defined as

a sum of squares of the operators Tj , j = 1, . . . , n, i.e.,

∆κf =

n∑

j=1

T 2
j f for f ∈ C2(Ω).
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A simple computation leads to

∆κf(x) = ∆f(x) +
∑

α∈R+

κ(α)

(
2〈∇f(x), α〉
〈α, x〉 − ‖α‖ f(x)− f(σα(x))

〈α, x〉2
)
. (2.1)

Here ∆ and ∇ denote the usual Laplacian and gradient, respectively.
The Dunkl intertwining operator Vκ acting on polynomials was defined in [4] by

TjVκf = Vκ
∂
∂xj

f for j = 1, . . . , n and Vκ1 = 1.

The operator Vκ extends to a topological isomorphism of C∞(Rn) onto itself [17].
In general there is no explicite description of Vκ, but Rösler has shown [13, Th. 1.2,
Cor. 5.3] that for any x ∈ Rn there exists a unique probability measure µx such that

Vκf(x) =

∫

Rn

f(y)dµx(y). (2.2)

Moreover, the support of µx is contained in ch(Wx) – the convex hull of the set
{gx : g ∈ W}, µrx(U) = µx(r−1U) and µgx(U) = µx(g−1U) for r > 0, g ∈ W and a
Borel set U ⊂ Rn. Note that by (2.2), Vκ can be extended to continuous functions and
|Vκ(f)(x)| ≤ supy∈ch(Wx) |f(y)|; the extension is a topological isomorphism of C(Rn).

The Dunkl translation operators τx, x ∈ Rn, are defined on C(Rn) by

τxf(y) = (Vκ)x(Vκ)y
[
V −1κ f(x+ y)

]
for y ∈ Rn.

A more suggestive notation f(x ∗κ y) := τxf(y) is also used. Note that τ0f = f and
τyf(x) = τxf(y) for x, y ∈ Rn.

3. THE DUNKL MEAN VALUE PROPERTY

The Poisson kernel for the Dunkl Laplacian ∆κ is defined in [6] by1)

Pκ(x, y) = Vκ

[
1− ‖x‖2

(1− 2〈x, ·〉+ ‖x‖)γ+n/2
]
(y) for ‖x‖ < 1, ‖y‖ ≤ 1.

The kernel Pκ(x, y) is non-negative, bounded by 1 and it has the reproducing property
for Dunkl harmonic functions on the unit ball B = B(0, 1). Furthermore it is used as
a tool to solve the Dirichlet problem for the Dunkl Laplacian. Namely it holds

Theorem 3.1 ([10, Theorem A, Prop. 2.1]). Let u be a continuous function on the
unit sphere S(0, 1). Set

Pκ[u](x) =
1

dκ

∫

S(0,1)

Pκ(x, y)u(y)ωκ(y)dS(y) for ‖x‖ < 1,

1) Pκ(x, y) = P (h2
κ; y, x) where P (h2

κ; ·, ·) is defined in [6, p. 190].
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where
dκ =

∫

S(0,1)

ωκ(y)dS(y) and ωκ(y) =
∏

α∈R+

|〈α, y〉|2κ(α).

Then Pκ[u] is ∆κ-harmonic on the unit ball B, extends continuously to B and
Pκ[u] = u on S(0, 1). Furthermore, Pκ[u] is the unique ∆κ-harmonic function on B
which extends continuously to u on S(0, 1).

Since Pκ(0, y) = 1 for ‖y‖ ≤ 1 for a function u continuous on B and Dunkl
harmonic in B we get

u(0) =
1

dκ

∫

S(0,1)

u(y)ωκ(y)dS(y).

More generally, if a function u is continuous on B and ∆κ-harmonic in B, then
for any x ∈ B and 0 < r < 1 − ‖x‖ the spherical mean value formula holds (see
[10, Theorem C])

u(x) =
1

dκ

∫

S(0,1)

τxu(ry)ωκ(y)dS(y) (3.1)

The converse statement was also stated ([10, Theorem C]) under the assumption that
u is a C2 function. Recently Hassine has proved it without that assumption.

Theorem 3.2 ([7, Theorem 3.1]). Let u be a bounded function on the closed unit
ball B. If for any x ∈ B and 0 < r < 1 − ‖x‖ the formula (3.1) holds, then u is
∆κ-harmonic in B.

4. RELATIONS BETWEEN THE DUNKL SPHERICAL AND SOLID MEANS

Let u be a smooth function on the ball B. For any x ∈ B and 0 < R < 1 − ‖x‖
we denote by ND(u; x,R) the Dunkl spherical integral mean of u over the sphere
S(x,R),

ND(u; x,R) =
1

dκ

∫

S(0,1)

τxu(Ry)ωκ(y)dS(y). (4.1)

It was proved in [14, Theorem 4.1] that the Dunkl spherical mean operator
u 7→ ND(u; x,R) can be represented in the form

ND(u; x,R) =

∫

Rn

u(y) dµκx,R(y),

where µκx,R is a probability measure with support in
⋃
g∈W {y ∈ Rn : ‖y − gx‖ ≤ R}.

Hence ND(u; x,R) is well defined for a continuous function u. Since ωκ is homogenous
of degree 2γ, we also have

ND(u; x,R) =
1

dκR2γ+n−1

∫

S(0,R)

τxu(z)ωκ(z)dS(z).
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Note that using the spherical coordinates by homogeneity of ωκ we get

∫

B(0,1)

ωκ(x) dx =

1∫

0

( ∫

S(0,1)

ωκ(y)dS(y)

)
t2γ+n−1dt =

dκ
2γ + n

.

So we can define the Dunkl solid integral mean of u over the ball B(x,R) by

MD(u; x,R) =
2γ + n

dκ

∫

B(0,1)

τxu(Ry)ωκ(y)dy

=
2γ + n

dκR2γ+n

∫

B(0,R)

τxu(z)ωκ(z)dz.

(4.2)

For the convenience of the reader recall the Green formula for the Dunkl Laplacian.

Theorem 4.1 (Green formula for ∆κ, [12, Theorem 4.11]). Let Ω be a bounded
W -invariant regular open set in Rn containing the origin and u ∈ C2(Ω). Then for
any closed ball B(0, R) ⊂ Ω it holds

∫

B(0,R)

∆κu(z)ωκ(z)dz =

∫

S(0,R)

∂u(z)

∂η
ωκ(z)dS(z), (4.3)

where ∂u
∂η denotes the external normal derivative of u.

The relations betweenMD(u; x,R) andND(u; x,R) are given in the following lemma.

Lemma 4.2. Let u be a continuous function on the ball B. Then for any x ∈ B and
0 < R < 1− ‖x‖ it holds

( R

2γ + n

∂

∂R
+ 1
)
MD(u; x,R) = ND(u; x,R). (4.4)

If we further assume that u has continuous derivatives up to second order, then

2γ + n

R

∂

∂R
ND(u; x,R) = MD(∆κu; x,R). (4.5)

Proof. By (4.2) using the spherical coordinates, homogeneity of ωκ and (4.1) we com-
pute

MD(u; x,R) =
2γ + n

dκR2γ+n

R∫

0

( ∫

S(0,s)

τxu(z)ωκ(z)dS(z)

)
ds

=
2γ + n

R2γ+n

R∫

0

ND(u;x, s) s2γ+n−1ds.
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Hence, by the Leibniz rule

∂

∂R
MD(u; x,R) =

2γ + n

R

(
ND(u; x,R)−MD(u; x,R)

)
,

which proves (4.4).
To show (4.5) we differentiate (4.1) under the integral sign to get

∂

∂R
ND(u; x,R) =

1

dκ

∫

S(0,1)

〈∇(τxu)(Ry), y〉ωκ(y)dS(y)

=
1

dκR2γ+n−1

∫

S(0,R)

〈∇(τxu)(z), zR 〉ωκ(z)dS(z).

Note that the external normal vector to S(0, R) at a point z ∈ S(0, R) is η = z
R and

〈∇(τxu), η〉 = ∂(τxu)
∂η . So applying the Green formula (4.3) we get

∂

∂R
ND(u; x,R) =

1

dκR2γ+n−1

∫

B(0,R)

∆κ(τxu)(z)ωκ(z)dz =
R

2γ + n
MD(∆κu; x,R),

since ∆κτxu(z) = τx∆κu(z), which implies (4.5).

By (4.4) and (4.5), we obtain the following corollary.

Corollary 4.3. Let u ∈ C2(B). Then for any x ∈ B and 0 < R < 1 − ‖x‖ it holds
that

MD(∆κu; x,R) =
( ∂2

∂R2 +
2γ + n+ 1

R

∂

∂R

)
MD(u; x,R) (4.6)

and

ND(∆κu; x,R) =
( ∂2

∂R2 +
2γ + n− 1

R

∂

∂R

)
ND(u; x,R). (4.7)

Let us point out that formula (4.7) was established in [12, Proposition 4.16].
By the first part of Lemma 4.2 we get an analogue of the Beckenbach-Reade

theorem ([1]) for the Dunkl harmonic functions.

Corollary 4.4. Let u ∈ C2(B). If for any x ∈ B and 0 < R < 1− ‖x‖ it holds

MD(u; x,R) = ND(u; x,R), (4.8)

then u is Dunkl harmonic on B.

Proof. The assumption (4.8) and (4.4) imply that ∂
∂RM

D(u; x,R) = 0. So for any
x ∈ B, MD(u; x,R) is a constant equal to u(x) and the converse to the mean-value
property for Dunkl harmonic functions ([10, Theorem C]) implies that u is Dunkl
harmonic on B.
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5. MEAN-VALUE PROPERTIES FOR DUNKL POLYHARMONIC FUNCTIONS

Let m ∈ N. A function u ∈ C2m(Ω) defined on a W -invariant open set Ω ⊂ Rn is
called an m-Dunkl harmonic if it is a solution of the m-times iteration of the Dunkl
operator, i.e., ∆m

κ u = 0. One of the most trivial examples is given by an even power
of the Euclidean distance from the origin.

Example 5.1. Let u(x) = r2m(x) with m ∈ N0, where r(x) =
(∑n

i=1 x
2
i

)1/2 is the
radius function. Since u is W -invariant ∆κu reduces to

∆κu(x) = ∆u(x) + 2
∑

α∈R+

κ(α)
〈∇u(x), α〉
〈α, x〉 .

Since ∆u = 2m(n + 2m − 2) r2m−2 and ∇u = 2mx · r2m−2, we get ∆κu = 2m(n +
2m+2γ−2) r2m−2. So u is (m+1)-Dunkl harmonic, ∆iu(0) = 0 for i = 0, 1, . . . ,m−1
and

∆m
κ u(0) = 2m(2m− 2) · · · 2× (n+ 2m+ 2γ − 2) · · · (n+ 2γ) r0(0)

= 4m
(
γ +

n

2

)
m
m!,

where for a ∈ R, (a)0 = 1 and (a)i = a(a + 1) · · · (a + i − 1) for i ∈ N. On the other
hand using the spherical coordinates and the fact that ω is homogeneous of degree 2γ
we get

MD(u; 0, R) =
2γ + n

dκR2γ+n

R∫

0

∫

S(0,s)

‖y‖2m ωκ(y)dS(y)ds

=
2γ + n

dκR2γ+n

R∫

0

dκs
2m+2γ+n−1 ds =

2γ + n

2m+ 2γ + n
R2m.

(5.1)

Hence
MD(u; 0, R) =

∆m
κ u(0)

4m
(
γ + n

2 + 1
)
m
m!
·R2m.

The above example suggests a form of an expansion of M(u; x,R) for a polyhar-
monic function u into powers of the radius R of the ball B(x,R).

Theorem 5.2 (Mean-value property for solid means, [16, formula (1.1)]). Let m ∈ N0.
If u ∈ C2m+2(B) and ∆m+1

κ u = 0 in B, then for any x ∈ B and 0 < R < 1− ‖x‖ it
holds

MD(u; x,R) =
m∑

k=0

∆k
κu(x)

4k
(
γ + n

2 + 1
)
k
k!
·R2k. (5.2)

Proof. It was pointed out in [16, p. 120] that the mean value formula (5.2) for solid
means can be derived from an analogous one for spherical means by integration. Here
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we give a proof based on a simple inductive arguments. Clearly, by the mean-value
property for the Dunkl harmonic functions, which follows from [10, Theorem C], the
formula (5.2) holds for m = 0. Inductively assume that Theorem 5.2 holds for a fixed
m ∈ N0. Let v ∈ C2m+4(B) and ∆m+2

κ v = 0. Then u = ∆κv ∈ C2m+2(B) satisfies
∆m+1
κ u = 0 and so (5.2) holds. But, by (4.6),

2γ + n

R

∂

∂R

( R

2γ + n

∂

∂R
+ 1
)
MD(v; x,R) = MD(∆κv; x,R) = MD(u; x,R).

So after one integration

( R

2γ + n

∂

∂R
+ 1
)
MD(v; x,R) =

m∑

k=0

∆k
κu(x)

4k(2γ + n)
(
γ + n

2 + 1
)
k
k!
· R

2k+2

2k + 2
+ c. (5.3)

Note that the general solution of
(

R
2γ + n

∂
∂R

+ 1
)
MD(v; x,R) = 0 is CR−2γ−n and

a particular solution of
( R

2γ + n

∂

∂R
+ 1
)
MD(v; x,R) =

∆k
κu(x)

4k(2γ + n)
(
γ + n

2 + 1
)
k
k!
· R

2k+2

2k + 2

is AkR2k+2, where

Ak

( 2k + 2

2γ + n
+ 1
)

= ∆k
κu(x) ·

[
4k(2γ + n)(2k + 2)

(
γ +

n

2
+ 1
)
k
k!
]−1

.

So

Ak =
∆k
κu(x)

4k(2k + 2)(2γ + n+ 2k + 2)
(
γ + n

2 + 1
)
k
k!

=
∆k
κu(x)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
.

Hence, the general solution of (5.3) is

MD(v; x,R) = CR−2γ−n +
m∑

k=0

∆k
κu(x)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
·R2k+2 + c.

Finally, note that limR→0M
D(v; x,R) = v(x) and limR→0R

2γ+nMD(v; x,R) = 0.
So c = v(x), C = 0 and

MD(v; x,R) = v(x) +
m∑

k=0

∆k+1
κ v(x)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
·R2k+2

=
m+1∑

k=0

∆k
κv(x)

4k
(
γ + n

2 + 1
)
k
k!
·R2k

which proves Theorem 5.2
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By Theorem 5.2 and the relation (4.4), we get the following corollary.

Corollary 5.3 (Mean-value property for spherical means, [15, Proposition 3.1] and
[12, Theorem 4.17]). Under the assumptions of Theorem 5.2 for any x ∈ B and
0 < R < 1− ‖x‖ it holds

ND(u; x,R) =
m∑

k=0

∆k
κu(x)

4k
(
γ + n

2

)
k
k!
·R2k. (5.4)

Theorem 5.4 (Converse to the mean value property for spherical means). Let
m ∈ N0. If u ∈ C2m(B) and the formula (5.4) holds for any x ∈ B and 0 < R <
1− ‖x‖, then ∆m+1

κ u = 0 in B.

Proof. Clearly, if m = 0, Theorem 5.4 follows from Theorem 3.2. Fix p ∈ N and
assume that Theorem 5.4 holds for m < p. We shall prove that it holds for m = p. To
this end take v ∈ C2p(B) and assume that for any x ∈ B and R small enough (5.4)
holds with m = p and u = v. Set u = ∆κv. Then u ∈ C2p−2(B). By (4.5) and (5.4)
with m = p and u = v, we get

MD(u; x,R) =

p∑

k=1

2k(2γ + n)∆k
κv(x)

4k
(
γ + n

2

)
k
k!

·R2k−2 =

p−1∑

k=0

∆k
κu(x)

4k
(
γ + n

2 + 1
)
k
k!
·R2k.

So for any x ∈ B and R small enough, by (4.4) we derive

ND(u; x,R) =

p−1∑

k=0

( 2k

2γ + n
+ 1
) ∆k

κu(x)

4k
(
γ + n

2 + 1
)
k
k!
·R2k =

p−1∑

k=0

∆k
κu(x)

4k
(
γ + n

2

)
k
k!
·R2k.

Hence, by the inductive assumption, ∆p
κu = ∆p+1

κ v = 0.

By Theorem 5.4 and the relation (4.4), we get the following corollary.

Corollary 5.5 (Converse to the mean value property for solid means). Under the
assumptions of Theorem 5.2 if u ∈ C2m(B) and for all x ∈ B and R small enough
formula (5.2) holds, then ∆m+1

κ u = 0 in B.
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