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COLOURINGS OF (k − r, k)-TREES
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Abstract. Trees are generalized to a special kind of higher dimensional complexes known
as (j, k)-trees ([L.W. Beineke, R.E. Pippert, On the structure of (m, n)-trees, Proc. 8th S-E
Conf. Combinatorics, Graph Theory and Computing, 1977, 75–80]), and which are a natural
extension of k-trees for j = k−1. The aim of this paper is to study (k−r, k)-trees ([H.P. Patil,
Studies on k-trees and some related topics, PhD Thesis, University of Warsaw, Poland, 1984]),
which are a generalization of k-trees (or usual trees when k = 1). We obtain the chromatic
polynomial of (k − r, k)-trees and show that any two (k − r, k)-trees of the same order are
chromatically equivalent. However, if r 6= 1 in any (k−r, k)-tree G, then it is shown that there
exists another chromatically equivalent graph H, which is not a (k − r, k)-tree. Further, the
vertex-partition number and generalized total colourings of (k − r, k)-trees are obtained. We
formulate a conjecture about the chromatic index of (k− r, k)-trees, and verify this conjecture
in a number of cases. Finally, we obtain a result of [M. Borowiecki, W. Chojnacki, Chromatic
index of k-trees, Discuss. Math. 9 (1988), 55–58] as a corollary in which k-trees of Class 2 are
characterized.
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1. INTRODUCTION

All graphs considered here are finite and simple. We follow the terminology of [2, 10].
Given a graph G, V (G) and E(G) will denote the vertex set and the edge set of G,
respectively. The order of G is the number of vertices of G. For a labeled graph G of
order p, f(G, t) denotes the number of different proper colourings of the vertices of G
using either all or some of the colours from a set of t colours with colour difference on
each edge of G. It is well-known in the literature that the function f(G, t), which is
popularly known as the chromatic polynomial of G, is of the form:

f(G, t) =
p∑

m=0
(−1)p−m

am tm, where am ≥ 0.

A graph is triangulated if every cycle of length greater than three possesses a chord.
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2. STRUCTURE AND THE VERTEX-PARTITION NUMBER OF (k− r, k)-TREES

Multidimensional trees were first introduced by Harary and Palmer [11] and later
extended to k-trees (for k ≥ 1) in [6,8,13,15]. Independently, Dewdney [7] extended the
concept of trees and 2-trees to include the more general (j, k)-trees. Beineke, Pippert
[1], and Gionfriddo [9] also studied this concept by recursion in terms of k-dimensional
complexes with algebraic topological terms. In fact, the concept of (j, k)-trees is the
natural extension of k-trees, in the extreme case for j = k − 1. The aim of this paper
is to study and investigate the properties and characterizations of (j, k)-trees, for all
j (0 ≤ j ≤ k − 1), in the specialized areas of colourings, in particular, the chromatic
polynomials, vertex-partitions, generalized total colourings and the chromatic index.

Now, we begin with the new definition of (j, k)-trees, where j is expressed in terms
of k (i.e., j = k − r for any integer r (1 ≤ r ≤ k) and is defined purely in terms of
graph-theoretic terminology, see [13]).

Definition 2.1. Given any two positive integers r and k such that 1 ≤ r ≤ k.
(k − r, k)-trees are defined recursively as follows:

1. A complete graph Kk−r+1 is the smallest (k − r, k)-tree.
2. To a (k−r, k)-tree H of order p, where p = k+(i−1)r+1, i ≥ 0, add an extra new

set of r mutually adjacent vertices by joining each such vertex to all of (k − r + 1)
mutually adjacent vertices of H, so that the resulting (k − r, k)-tree is of order
p+ r.

Note that if r = 1, then a (k − r, k)-tree is isomorphic to a k-tree. If r = k, then
a (k − r, k)-tree is a (0, k)-tree, which is a connected graph with each of its block is
isomorphic to Kk+1. Figure 1 gives two more examples of (k − r, k)-trees for k = 3
and r = 1 or 2.
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Fig. 1. Examples of a (1,3)-tree and a (2,3)-tree
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A subgraph of orderm in a graph G is anm-clique if it induces a complete subgraph
on m vertices. The maximum order of a m-clique of G is a clique number of G and is
denoted by ω(G).

Given two graphs G, H and a positive integer `. A graph J is an `-sum of G and
H if it can be obtained from G and H by identifying the vertices of an `-clique in G
with the vertices of an `-clique in H and deleting one edge from each pair of parallel
edges. This `-sum of G and H will be denoted by G ⊕` H, in short G ⊕ H, if ` is
known from the context.
Remark 2.2. Let G be a (k − r, k)-tree of order p = k + (i − 1)r + 1; i ≥ 0. From
Definition 2.1, G can be written as (k − r + 1)-sum of graphs. Let G0 = Kk−r+1, and
for j ≥ 1, let Gj = Gj−1 ⊕Hj , where Hj = Kk+1. It is clear that Gi is isomorphic
to G.

The Szekeres-Wilf number sw(G) is defined by sw(G) = max{δ(H) : H ≤ G},
where the maximum is taken over all induced subgraphs H of G, and δ(H) denotes
the minimum degree of H.

A graph G is n-degenerate for n ≥ 0, if sw(G) ≤ n. The following proposition is
immediate from Remark 2.2.
Proposition 2.3. Every (k − r, k)-tree G of order p ≥ k + 1, has the Szekeres-Wilf
number sw(G) = k, the size |E(G)| = 1

2 (p(2k − r + 1)− (k − r + 1)(k + 1)) and the
clique number ω(G) = k + 1.

A vertex v of a graph G is a simplicial vertex if all the vertices adjacent to v
in G are mutually adjacent. The following simple characterization of (k − r, k)-trees is
immediate from Remark 2.2.
Proposition 2.4. Let G be a graph of order p ≥ k + r + 1; k ≥ r ≥ 1. Then G is
a (k − r, k)-tree if and only if G has r simplicial vertices u1, u2, . . . , ur, each of degree
k such that their union induces an r-clique in G and the subgraph G−{u1, u2, . . . , ur}
is a (k − r, k)-tree.

The vertex-partition number of a graph G, denoted ρn(G); n ≥ 0, is the mini-
mum number of sets into which V (G) can be partitioned, so that each set induces
an n-degenerate subgraph of G.

In [12], Lick and White obtained the following upper bound on ρn(G) for any
graph G,

ρn(G) ≤ 1 +
⌊
sw(G)
n+ 1

⌋
,

where bxc denotes the largest integer ≤ x.
From Proposition 2.3, we have the exact value of the vertex-partition number of

a (k − r, k)-tree and it is interesting to note that this parameter does not depend on r
for any admissible integers n and k.
Proposition 2.5. Let G be a (k − r, k)-tree of order ≥ k + 1. Then

ρn(G) = 1 +
⌊

k

n+ 1

⌋
.
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Proof. Our proof starts with the observation that if H is an induced subgraph of G,
then ρn(H) ≤ ρn(G). Since ω(G) = k+ 1, i.e., the complete graph Kk+1 is an induced
subgraph of G, we have ρn(Kk+1) = 1 +

⌊
k

n+1

⌋
≤ ρn(G). The upper bound of Lick

and White, and the fact that sw(G) = k imply ρn(G) ≤ 1 +
⌊

k
n+1

⌋
.

3. GENERALIZED TOTAL COLOURING

Definition 3.1. Let C = {1, 2, . . . , n}, O denotes the class of edgeless graphs, and
D1, the class of 1-degenerate graphs, i.e., forests. Then a function c : V ∪ E → C
is a total (O,D1)-colouring of G if the following three conditions hold :

1. G[{c−1(j)} ∩ V ] ∈ O for all j ∈ C,
2. G[{c−1(j)} ∩ E] ∈ D1 for all j ∈ C,
3. c(v) 6= c(e) 6= c(u) for every edge e = vu of G, i.e., the incident elements of G are

coloured differently.

The minimum number of colours needed in a total (O,D1)-colouring of G is the
total (O,D1)-chromatic number and is denoted by χ′′

O,D1
(G).

An acyclic n-colouring of a graph G is a proper vertex n-colouring of G satisfying
the additional requirement that the subgraph induced by the union of every pair of
colour classes is acyclic. The minimum n such that a graph G has an acyclic n-colouring
is the acyclic chromatic number of G and is denoted by χa(G).

Theorem 3.2 ([4]). If a graph G has an acyclic k-colouring, then G has a total
(O,D1)-colouring with k colours when k is odd and with k + 1 colours when k is even.

Theorem 3.3. Let G be a (k − r, k)-tree of order ≥ k + 1. Then there is a total
(O,D1)-colouring of G with k+2 colours such that for any k, only colours 1, 2, . . . , k+1
are used to colour the vertices and edges of G if k is even, while the colours 1, 2, . . . , k+2
are used to colour the edges of G if k is odd.

Proof. Let us construct a (k−r, k)-tree G of order ≥ k+1, as described in Remark 2.2,
by using the graphs H1, H2, . . . ,Hi in this order, with each Hj being isomorphic
to Kk+1.

Let G1 = H1, and for j = 1, . . . , i− 1, let Gj+1 = Gj ⊕Hj+1.
To colour the vertices of G, we apply the greedy algorithm to colour the vertices

in the order in which they are added in the construction of G. First, properly colour
the vertices of G1 in any order (this is possible since G1 being isomorphic to Kk+1). If
all the vertices of Gj have been coloured for some j; 1 ≤ j ≤ i− 1, then Gj+1 has r
uncoloured vertices and they can also be coloured greedily in any order. It now follows
that G is (k + 1)-colourable. Since ω(G) = k + 1, it follows that χ(G) = k + 1.

Since G has a tree-like structure (by its construction) as mentioned above, every
two colour classes induce an acyclic subgraph in G. This property can also be deduced
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in an inductive way from the fact that, if Gj has this property, then Gj+1 also has
so. Thus, the acyclic chromatic number of G satisfies χa(G) = k + 1. The result then
follows by Theorem 3.2.

4. THE CHROMATIC POLYNOMIAL OF (k − r, k)-TREES

Two graphs are said to be chromatically equivalent if they have the same chromatic
polynomial. In [15], Skupień proved that (k−1, k)-trees (i.e., k-trees) of the same order
are chromatically equivalent. Moreover in [8], Dmitriev obtained a stronger result by
showing that there exists no graph chromatically equivalent to a (k − 1, k)-tree not
being a (k− 1, k)-tree. Broader results are obtained independently in [3,6] from which
Dmitriev’s result follows.

The main purpose of this section is to show that any two (k − r, k)-trees of the
same order are chromatically equivalent. But if r 6= 1, then for any (k − r, k)-tree G,
there exists a chromatically equivalent graph H, not being a (k − r, k)-tree; in other
words, Dmitriev’s result cannot be extended further for (k − r, k)-trees when r 6= 1.

A simplicial vertex of degree k in a (k − r, k)-tree G is called an endvertex of G.
We obtain the main results of this paper. Note that (x)n denotes [

(
x
n

)
n!].

Theorem 4.1. Let G be a (k − r, k)-tree of order p, where p = k + ir + 1, i ≥ 0 and
k ≥ r ≥ 1. Then

f(G, t) = (t)k+1 [(t− k + r − 1)r]i.
Proof. Let Qk

r (p) denote a (k− r, k)-tree of order p = k+ ir+ 1 for i ≥ 0. We proceed
by induction on p. The result is obvious for p = k + 1.

Assume that the chromatic polynomial of all (k − r, k)-trees of order p − r is
given by (t)k+1[(t− k + r − 1)r]i−1

. In view of Proposition 2.3 and Proposition 2.4,
Qk

r (p) contains a (k+ 1)-clique induced by the union of endvertices u1, u2, . . . , ur, and
v1, v2, . . . , vk−r+1 vertices in Qk

r (p− r). By the induction hypothesis, we have

[Qk
r (p)− {u1, u2, . . . , ur}] = Qk

r (p− r)

and
f(Qk

r (p− r), t) = (t)k+1[(t− k + r − 1)r]i−1
. (4.1)

In a colouring of Qk
r (p) with t colours, the vertex u1 can be assigned any colour

different from that assigned to v1, v2, . . . , vk−r+1, so that u1 may be coloured in any
of the (t − k + r − 1) ways and next, the vertex u2 can be assigned any colour
different from that assigned to v1, v2, . . . , vk−r+1 and u1, so that u2 may be coloured
in (t − k + r − 2) ways. Continuing this process until there remains no ujs, and
ultimately, the last vertex ur is assigned any colour different from that assigned to
v1, v2, . . . , vk−r+1, u1, u2, . . . , ur−2, and ur−1. Hence, ur may be coloured in any of
the (t− k) ways. Thus, we have

f(Qk
r (p), t) = (t− k + r − 1)(t− k + r − 2)× . . .× (t− k)f(Qk

r (p− r), t)
= (t)k+1[(t− k + r − 1)r]i from (4.1).
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Theorem 4.2. For any (k − r, k)-tree G of order p ≥ k + r + 1; k ≥ r ≥ 2, there
exists a graph H not being a (k − r, k)-tree, which is chromatically equivalent to G.

Proof. Let G be a (k − r, k)-tree of order p = k + ir + 1; 2 ≤ r ≤ k and i ≥ 1. By
Remark 2.2, G has at least two (k + 1)-cliques, in which some contain r endvertices.
Let H be a graph obtained from G by removing a fixed endvertex u, and adding
a new vertex u′, joining it to any k vertices from one of these (k + 1)-cliques, to
which u does not belong. Certainly, this resulting graph H is triangulated, and not
isomorphic to any (k − r, k)-tree G. It is well-known that every triangulated graph
(not necessarily being a (k−r, k)-tree), say F , has the chromatic polynomial of the form:
tn0(t− 1)n1 × . . .× (t− s)ns , where nj 6= 0 and each nj : 0 ≤ j ≤ s, is the multiplicity
of degree j of a simplicial vertex in a perfect vertex elimination order for F . By this
fact, and by the above mentioned construction, both G and H are triangulated and
they have the same njs (0 ≤ j ≤ k). Hence, G and H are chromatically equivalent.

Remark 4.3. We give an example which illustrates Theorem 4.2. Consider the
(1, 3)-tree G of order 6 and the graph H as shown in Figure 2 (its construction from
G is as indicated in the proof of Theorem 4.2). The chromatic polynomials of both G
and H can be easily computed and are the same polynomial as follows:

f(G, t) = f(H, t) = t(t− 1)(t− 2)2(t− 3)2 = (t)4(t− 2)2.
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Fig. 2. Graphs G and H considered in Remark 4.3

5. CHROMATIC INDEX

Let χ′(G) denote the chromatic index of G, i.e., the least number of colours required
to colour the edges of G in such way that any two adjacent edges have different colours.
Vizing [16] showed that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. Graphs G for which ∆(G) = χ′(G)
holds are of Class 1 and otherwise they are of Class 2.
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Proposition 5.1 ([17]). If ∆(G) ≥ 2sw(G), then G is of Class 1.
Proposition 5.2 ([14]). If G is a graph of order p = 2s and ∆(G) = 2s − 1, then
G is of Class 1. Let G be a graph of order p = 2s+ 1 and ∆(G) = 2s. Then G is of
Class 2 if and only if G has at least 2s2 + 1 edges.
Lemma 5.3. Let G be a (k − r, k)-tree, k ≥ 2, of order p and has a spanning star.
Then G is of Class 2 if and only if p is odd and

p ≤ ϕ(k, r) = k + 1 + 1
2(
√

(r − 1)2 + 4(k − 2)− (r − 1)).

Proof. From Proposition 5.2, G with a spanning star is of Class 2 if and only if G has
an odd order p = 2s+ 1 and at least 2s2 + 1 edges. Hence,

|E(G)| = 1
2 (p(2k − r + 1)− (k − r + 1)(k + 1))

= 1
2 ((2s+ 1)(2k − r + 1)− (k − r + 1)(k + 1)) ≥ 2s2 + 1.

This implies 4s2 − 2s(2k − r + 1) + (k2 − rk + 2) ≤ 0.
From this we have,

p ≤ k + 1 + 1
2 (
√

(r − 1)2 + 4(k − 2)− (r − 1)).

Conjecture 5.4. Let G be a (k − r, k)-tree, k ≥ 2, of order p ≥ k + 1. Then G is of
Class 2 if and only if p ≤ ϕ(k, r) = k+ 1 + 1

2 (
√

(r − 1)2 + 4(k − 2)− (r− 1)) and p is
odd.
Lemma 5.5. Every (k − r, k)-tree G of order p has a spanning star if and only if
k = tr + a, t ≥ 2, 0 ≤ a ≤ r − 1 and the following two conditions hold.
1. p ≤ 2k + 1− a, if r ≤ k

2 .

2. p ≤ k + 1 + r, if r > k
2 .

Proof. (1) Let r ≤ k
2 . Define (k − r, k)-trees Gj of order pj = (k − r + 1) + jr, j ≥ 0,

inductively. Let ` = n − r + 1, G0 = Kn−r+1, with V (G0) = Y0, G1 = G0 ⊕` Kk+1
with V (G1) = X1 ∪ Y1, where Y1 = Y0, |X1| = r and |V (G1)| = p1 = (k − r + 1) + r.

Let G2 = G1 ⊕` Kk+1 with V (Kk+1) = X2 ∪ Y2, X2 ∩ V (G1) = ∅, Y2 = Y1.
Obviously, |X2| = r and |V (G2)| = p2 = (k − r + 1) + 2r. It is clear that G2 has
a spanning star, and G2 is a unique, up to isomorphism, (k−r, k)-tree of order k+1+r.

For j ≥ 3, let Gj be defined as follows: Gj = Gj−1 ⊕` Kk+1, where V (Kk+1) =
Xj ∪ Yj , |Xj | = r, Xj ∩ V (Gj−1) = ∅. Obviously, |V (Gj)| = pj = (k − r + 1) + jr.

Let n be the smallest number such that Gn does not contain a spanning star.
Consider a (k−r, k)-tree G3 which, by Remark 2.2, is obtained from G2 and is described
above. By the construction of G2, if x1 ∈ X1 and x2 ∈ X2, then x1x2 /∈ E(G2). Thus,
without loss of generality, we can assume that Y3 ⊆ X2 ∪ Y2. Observe that the center
of every spanning star of G2 is in the set Y0. To optimize n, we have to assume that
Y3 = X2 ∪ Z3, where Z3 ⊆ Y0 and |Z3| = (k − r + 1)− r = k + 1− 2r.
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Since r ≤ k
2 , Y0 \ Z3 6= ∅. Thus, G3 has a spanning star and every spanning star

has a center in Z3. Since k = tr + a, the graph Gj for j = t+ 1, has a spanning star,
and there is a graph Gt+2 without a spanning star. Thus, Gt+1 is of the order
pt+1 ≤ (k − r + 1) + (t+ 1)r = 2k + 1− a.

(2) Let r > k
2 . Since a (k − r, k)-tree of order k + 1 + r, G2 as mentioned above,

is uniquely constructed, and now we consider the possible graph G3 from G2 by
(k − r + 1)-sum. Since k − r + 1 ≤ r, there is a (k − r, k)-tree of order k + 1 + 2r
without a spanning star.

Theorem 5.6. Let G be a (k − r, k)-tree, k ≥ 2 of order p ≥ k + 1 and k = tr, t ≥ 2
(i.e., r ≤ k/2). Then G is of Class 2 if and only if p ≤ ϕ(k, r) and p is odd.

Proof. Let G be a (k − r, k)-tree of order p ≤ ϕ(k, r) and p is odd. Then we have
p ≤ 2k + 1. By Lemma 5.5, G has a spanning star, and by Lemma 5.3, G is of Class 2.

Let p > ϕ(k, r). Then we have p > 2k + 1. If G has a spanning star, then by
Lemma 5.3 G is of Class 1. Suppose that G does not have a spanning star. From the
proof of Lemma 5.5, it follows that Gt+1 ⊆ G, but ∆(G) ≥ ∆(Gt+1) = 2k = 2sw(G).
Thus, by Proposition 5.1, G is of Class 1.

Let G be a (k − r, k)-tree such that every vertex v of G belongs to at most two
(k + 1)-cliques; that is, dG(v) ∈ {k, k + r}. Then we call G a simple (k − r, k)-tree.

Theorem 5.7. Let G be a (k − r, k)-tree and r > k
2 . Then Conjecture 5.4 is true if

1. G is not a simple (k − r, k)-tree of order p ≥ k + 1 + 2r or
2. k = r or
3. k + 1 = 2r.

Proof. (1) Let p ≤ ϕ(k, r) and p is odd. It implies that ϕ(k, r) < k + r. Then by
Lemma 5.3, G has a spanning star. Obviously in this case, G = Kk+1 and if G is of
odd order, then G is of Class 2.

If p = k+ 1 + r, then although G has a spanning star, the order of G is p > ϕ(k, r).
Hence, by Lemma 5.3, G is of Class 1.

Let p > k + 1 + r. Obviously, p > ϕ(k, r). If G has either a spanning star or
∆(G) ≥ 2k, then G is of Class 1.

Suppose that G does not contain a spanning star and ∆(G) < 2k. Since G is
not a simple (k − r, k)-tree, there is a vertex v in G which belongs to at least three
(k+ 1)-cliques. Hence, ∆(G) ≥ dG(v) ≥ k+ 2r > 2k = 2sw(G). Thus, G is of Class 1.

(2) Let k = r. Then ∆(G) = 2k = 2sw(G). Thus, G is of Class 1.
(3) Let k + 1 = 2r. It easy to see that G has a path structure formed by j

(k+1)-cliques. If j ≤ 2, then G has a spanning star, and by Lemma 5.3, G is of Class 1.
If j ≥ 3, then G does not contain a spanning star. According to Remark 2.2, G can
be represented by an `-sum in the following way: G = H1 ⊕` H2 ⊕` · · · ⊕` Hj , where
Hi = K2r, ` = r.
Case 1. Let r be even. Removing all edges which belong to `-cliques and all edges which
join endvertices of G (they form a pendant clique Kr), we have a bipartite graph G′.
Obviously, χ′(G′) = ∆(G′) = 2r. Observe that the `-cliques are vertex disjoint and
thus edge-disjoint. They are also disjoint with both r-cliques formed by endvertices
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of G. Since r is even, to colour edges of these r-cliques, we need r − 1 new colours.
Hence, the edges of G can be coloured with 3r − 1 = ∆(G) colours. Thus, G is of
Class 1.
Case 2. Let r be odd. Colour the edges of all `-cliques and of both pendant cliques Kr

with colours {1, 2, . . . , r}. Since r is odd, for any r-colouring of the edges of Kr the
missing colours at r vertices are all different and exactly one at each vertex. Thus, we
can colour with colours {1, 2, . . . , r} a perfect matching between H1 and H2, H3 and
H4 and so on. Uncoloured edges of G induce a bipartite graph G′′ with ∆(G′′) = 2r−1.
Obviously, the edges of G′′ can be coloured with new 2r − 1 colours. Hence, all edges
of G are coloured properly with ∆(G) = 3r − 1 colours. Thus, G is of Class 1.

For r = 1, Theorem 5.6 gives the following characterization of Class 2, k-trees.

Theorem 5.8 ([5]). Let G be a k-tree (k ≥ 2) of order p, p ≥ k + 1. Then G is of
Class 2 if and only if p ≤ k + 1 +

√
k − 2 and p is odd.
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