AFFINE EXTENSIONS OF FUNCTIONS
WITH A CLOSED GRAPH

Marek Wójtowicz and Waldemar Sieg

Communicated by Henryk Hudzik

Abstract. Let A be a closed $G_δ$-subset of a normal space X. We prove that every function $f_0 : A \to \mathbb{R}$ with a closed graph can be extended to a function $f : X \to \mathbb{R}$ with a closed graph, too. This is a consequence of a more general result which gives an affine and constructive method of obtaining such extensions.

Keywords: real-valued functions with a closed graph, points of discontinuity, affine extensions of functions.

Mathematics Subject Classification: 26A15, 54C20, 54D10.

1. INTRODUCTION

Let $\mathcal{C}(A)$ denote the set of all continuous functions on a nonempty subset A of a Hausdorff space X. In this paper, every considered function is real. The set of all closed-graph functions on X is denoted by $\mathcal{U}(X)$. Obviously $\mathcal{C}(X) \subset \mathcal{U}(X)$. This paper deals with the following general problem in the theory of real functions, which is inspired by the Tietze extension theorem:

(P) Let A be a nonempty subset of a topological space X and let $f_0 \in \mathbb{R}^A$ be a function with a certain property (W). Can f_0 be extended to a function $f \in \mathbb{R}^X$ with the same property (W)?

It is well known that if X is a metric space, and A is a closed subset of X, the Tietze theorem can be significantly strengthened: In 1933 Borsuk [4] proved that there is a positive linear operator Ext from $\mathcal{C}(A)$ into $\mathcal{C}(X)$ such that $\text{Ext}(f_0)|_A = f_0$ for every $f_0 \in \mathcal{C}(A)$; furthermore, the restriction of Ext to the space $\mathcal{C}^b(A)$ of all bounded elements of $\mathcal{C}(A)$ is a positive isometry into $\mathcal{C}^b(X)$. Thus, the Borsuk’s operator Ext was the first example of a linear extension operator: its existence proved it is possible to extend two functions $f, g \in \mathcal{C}(A)$ in such a way that the extension of $f + g$ to an element of $\mathcal{C}(X)$ is the sum of extensions of f and g, respectively (one should note...
that in 1951 Dugundji [7] generalized Borsuk’s theorem for continuous mappings into a locally convex linear space, instead of \(\mathbb{R} \), but in this paper we do not consider such kinds of extensions; we confine our studies only to real-valued functions.

The first results concerning the case of the Borsuk-Dugundji theorem for spaces of differentiable functions came from Merrien [11] and Bromberg [5], and for spaces of analytic mappings - from Aron and Berner [1]. In 2007, Fefferman [8] obtained a generalization of Merrien’s and Bromberg’s results. He proved that if \(C^m(E) \) denotes the space of restrictions to \(E \subset \mathbb{R}^n \) of \(m \)-differentiable functions \(f:\mathbb{R}^n \to \mathbb{R} \), then there is a linear and continuous operator \(T: C^m(E) \to C^m(\mathbb{R}^n) \) such that \(T(f|_E) = f \).

A natural question related to the above-mentioned results and problem (P) reads as follows: Does there exist a larger class of functions, including the class of continuous functions, where Tietze-type theorems hold true? This question has a few positive answers. A first result of this kind is due to Kuratowski [10]: in 1933 he obtained a Tietze-type result for functions of the first Baire class defined on \(G_\delta \)-subsets of a metric space, and not until 2005 Kalenda and Spurný [9] extended Kuratowski’s theorem for completely regular spaces. On the other hand, in 2010 we proved [12] that if \(X \) is a \(P \)-space (i.e., every \(G_\delta \)-subset of \(X \) is open) then \(\mathcal{C}(X) = \mathcal{U}(X) \), and thus (formally) for every closed subset \(A \) of \(X \), every \(f_0 \in \mathcal{U}(A) \) can be extended to \(f \in \mathcal{U}(X) \). This observation has led us to the conjecture that a Tietze-type theorem should hold for the class of closed graph functions defined on some subsets of a Hausdorff space \(X \). The conjecture is confirmed in our Theorem 3.2 below, where we show that there is a positively affine extension operator from \(\mathcal{U}(A) \) into \(\mathcal{U}(X) \), where \(A \) is a zero-subset of \(X \).

2. NOTATIONS AND DEFINITIONS

For every subset \(A \subset X \), let \(\text{cl}(A) \), \(\text{int}(A) \) and \(\text{bd}(A) \) denote the closure, interior and boundary of \(A \), respectively. The spaces \(\mathbb{R} \) and \(X \times \mathbb{R} \) are considered with their standard topologies. A function \(f: X \to \mathbb{R} \) is piecewise continuous if there are nonempty closed sets \(X_n \subset X \), \(n \in \mathbb{N} \) such that \(X = \bigcup_{n=0}^{\infty} X_n \) and the restriction \(f|_{X_n} \) is continuous for each \(n \in \mathbb{N} \). For every function \(f: X \to \mathbb{R} \), the symbol \(G(f) \) denotes the graph of \(f \), and the symbols \(C(f) \) and \(D(f) \) (\(= X \setminus C(f) \)) denote the sets of continuity and discontinuity points of \(f \), respectively. We say that \(f: X \to \mathbb{R} \) is a function with a closed graph, if \(G(f) \) is a closed subset of \(X \times \mathbb{R} \). The symbol \(\mathcal{U}^+(X) \) stands for the set of all non-negative elements of \(\mathcal{U}(X) \).

In 1985, Doboš [6] proved that the sum of two non-negative functions with a closed graph is a function with a closed graph. Since \(0 \in \mathcal{U}^+(X) \), we have

\[
\mathcal{U}^+(X) + \mathcal{U}^+(X) = \mathcal{U}^+(X). \tag{2.1}
\]

Notice, however, that \(\mathcal{U}^+(X) - \mathcal{U}^+(X) \neq \mathcal{U}(X) \), i.e. there is an example of a space \(X \) and functions \(f, g \in \mathcal{U}^+(X) \) such that \(f - g \notin \mathcal{U}(X) \) (see [6, p. 9]).
Definition 2.1. Let L_1, L_2 be two cones in linear spaces E_1, E_2, respectively (i.e. $L_i + L_i \subseteq L_i$, $aL_i \subseteq L_i$, $i = 1, 2$, for every $a \in \mathbb{R}^+$, and $L_i \cap (-L_i) = \{0\}$). We say that a mapping $T : L_1 \to L_2$ is positively affine if, for any elements $x, y \in L_1$ and $a, b \in \mathbb{R}^+$ such that $a + b = 1$, we have $T(ax + by) = aT(x) + bT(y)$.

3. MAIN THEOREM

Let X be a topological space, let A be a nonempty zero-set (i.e. $A = \{g = 0\} := g^{-1}(0)$ for some $g \in \mathcal{C}(X)$), and let $f_0 : A \to \mathbb{R}$ be a function with a closed graph. The symbol $f_{(A, g)}$ denotes a real function defined on X of the form

$$f_{(A, g)}(x) = \begin{cases} f_0(x), & x \in A, \\ \frac{1}{g(x)}, & x \notin A. \end{cases} \quad (3.1)$$

To simplify notations, for A and g fixed, we write f instead of $f_{(A, g)}$. The symbol $\operatorname{Ext}_{(A, g)}$ denotes a mapping $\mathbb{R}^A \to \mathbb{R}^X$ defined by the formula

$$\operatorname{Ext}_{(A, g)}(f_0) = f.$$

Remark 3.1. From the above definitions it follows that if $A = g_1^{-1}(0) = g_2^{-1}(0)$ and $g_1 \neq g_2$, then $f_{(A, g_1)} \neq f_{(A, g_2)}$, and hence $\operatorname{Ext}_{(A, g_1)}(f) \neq \operatorname{Ext}_{(A, g_2)}(f)$ for every $f \in \mathbb{R}^A$.

The main result of this paper reads as follows.

Theorem 3.2. Let X be a topological Hausdorff space, let A be a nonempty zero-subset of X, and let $f_0 : A \to \mathbb{R}$ be a map with a closed graph. Then

(a) there is a function $f : X \to \mathbb{R}$ with a closed graph such that $f|_A = f_0$, and

(b) the set $D(f)$, of points of discontinuity of f, is of the form

$$D(f) = D(f_0) \cup \overline{bd} A. \quad (3.2)$$

More exactly, for every fixed function $g \in \mathcal{C}(X)$ such that $A = g^{-1}(0)$, the operator $\operatorname{Ext}_{(A, g)}$ defined above maps $\mathcal{U}(A)$ into $\mathcal{U}(X)$ and is positively affine.

One should note that from formula (2) it follows that the resulting function f is unbounded and discontinuous, in general, unless the set A is closed and open.

Proof. We shall prove first that the mapping $f = f_{(A, g)}$ defined by formula (3.1) has a closed graph. Let $(x_δ)$ be a Moore-Smith (MS) sequence such that $x_δ \to x$ and $f(x_δ) \to t$.

If $x \notin A$, the continuity of g implies that $t = \frac{1}{g(x)} = f(x)$.

For $x \in A$, we consider the following two cases:

(i) $x \in \text{int } A \neq \emptyset$,

(ii) $x \in A \setminus \text{int } A$.
In case (i), the nonempty set \(\text{int } A \) is open, thus there is \(\alpha_0 \) such that \(x_{\alpha} \in \text{int } A \) for every \(\alpha > \alpha_0 \). Therefore \(f(x_{\alpha}) = f_0(x_{\alpha}) \to t \) and \(t = f_0(x) = f(x) \) because \(f_0 \) has a closed graph.

In case (ii), we have \(f(x) = f_0(x) \) and \(g(x) = 0 \). We claim there is \(\beta \) such that, for every \(\alpha > \beta \), we have \(x_{\alpha} \in A \). Indeed, otherwise, for every index \(\beta \) there would be an index \(\alpha_\beta > \beta \) such that \(x_{\alpha_\beta} = y_\beta \in X \setminus A \). Then

\[
 f(y_\beta) = \frac{1}{g(y_\beta)} \to t \neq 0
\]

(the case \(t = 0 \) is impossible, because then we would have \(|g(y_\beta)| \to \infty \) with \(y_\beta \to x \), which contradicts the continuity of \(g \) at \(x \)). Hence

\[
 g(y_\beta) \to \frac{1}{t} \in (0, \infty). \tag{3.3}
\]

On the other hand, the continuity of \(g \) implies that \(g(y_\beta) \to g(x) = 0 \), which contradicts (3.3). Thus, there is an element \(\beta \) such that, for any index \(\alpha > \beta \), we have \(f(x_{\alpha}) = f_0(x_{\alpha}) \to t \). Now the closedness of the graph of \(f_0 \) implies that \(t = f_0(x) = f(x) \). We thus have showed that \(f \) has a closed graph, as claimed.

Now we shall prove equality (3.2); equivalently,

\[
 D(f) = (X \setminus C(f_0)) \cup \left(A \cap (X \setminus \text{int } A) \right). \tag{3.4}
\]

Let us fix \(x \in D(f) \). Suppose, by way of contradiction, that \(x \notin D(f_0) \cup \text{bd } A \). Then, by (3.4), we have \(x \in C(f_0) \cap [(X \setminus A) \cup \text{int } A] \), whence \(x \in C(f_0) \) and \(x \in (X \setminus A) \cup \text{int } A \). If \(x \in X \setminus A \), we have \(f(x) = \frac{1}{g(x)} \), whence \(x \in C(g) \subset C(f) \), and if \(x \in \text{int } A \neq \emptyset \), we have \(f(x) = f_0(x) \), and hence \(x \in C(f_{\text{int } A}) \subset C(f) \). In both the cases we thus have \(x \in C(f) \), contrary to our hypothesis. We thus have shown that

\[
 D(f) \subset D(f_0) \cup \text{bd } A. \tag{3.5}
\]

For the proof of the reversed inclusion to (3.5), let us fix \(x \in D(f_0) \cup \text{bd } A \). Assume first that \(x \in D(f_0) \). Since each point of the discontinuity of \(f_0 \) is a point of the discontinuity of \(f \), we obtain \(x \in D(f) \). Moreover, if \(x \in \text{bd } A = A \cap (X \setminus \text{int } A) \), there is an MS-sequence \((x_\delta) \subset X \setminus A \) convergent to \(x \). By the continuity of \(g \), we obtain \(\frac{1}{f(x_\delta)} = g(x_\delta) \to 0 \). Therefore \(|f(x_{\alpha})| \to \infty \), whence \(x \in D(f) \). We thus have shown that if \(x \in D(f_0) \cup \text{bd } A \) then \(x \in D(f) \), i.e.,

\[
 D(f_0) \cup \text{bd } A \subset D(f). \tag{3.6}
\]

Combining inclusions (3.5) and (3.6), we obtain (3.2). Obviously, \(\text{Ext}_{(A, \varnothing)} \) is positively affine. The proof is complete.

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let \(A \) be a closed and \(G_\delta \) (closed, respectively) subset of a normal (perfectly normal, respectively) space \(X \). Then there is a positively affine extension operator \(\text{Ext} : \mathcal{U}(A) \to \mathcal{U}(X) \).
Affine extensions of functions with a closed graph

Notice that the Tietze theorem asserts that if \(A \) is a closed subset of a normal space \(X \), then the restriction from \(C(X) \) to \(C(A) \) is surjective. From Theorem 3.2 we obtain a similar result.

Corollary 3.4. Let \(X \) be a topological Hausdorff space, and let \(A \) be a zero-set. Then the restriction operator \(r_A : \mathcal{U}(X) \to \mathcal{U}(A) \) (given by \(r_A(f) = f\mid_A \)) is a surjection.

In two examples below we show that the requirement in Corollary 3.3, “\(A \) to be a closed subset of \(X \)” cannot be replaced by the weaker condition: “\(A \) to be an \(F_\sigma \)-set.” We do not know, however, if the hypothesis of Theorem 1 about \(A \) is essential, i.e., we cannot indicate a closed and non-zero-subset \(A \) of a Hausdorff space \(X \) such that some \(f_0 \in \mathcal{U}(A) \) cannot be extended to an element of \(\mathcal{U}(X) \).

In Example 3.5 we address an “extremely bad” case: there is a nonempty \(F_\sigma \)-subset \(A \) of a metric space \(X \) and \(f \in \mathcal{U}(A) \) such that, for every subset \(B \) of \(A \) such that \(\text{int}(\text{cl}(B)) \neq \emptyset \), the restriction \(f\mid_B \) cannot be extended to an element of \(\mathcal{U}(\text{cl}(B)) \).

Example 3.5. Let \(X = [0, 1] \) be the unit interval with the standard topology. Set \(A = (0, 1) \cap \mathbb{Q} \subset X \), and let \(B \) be any fixed subset of \(A \) such that \(\text{int}(\text{cl}(B)) \neq \emptyset \). Let \(f : A \to \mathbb{R} \) be a function defined as \(f\left(\frac{m}{n}\right) = n \) with \(m, n \) positive integers and \(\frac{m}{n} \) irreducible. Then \(f \) is a function with a closed graph which is discontinuous at every point of \(A \) (due to the fact, that the number of irreducible fractions in \(A \) with a given denominator is finite). Since \(\text{int}(\text{cl}(B)) \neq \emptyset \), there are real numbers \(0 < a < b < 1 \) such that \([a, b] \subset \text{cl}(B) \). Suppose that \(f_B := f\mid_B \) can be extended to \(\overline{f}_B \in \mathcal{U}(\text{cl}(B)) \). Then (see [3, Lemma 2.2]) \(\overline{f}_B \) is piecewise continuous, and thus there is a sequence \((B_n) \) of closed subsets of \([a, b] \) such that \([a, b] = \bigcup_{n=1}^\infty B_n \) and the restriction \(\overline{f}_B\mid_{B_n} \) is continuous for each \(n \in \mathbb{N} \). Then, by the Baire property, there is a number \(n_0 \in \mathbb{N} \) such that \(\text{int}(B_{n_0}) \neq \emptyset \). Hence there is a nonempty interval \((c, d) \) contained in \(B_{n_0} \). Thus, by the continuity of the restrictions \(\overline{f}_B\mid_{B_n} \), every rational number \(\xi \in (c, d) \) would be the point of continuity of \(\overline{f}_B \), and thus the point of continuity of \(f_B = f\mid_B \), but this contradicts the discontinuity of \(f \).

In the next example we show that the hypothesis in Corollary 3.3: “\(A \) is closed” cannot be replaced by “\(A \) is open \(F_\sigma \).” But now, in contrast to Example 3.5, there are subsets \(B \subset A \) such that \(\text{int}(B) \neq \emptyset \) and \(f\mid_B \) has an extension to an element of \(\mathcal{U}(\text{cl}(B)) \).

Example 3.6. Let \(X = \mathbb{R} \) and \(A = (0, \infty) \). Thus \(A \) is an open and \(F_\sigma \) subset of \(X \). Let \(f_0 : (0, \infty) \to \mathbb{R} \) be a map given by the formula \(f_0(x) = \sin \frac{1}{x} \). The function \(f_0 \) is of course continuous at every point \(x \in A \), whence \(f_0 \in \mathcal{U}(A) \). However, the function \(f_0 \) cannot be extended to any function \(f : [0, \infty) \to \mathbb{R} \) with a closed graph because \(\text{cl}G(f_0) \supset \{0\} \times [-1, 1] \).

REFERENCES

