ON MEAN-VALUE PROPERTIES FOR THE DUNKL POLYHARMONIC FUNCTIONS

Grzegorz Łysik

Communicated by Semyon B. Yakubovich

Abstract. We derive differential relations between the Dunkl spherical and solid means of continuous functions. Next we use the relations to give inductive proofs of mean-value properties for the Dunkl polyharmonic functions and their converses.

Keywords: Dunkl Laplacian, Dunkl polyharmonic functions, mean-values, Pizzetti formula.

Mathematics Subject Classification: 31A30, 31B30, 33C52.

1. INTRODUCTION

During the last few years there is a growing interest in the study of Dunkl harmonic functions, i.e., solutions to $\Delta_{\kappa}u=0$, where Δ_{κ} is a second order differential-difference operator invariant under the action of a discrete reflection group, see (2.1). The operator Δ_{κ} was introduced by Dunkl in [2,3], in the context of the theory of orthogonal polynomials in several variables. Afterwards the whole theory related to Δ_{κ} was elaborated including analogues of Fourier analysis, special functions connected with root systems, algebraic approaches and an application to the solution of quantum Calogero-Sutherland models (see [5] for an excellent survey). In particular, Mejjaoli and Triméche proved in [12] that the operator Δ_{κ} is hypoelliptic on \mathbb{R}^n and that smooth Dunkl harmonic functions on \mathbb{R}^n can be characterized by the Dunkl spherical mean value property. Furthermore, they derived a Pizzetti type formula for smooth functions on \mathbb{R}^n . Maslouhi and Yousffi solved in [10] the Dirichlet problem for Δ_{κ} on the unit ball B and derived a characterization of C^2 Dunkl harmonic functions on B by the Dunkl spherical mean value property. Recently, Hassine has obtained in [7] the characterization without smoothness assumptions. Maslouhi and Daher proved in [11] Weil's lemma for Δ_{κ} and gave a characterization of Dunkl harmonic functions in a class of tempered distributions in terms of invariance under Dunkl convolution with suitable kernels. The Pizzetti series associated with Δ_{κ} was studied by Salem and

Touahri in [15], they proved its convergence for a real analytic function and derived some Liouville type results for Dunkl polyharmonic functions. Some other results related to the Dunkl spherical mean value operator were also derived in [9,14,16].

In this paper we first derive differential relations between the Dunkl spherical and solid means of functions. Next, we use the relations to give a short proof of an analogue of the Beckenbach-Reade theorem stating that equality of the Dunkl spherical and solid means of a continuous function implies its Dunkl harmonicity. Taking full advantage of the relations we also give simple inductive proofs of the Dunkl solid and spherical mean-value properties for the Dunkl polyharmonic functions and their converses in arbitrary dimension. The paper is a continuation of [8], where analogous results were obtained for polyharmonic functions.

2. PRELIMINARIES

Recall that for a nonzero vector $\alpha \in \mathbb{R}^n \setminus \{0\}$ the reflection with respect to the orthogonal to the α hyperplane H_{α} is given by

$$\sigma_{\alpha}(x) = x - \frac{2\langle \alpha, x \rangle}{\|\alpha\|^2} \alpha, \quad x \in \mathbb{R}^n,$$

where $\langle \cdot, \cdot \rangle$ is the euclidian scalar product on \mathbb{R}^n and $\| \cdot \|$ the associated norm. A finite set R of nonzero vectors is called a root system if $R \cap \mathbb{R}\alpha = \{\pm \alpha\}$ and $\sigma_{\alpha}R = R$ for all $\alpha \in R$. The reflections σ_{α} with α in a given root system R generate a finite group $W \subset O(n)$, called the reflection group associated with R. For a fixed $\beta \in \mathbb{R}^n \setminus \bigcup_{\alpha \in R} H_{\alpha}$ one can decompose $R = R_+ \cup R_-$ where $R_{\pm} = \{\alpha \in R : \pm \langle \alpha, \beta \rangle > 0\}$; vectors in R_+ are called positive roots. A function $\kappa : R \to \mathbb{R}$ is called a multiplicity function if it is invariant under the action of the associated reflection group W. Its index γ is defined by

$$\gamma = \sum_{\alpha \in R_+} \kappa(\alpha).$$

Throughout the paper we shall assume that $\kappa \geq 0$ and $\gamma > 0$.

The Dunkl operators T_j , $j=1,\ldots,n$, associated with a root system R and a multiplicity function κ were introduced by C. Dunkl [3] as

$$T_j f(x) = \frac{\partial}{\partial x_j} f(x) + \sum_{\alpha \in R_+} \kappa(\alpha) \frac{f(x) - f(\sigma_\alpha(x))}{\langle \alpha, x \rangle} \alpha_j \quad \text{for} \quad f \in C^1(\mathbb{R}^n).$$

Clearly, $T_j f$ is well defined for $f \in C^1(\Omega)$ where Ω is a W-invariant open subset of \mathbb{R}^n and it reduces to $\frac{\partial}{\partial x_j} f$ if f is W-invariant. The Dunkl Laplacian Δ_{κ} is defined as a sum of squares of the operators T_j , $j = 1, \ldots, n$, i.e.,

$$\Delta_{\kappa} f = \sum_{j=1}^{n} T_j^2 f$$
 for $f \in C^2(\Omega)$.

A simple computation leads to

$$\Delta_{\kappa} f(x) = \Delta f(x) + \sum_{\alpha \in R_{+}} \kappa(\alpha) \left(\frac{2\langle \nabla f(x), \alpha \rangle}{\langle \alpha, x \rangle} - \|\alpha\| \frac{f(x) - f(\sigma_{\alpha}(x))}{\langle \alpha, x \rangle^{2}} \right). \tag{2.1}$$

Here Δ and ∇ denote the usual Laplacian and gradient, respectively.

The Dunkl intertwining operator V_{κ} acting on polynomials was defined in [4] by

$$T_j V_{\kappa} f = V_{\kappa} \frac{\partial}{\partial x_j} f$$
 for $j = 1, \dots, n$ and $V_{\kappa} 1 = 1$.

The operator V_{κ} extends to a topological isomorphism of $C^{\infty}(\mathbb{R}^n)$ onto itself [17]. In general there is no explicite description of V_{κ} , but Rösler has shown [13, Th. 1.2, Cor. 5.3] that for any $x \in \mathbb{R}^n$ there exists a unique probability measure μ_x such that

$$V_{\kappa}f(x) = \int_{\mathbb{P}^n} f(y)d\mu_x(y). \tag{2.2}$$

Moreover, the support of μ_x is contained in $\operatorname{ch}(Wx)$ – the convex hull of the set $\{gx:g\in W\}$, $\mu_{rx}(U)=\mu_x(r^{-1}U)$ and $\mu_{gx}(U)=\mu_x(g^{-1}U)$ for r>0, $g\in W$ and a Borel set $U\subset\mathbb{R}^n$. Note that by (2.2), V_{κ} can be extended to continuous functions and $|V_{\kappa}(f)(x)|\leq \sup_{y\in\operatorname{ch}(Wx)}|f(y)|$; the extension is a topological isomorphism of $C(\mathbb{R}^n)$. The Dunkl translation operators τ_x , $x\in\mathbb{R}^n$, are defined on $C(\mathbb{R}^n)$ by

$$\tau_x f(y) = (V_{\kappa})_x (V_{\kappa})_y [V_{\kappa}^{-1} f(x+y)] \quad \text{for} \quad y \in \mathbb{R}^n.$$

A more suggestive notation $f(x *_{\kappa} y) := \tau_x f(y)$ is also used. Note that $\tau_0 f = f$ and $\tau_y f(x) = \tau_x f(y)$ for $x, y \in \mathbb{R}^n$.

3. THE DUNKL MEAN VALUE PROPERTY

The Poisson kernel for the Dunkl Laplacian Δ_{κ} is defined in [6] by¹⁾

$$P_{\kappa}(x,y) = V_{\kappa} \left[\frac{1 - \|x\|^2}{(1 - 2\langle x, \cdot \rangle + \|x\|)^{\gamma + n/2}} \right] (y) \quad \text{for} \quad \|x\| < 1, \ \|y\| \le 1.$$

The kernel $P_{\kappa}(x,y)$ is non-negative, bounded by 1 and it has the reproducing property for Dunkl harmonic functions on the unit ball B = B(0,1). Furthermore it is used as a tool to solve the Dirichlet problem for the Dunkl Laplacian. Namely it holds

Theorem 3.1 ([10, Theorem A, Prop. 2.1]). Let u be a continuous function on the unit sphere S(0,1). Set

$$P_{\kappa}[u](x) = \frac{1}{d_{\kappa}} \int_{S(0,1)} P_{\kappa}(x,y)u(y) \,\omega_{\kappa}(y)dS(y) \quad for \quad ||x|| < 1,$$

where

$$d_{\kappa} = \int_{S(0,1)} \omega_{\kappa}(y) dS(y) \quad and \quad \omega_{\kappa}(y) = \prod_{\alpha \in R_{+}} |\langle \alpha, y \rangle|^{2\kappa(\alpha)}.$$

Then $P_{\kappa}[u]$ is Δ_{κ} -harmonic on the unit ball B, extends continuously to \overline{B} and $P_{\kappa}[u] = u$ on S(0,1). Furthermore, $P_{\kappa}[u]$ is the unique Δ_{κ} -harmonic function on B which extends continuously to u on S(0,1).

Since $P_{\kappa}(0,y)=1$ for $||y||\leq 1$ for a function u continuous on \overline{B} and Dunkl harmonic in B we get

$$u(0) = \frac{1}{d_{\kappa}} \int_{S(0,1)} u(y) \,\omega_{\kappa}(y) dS(y).$$

More generally, if a function u is continuous on \overline{B} and Δ_{κ} -harmonic in B, then for any $x \in B$ and 0 < r < 1 - ||x|| the spherical mean value formula holds (see [10, Theorem C])

$$u(x) = \frac{1}{d_{\kappa}} \int_{S(0,1)} \tau_x u(ry) \,\omega_{\kappa}(y) dS(y) \tag{3.1}$$

The converse statement was also stated ([10, Theorem C]) under the assumption that u is a C^2 function. Recently Hassine has proved it without that assumption.

Theorem 3.2 ([7, Theorem 3.1]). Let u be a bounded function on the closed unit ball \overline{B} . If for any $x \in B$ and 0 < r < 1 - ||x|| the formula (3.1) holds, then u is Δ_{κ} -harmonic in B.

4. RELATIONS BETWEEN THE DUNKL SPHERICAL AND SOLID MEANS

Let u be a smooth function on the ball \overline{B} . For any $x \in B$ and 0 < R < 1 - ||x|| we denote by $N^D(u; x, R)$ the Dunkl spherical integral mean of u over the sphere S(x, R),

$$N^{D}(u; x, R) = \frac{1}{d_{\kappa}} \int_{S(0,1)} \tau_{x} u(Ry) \,\omega_{\kappa}(y) dS(y). \tag{4.1}$$

It was proved in [14, Theorem 4.1] that the Dunkl spherical mean operator $u \mapsto N^D(u; x, R)$ can be represented in the form

$$N^{D}(u; x, R) = \int_{\mathbb{R}^{n}} u(y) d\mu_{x,R}^{\kappa}(y),$$

where $\mu_{x,R}^{\kappa}$ is a probability measure with support in $\bigcup_{g\in W} \{y\in \mathbb{R}^n : ||y-gx|| \leq R\}$. Hence $N^D(u; x, R)$ is well defined for a continuous function u. Since ω_{κ} is homogeneous of degree 2γ , we also have

$$N^D(u;\,x,R) = \frac{1}{d_\kappa R^{2\gamma+n-1}} \int\limits_{S(0,R)} \tau_x u(z)\,\omega_\kappa(z) dS(z).$$

Note that using the spherical coordinates by homogeneity of ω_{κ} we get

$$\int_{B(0,1)} \omega_{\kappa}(x) dx = \int_{0}^{1} \left(\int_{S(0,1)} \omega_{\kappa}(y) dS(y) \right) t^{2\gamma + n - 1} dt = \frac{d_{\kappa}}{2\gamma + n}.$$

So we can define the Dunkl solid integral mean of u over the ball $\overline{B}(x,R)$ by

$$M^{D}(u; x, R) = \frac{2\gamma + n}{d_{\kappa}} \int_{B(0,1)} \tau_{x} u(Ry) \,\omega_{\kappa}(y) dy$$

$$= \frac{2\gamma + n}{d_{\kappa} R^{2\gamma + n}} \int_{B(0,R)} \tau_{x} u(z) \,\omega_{\kappa}(z) dz.$$
(4.2)

For the convenience of the reader recall the Green formula for the Dunkl Laplacian.

Theorem 4.1 (Green formula for Δ_{κ} , [12, Theorem 4.11]). Let Ω be a bounded W-invariant regular open set in \mathbb{R}^n containing the origin and $u \in C^2(\Omega)$. Then for any closed ball $\overline{B}(0,R) \subset \Omega$ it holds

$$\int_{B(0,R)} \Delta_{\kappa} u(z) \,\omega_{\kappa}(z) dz = \int_{S(0,R)} \frac{\partial u(z)}{\partial \eta} \,\omega_{\kappa}(z) dS(z), \tag{4.3}$$

where $\frac{\partial u}{\partial n}$ denotes the external normal derivative of u.

The relations between $M^D(u; x, R)$ and $N^D(u; x, R)$ are given in the following lemma.

Lemma 4.2. Let u be a continuous function on the ball \overline{B} . Then for any $x \in B$ and 0 < R < 1 - ||x|| it holds

$$\left(\frac{R}{2\gamma + n}\frac{\partial}{\partial R} + 1\right)M^{D}(u; x, R) = N^{D}(u; x, R). \tag{4.4}$$

If we further assume that u has continuous derivatives up to second order, then

$$\frac{2\gamma + n}{R} \frac{\partial}{\partial R} N^D(u; x, R) = M^D(\Delta_{\kappa} u; x, R). \tag{4.5}$$

Proof. By (4.2) using the spherical coordinates, homogeneity of ω_{κ} and (4.1) we compute

$$M^{D}(u; x, R) = \frac{2\gamma + n}{d_{\kappa}R^{2\gamma + n}} \int_{0}^{R} \left(\int_{S(0,s)} \tau_{x} u(z) \,\omega_{\kappa}(z) dS(z) \right) ds$$
$$= \frac{2\gamma + n}{R^{2\gamma + n}} \int_{0}^{R} N^{D}(u; x, s) \, s^{2\gamma + n - 1} ds.$$

Hence, by the Leibniz rule

$$\frac{\partial}{\partial R}M^D(u; x, R) = \frac{2\gamma + n}{R} \Big(N^D(u; x, R) - M^D(u; x, R) \Big),$$

which proves (4.4).

To show (4.5) we differentiate (4.1) under the integral sign to get

$$\begin{split} \frac{\partial}{\partial R} N^D(u; \, x, R) &= \frac{1}{d_\kappa} \int\limits_{S(0,1)} \left\langle \nabla(\tau_x u)(Ry), y \right\rangle \omega_\kappa(y) dS(y) \\ &= \frac{1}{d_\kappa R^{2\gamma + n - 1}} \int\limits_{S(0,R)} \left\langle \nabla(\tau_x u)(z), \frac{z}{R} \right\rangle \omega_\kappa(z) dS(z). \end{split}$$

Note that the external normal vector to S(0,R) at a point $z \in S(0,R)$ is $\eta = \frac{z}{R}$ and $\langle \nabla(\tau_x u), \eta \rangle = \frac{\partial(\tau_x u)}{\partial \eta}$. So applying the Green formula (4.3) we get

$$\frac{\partial}{\partial R} N^D(u; x, R) = \frac{1}{d_{\kappa} R^{2\gamma + n - 1}} \int_{B(0, R)} \Delta_{\kappa}(\tau_x u)(z) \, \omega_{\kappa}(z) dz = \frac{R}{2\gamma + n} M^D(\Delta_{\kappa} u; x, R),$$

since
$$\Delta_{\kappa} \tau_x u(z) = \tau_x \Delta_{\kappa} u(z)$$
, which implies (4.5).

By (4.4) and (4.5), we obtain the following corollary.

Corollary 4.3. Let $u \in C^2(B)$. Then for any $x \in B$ and 0 < R < 1 - ||x|| it holds that

$$M^{D}(\Delta_{\kappa}u; x, R) = \left(\frac{\partial^{2}}{\partial R^{2}} + \frac{2\gamma + n + 1}{R} \frac{\partial}{\partial R}\right) M^{D}(u; x, R)$$
(4.6)

and

$$N^{D}(\Delta_{\kappa}u; x, R) = \left(\frac{\partial^{2}}{\partial R^{2}} + \frac{2\gamma + n - 1}{R} \frac{\partial}{\partial R}\right) N^{D}(u; x, R). \tag{4.7}$$

Let us point out that formula (4.7) was established in [12, Proposition 4.16].

By the first part of Lemma 4.2 we get an analogue of the Beckenbach-Reade theorem ([1]) for the Dunkl harmonic functions.

Corollary 4.4. Let $u \in C^2(B)$. If for any $x \in B$ and 0 < R < 1 - ||x|| it holds

$$M^{D}(u; x, R) = N^{D}(u; x, R),$$
 (4.8)

then u is Dunkl harmonic on B.

Proof. The assumption (4.8) and (4.4) imply that $\frac{\partial}{\partial R}M^D(u; x, R) = 0$. So for any $x \in B$, $M^D(u; x, R)$ is a constant equal to u(x) and the converse to the mean-value property for Dunkl harmonic functions ([10, Theorem C]) implies that u is Dunkl harmonic on B.

5. MEAN-VALUE PROPERTIES FOR DUNKL POLYHARMONIC FUNCTIONS

Let $m \in \mathbb{N}$. A function $u \in C^{2m}(\Omega)$ defined on a W-invariant open set $\Omega \subset \mathbb{R}^n$ is called an m-Dunkl harmonic if it is a solution of the m-times iteration of the Dunkl operator, i.e., $\Delta_{\kappa}^m u = 0$. One of the most trivial examples is given by an even power of the Euclidean distance from the origin.

Example 5.1. Let $u(x) = r^{2m}(x)$ with $m \in \mathbb{N}_0$, where $r(x) = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$ is the radius function. Since u is W-invariant $\Delta_{\kappa} u$ reduces to

$$\Delta_{\kappa} u(x) = \Delta u(x) + 2 \sum_{\alpha \in R_{+}} \kappa(\alpha) \frac{\langle \nabla u(x), \alpha \rangle}{\langle \alpha, x \rangle}.$$

Since $\Delta u = 2m(n+2m-2)\,r^{2m-2}$ and $\nabla u = 2m\,x\cdot r^{2m-2}$, we get $\Delta_{\kappa}u = 2m(n+2m+2\gamma-2)\,r^{2m-2}$. So u is (m+1)-Dunkl harmonic, $\Delta^i u(0) = 0$ for $i = 0, 1, \ldots, m-1$ and

$$\Delta_{\kappa}^{m} u(0) = 2m(2m-2)\cdots 2 \times (n+2m+2\gamma-2)\cdots (n+2\gamma) r^{0}(0)$$

= $4^{m} \left(\gamma + \frac{n}{2}\right)_{m} m!,$

where for $a \in \mathbb{R}$, $(a)_0 = 1$ and $(a)_i = a(a+1)\cdots(a+i-1)$ for $i \in \mathbb{N}$. On the other hand using the spherical coordinates and the fact that ω is homogeneous of degree 2γ we get

$$M^{D}(u; 0, R) = \frac{2\gamma + n}{d_{\kappa}R^{2\gamma + n}} \int_{0}^{R} \int_{S(0,s)} \|y\|^{2m} \omega_{\kappa}(y) dS(y) ds$$

$$= \frac{2\gamma + n}{d_{\kappa}R^{2\gamma + n}} \int_{0}^{R} d_{\kappa}s^{2m + 2\gamma + n - 1} ds = \frac{2\gamma + n}{2m + 2\gamma + n} R^{2m}.$$
(5.1)

Hence

$$M^{D}(u; 0, R) = \frac{\Delta_{\kappa}^{m} u(0)}{4^{m} \left(\gamma + \frac{n}{2} + 1\right)_{m} m!} \cdot R^{2m}.$$

The above example suggests a form of an expansion of M(u; x, R) for a polyharmonic function u into powers of the radius R of the ball B(x, R).

Theorem 5.2 (Mean-value property for solid means, [16, formula (1.1)]). Let $m \in \mathbb{N}_0$. If $u \in C^{2m+2}(B)$ and $\Delta_{\kappa}^{m+1}u = 0$ in B, then for any $x \in B$ and 0 < R < 1 - ||x|| it holds

$$M^{D}(u; x, R) = \sum_{k=0}^{m} \frac{\Delta_{k}^{k} u(x)}{4^{k} \left(\gamma + \frac{n}{2} + 1\right)_{k} k!} \cdot R^{2k}.$$
 (5.2)

Proof. It was pointed out in [16, p. 120] that the mean value formula (5.2) for solid means can be derived from an analogous one for spherical means by integration. Here

we give a proof based on a simple inductive arguments. Clearly, by the mean-value property for the Dunkl harmonic functions, which follows from [10, Theorem C], the formula (5.2) holds for m=0. Inductively assume that Theorem 5.2 holds for a fixed $m \in \mathbb{N}_0$. Let $v \in C^{2m+4}(B)$ and $\Delta_{\kappa}^{m+2}v = 0$. Then $u = \Delta_{\kappa}v \in C^{2m+2}(B)$ satisfies $\Delta_{\kappa}^{m+1}u = 0$ and so (5.2) holds. But, by (4.6),

$$\frac{2\gamma + n}{R} \frac{\partial}{\partial R} \left(\frac{R}{2\gamma + n} \frac{\partial}{\partial R} + 1 \right) M^D(v; x, R) = M^D(\Delta_{\kappa} v; x, R) = M^D(u; x, R).$$

So after one integration

$$\left(\frac{R}{2\gamma + n}\frac{\partial}{\partial R} + 1\right)M^{D}(v; x, R) = \sum_{k=0}^{m} \frac{\Delta_{\kappa}^{k} u(x)}{4^{k}(2\gamma + n)\left(\gamma + \frac{n}{2} + 1\right)_{k} k!} \cdot \frac{R^{2k+2}}{2k+2} + c. \quad (5.3)$$

Note that the general solution of $\left(\frac{R}{2\gamma+n}\frac{\partial}{\partial R}+1\right)M^D(v;x,R)=0$ is $CR^{-2\gamma-n}$ and a particular solution of

$$\Big(\frac{R}{2\gamma+n}\frac{\partial}{\partial R}+1\Big)M^D(v;\,x,R)=\frac{\Delta_{\kappa}^k u(x)}{4^k(2\gamma+n)\big(\gamma+\frac{n}{2}+1\big)_{\iota}k!}\cdot\frac{R^{2k+2}}{2k+2}$$

is $A_k R^{2k+2}$, where

$$A_k \left(\frac{2k+2}{2\gamma + n} + 1 \right) = \Delta_{\kappa}^k u(x) \cdot \left[4^k (2\gamma + n)(2k+2) \left(\gamma + \frac{n}{2} + 1 \right)_k k! \right]^{-1}.$$

So

$$\begin{split} A_k &= \frac{\Delta_{\kappa}^k u(x)}{4^k (2k+2)(2\gamma+n+2k+2) \left(\gamma+\frac{n}{2}+1\right)_k k!} \\ &= \frac{\Delta_{\kappa}^k u(x)}{4^{k+1} \left(\gamma+\frac{n}{2}+1\right)_{k+1} (k+1)!}. \end{split}$$

Hence, the general solution of (5.3) is

$$M^{D}(v; x, R) = CR^{-2\gamma - n} + \sum_{k=0}^{m} \frac{\Delta_{\kappa}^{k} u(x)}{4^{k+1} \left(\gamma + \frac{n}{2} + 1\right)_{k+1} (k+1)!} \cdot R^{2k+2} + c.$$

Finally, note that $\lim_{R\to 0}M^D(v;x,R)=v(x)$ and $\lim_{R\to 0}R^{2\gamma+n}M^D(v;x,R)=0$. So $c=v(x),\,C=0$ and

$$\begin{split} M^D(v;\,x,R) &= v(x) + \sum_{k=0}^m \frac{\Delta_\kappa^{k+1} v(x)}{4^{k+1} \left(\gamma + \frac{n}{2} + 1\right)_{k+1} (k+1)!} \cdot R^{2k+2} \\ &= \sum_{k=0}^{m+1} \frac{\Delta_\kappa^k v(x)}{4^k \left(\gamma + \frac{n}{2} + 1\right)_k k!} \cdot R^{2k} \end{split}$$

which proves Theorem 5.2

By Theorem 5.2 and the relation (4.4), we get the following corollary.

Corollary 5.3 (Mean-value property for spherical means, [15, Proposition 3.1] and [12, Theorem 4.17]). Under the assumptions of Theorem 5.2 for any $x \in B$ and 0 < R < 1 - ||x|| it holds

$$N^{D}(u; x, R) = \sum_{k=0}^{m} \frac{\Delta_{\kappa}^{k} u(x)}{4^{k} \left(\gamma + \frac{n}{2}\right)_{k} k!} \cdot R^{2k}.$$
 (5.4)

Theorem 5.4 (Converse to the mean value property for spherical means). Let $m \in \mathbb{N}_0$. If $u \in C^{2m}(B)$ and the formula (5.4) holds for any $x \in B$ and 0 < R < 1 - ||x||, then $\Delta_{\kappa}^{m+1}u = 0$ in B.

Proof. Clearly, if m=0, Theorem 5.4 follows from Theorem 3.2. Fix $p\in\mathbb{N}$ and assume that Theorem 5.4 holds for m< p. We shall prove that it holds for m=p. To this end take $v\in C^{2p}(B)$ and assume that for any $x\in B$ and R small enough (5.4) holds with m=p and u=v. Set $u=\Delta_{\kappa}v$. Then $u\in C^{2p-2}(B)$. By (4.5) and (5.4) with m=p and u=v, we get

$$M^{D}(u; x, R) = \sum_{k=1}^{p} \frac{2k(2\gamma + n)\Delta_{\kappa}^{k}v(x)}{4^{k}(\gamma + \frac{n}{2})_{k}k!} \cdot R^{2k-2} = \sum_{k=0}^{p-1} \frac{\Delta_{\kappa}^{k}u(x)}{4^{k}(\gamma + \frac{n}{2} + 1)_{k}k!} \cdot R^{2k}.$$

So for any $x \in B$ and R small enough, by (4.4) we derive

$$N^D(u;\,x,R) = \sum_{k=0}^{p-1} \Big(\frac{2k}{2\gamma+n}+1\Big) \frac{\Delta_{\kappa}^k u(x)}{4^k \left(\gamma+\frac{n}{2}+1\right)_k k!} \cdot R^{2k} = \sum_{k=0}^{p-1} \frac{\Delta_{\kappa}^k u(x)}{4^k \left(\gamma+\frac{n}{2}\right)_k k!} \cdot R^{2k}.$$

Hence, by the inductive assumption, $\Delta_{\kappa}^{p} u = \Delta_{\kappa}^{p+1} v = 0$.

By Theorem 5.4 and the relation (4.4), we get the following corollary.

Corollary 5.5 (Converse to the mean value property for solid means). Under the assumptions of Theorem 5.2 if $u \in C^{2m}(B)$ and for all $x \in B$ and R small enough formula (5.2) holds, then $\Delta_{\kappa}^{m+1}u = 0$ in B.

REFERENCES

- [1] E.F. Beckenbach, M. Reade, *Mean values and harmonic polynomials*, Trans. Amer. Math. Soc. **51** (1945), 240–245.
- [2] C.F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), 33–60.
- [3] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. **311** (1989), 167–183.
- [4] C.F. Dunkl, Operators commuting with Coxeter group action on polynomials, [in:] Invariant Theory and Tableaux, IMA Vol. Math. Appl. 19, Springer-Verlag, 1990, 107–117.

[5] C.F. Dunkl, Reflection groups in analysis and applications, Japan J. Math. 3 (2008), 215–246.

- [6] C.F. Dunkl, Y. Xu, Ortogonal Polynomials of Several Variables, Cambridge Univ. Press, 2001.
- K. Hassine, Mean value property associated with the Dunkl Laplacian, http://arxiv.org/pdf/1401.1949.pdf
- [8] G. Lysik, On the mean-value property for polyharmonic functions, Acta Math. Hungar. 133 (2011), 133–139.
- [9] M. Maslouhi, On the generalized Poisson transform, Integral Transforms Spec. Func. 20 (2009), 775–784.
- [10] M. Maslouhi, E.H. Youssfi, Harmonic functions associated to Dunkl operators, Monatsh. Math. 152 (2007), 337–345.
- [11] M. Maslouhi, R. Daher, Weil's lemma and converse mean value for Dunkl operators, [in:] Operator Theory Adv. Math. 205, Birkhäuser, 2009, 91–100.
- [12] H. Mejjaoli, K. Triméche, On a mean value property associated with the Dunkl Laplacian operator and applications, Integral Transforms Spec. Func. 12 (2001), 279–302.
- [13] M. Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), 445–463.
- [14] M. Rösler, A positivity radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), 2413–2438.
- [15] N.B. Salem, K. Touahri, Pizzetti series and polyharmonicity associated with the Dunkl Laplacian, Mediterr. J. Math. 7 (2010), 455–470.
- [16] N.B. Salem, K. Touahri, Cubature formulae associated with the Dunkl Laplacian, Results Math. 58 (2010), 119–144.
- [17] K. Triméche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform Spec. Func. 12 (2001), 349–374.

Grzegorz Łysik lysik@impan.pl

Polish Academy of Sciences Institute of Mathematics Śniadeckich 8, 00-656 Warsaw, Poland

Jan Kochanowski University Faculty of Mathematics and Natural Sciences ul. Świętokrzyska 15, 25-406 Kielce, Poland

Received: December 13, 2013.

Revised: July 4, 2014. Accepted: July 8, 2014.