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Abstract. Let G = (V, E) be a connected graph (or hypergraph) and let d(x, y) denote the
distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if
for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x, w) 6= d(y, w).
The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted
by β(G). The circulant graph Cn(1, 2, . . . , t) has vertex set {v0, v1, . . . , vn−1} and edges vivi+j

where 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ t and the indices are taken modulo n (2 ≤ t ≤
⌊

n
2

⌋
).

In this paper we determine the exact metric dimension of the circulant graphs Cn(1, 2, . . . , t),
extending previous results due to Borchert and Gosselin (2013), Grigorious et al. (2014),
and Vetrík (2016). In particular, we show that β(Cn(1, 2, . . . , t)) = β(Cn+2t(1, 2, . . . , t))
for large enough n, which implies that the metric dimension of these circulants is com-
pletely determined by the congruence class of n modulo 2t. We determine the exact value
of β(Cn(1, 2, . . . , t)) for n ≡ 2 mod 2t and n ≡ (t + 1) mod 2t and we give better bounds on
the metric dimension of these circulants for n ≡ 0 mod 2t and n ≡ 1 mod 2t. In addition, we
bound the metric dimension of Cartesian products of circulant graphs.
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1. INTRODUCTION

1.1. DEFINITIONS

A vertex x in a graph G is said to resolve a pair u, v of vertices of G if the distance
from u to x does not equal the distance from v to x. A set W of vertices of G is
a resolving set for G if every pair of vertices of G is resolved by some vertex of W .
The smallest cardinality of a resolving set for G is called the metric dimension of G,
and is denoted by β(G).
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For positive integers t and n, the circulant graph Cn(1, 2, . . . , t) is the simple
graph with vertex set Zn = {v0, v1, . . . , vn−1}, the integers modulo n, in which vertex
vi is adjacent to the vertices vi−t, vi−t+1, . . . , vi−1, vi+1, . . . , vi+t−1, vi+t (mod n) in
Cn(1, 2, . . . , t). Observe that the distance between two vertices vi and vj in G =
Cn(1, 2, . . . , t) is given by

dG(vi, vj) =





⌈
|i−j|

t

⌉
|i − j| < ⌈ n

2 ⌉,
⌈

n−|i−j|
t

⌉
|i − j| ≥ ⌈ n

2 ⌉.

The outer cycle of the circulant graph G = Cn(1, 2, . . . , t) is a spanning subgraph
of G in which the vertex vi is adjacent to exactly the vertices vi+1 and vi−1. See
Figure 1 for an example with n = 13 and t = 2.
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Fig. 1. C13(1, 2)

The Cartesian product of graphs G1 and G2, denoted by G1�G2, is the graph
with vertex set V (G1) × V (G2) := {(x, y) : x ∈ V (G1), y ∈ V (G2)}, in which (x, y)
is adjacent to (x′, y′) whenever x = x′ and yy′ ∈ E(G2), or y = y′ and xx′ ∈
E(G1). Observe that if G1 and G2 are connected graphs, then G1�G2 is connected.
Assuming that isomorphic graphs are equal, the Cartesian product is associative, so
G1�G2� · · ·�Gd is well-defined for graphs G1, G2, . . . , Gd. Moreover, for two vertices
~x = (x1, x2, . . . , xd) and ~y = (y1, y2, . . . , yd) of the graph G = G1�G2� · · ·�Gd,
the distance dG(~x, ~y) =

∑d
i=1 dGi

(xi, yi).

1.2. HISTORY AND LAYOUT OF THE PAPER

The concept of the metric dimension of a graph was first introduced by Slater [13,14],
and independently by Harary and Melter [7]. Their introduction of this invariant was
motivated by its application to the placement of a minimum number of sonar/loran
detecting devices in a network so that the position of every vertex in the network
can be uniquely described in terms of its distances to the devices in the set. Khuller
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et al. [10] later studied the metric dimension as an application to the navigation of
robots in a graph space, and showed that the problem of determining the metric
dimension of a given graph is NP-hard, and they determined the metric dimension
of trees. An alternate proof of the formula for the metric dimension of trees was
given by Chartrand et al. in [5], and they characterized the graphs of order n with
metric dimension 1 (paths), n − 1 (complete graphs) and n − 2. Their study of the
metric dimension was motivated by its applications to a problem in pharmaceutical
chemistry. The metric dimension of a graph is related to several other well studied
graph invariants such as the determining number (the base size of its automorphism
group), and a good survey of these invariants and their relation to one another was
written by Bailey and Cameron in 2011 [1].

Due to the fact that metric dimension has applications in network discovery and
verification, combinatorial optimization, chemistry, and many other areas, researchers
focus on computing or bounding the metric dimension of certain classes of graphs. In
particular, there is great interest in finding classes of graphs whose metric dimension
does not increase with the number of vertices. Such classes of graphs are said to have
bounded metric dimension. Circulant graphs are an important class of graphs that can
be used in the design of local area networks. They have been used for decades in the de-
sign of computer and telecommunication networks due to their optimal fault-tolerance
and routing capabilities. Javaid et al. [9] initiated a study of the metric dimension
of circulants as some classes of these graphs had been shown to have bounded met-
ric dimension. Imran et al. [8] later bounded the metric dimension of Cn(1, 2) and
Cn(1, 2, 3), and then Borchert and Gosselin [2] extended their results and determined
the exact metric dimension of these two families of circulants for all n.

Proposition 1.1 ([2]). (1) For n ≥ 6,

β(Cn(1, 2)) =
{

4 for n ≡ 1 mod 4,

3 otherwise.

(2) For n ≥ 8,

β(Cn(1, 2, 3)) =
{

5 for n ≡ 1 mod 6,

4 otherwise.

More recently, Grigorious et al. [6] bounded the metric dimension of the circulant
graph Cn(1, 2, . . . , t) for all n and t, as stated in the following result.

Proposition 1.2. Suppose n ≡ r mod 2t where 2 ≤ r ≤ 2t + 1. Then

β(Cn(1, 2, . . . , t)) ≤
{

t + 1 2 ≤ r ≤ t + 1,

r − 1 t + 2 ≤ r ≤ 2t + 1.

These bounds were obtained from resolving sets consisting of consecutive vertices
on the outer cycle of Cn(1, 2, . . . , t). Grigorious et al. conjectured that these upper
bounds on β(Cn(1, 2, . . . , t)) were also lower bounds, but this was refuted by Vetrík
in 2016 [15] when he found the following two infinite families of counterexamples.
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Proposition 1.3 ([15]).

(1) If n = 2tk + t where t ≥ 4 is even and k ≥ 2, then

β(Cn(1, 2, . . . , t)) ≤ t.

(2) If n = 2tk + t + p where t and p are even, t ≥ 4, 2 ≤ p ≤ t and k ≥ 1, then

β(Cn(1, 2, . . . , t)) ≤ t + p

2 .

In addition, Vetrík gave the following lower bounds on β(Cn(1, 2, . . . , t)).

Proposition 1.4 ([15]).

(1) If n ≥ t2 + 1 where t ≥ 2, then

β(Cn(1, 2, . . . , t)) ≥ t.

(2) If n = 2tk + r where t ≥ 2, and t + 2 ≤ r ≤ 2t + 1, then

β(Cn(1, 2, . . . , t)) ≥ t + 1.

Propositions 1.3 and 1.4 together imply that if n ≡ t mod 2t, where n ≥ t2 + 1
and t ≥ 4 is even, then β(Cn(1, 2, . . . , t)) = t, and if n ≡ (t + 2) mod 2t where t ≥ 2,
then β(Cn(1, 2, . . . , t)) = t + 1. In Section 2, we will extend Vetrík’s results and find
the exact metric dimension of Cn(1, 2, . . . , t) in the cases where n is congruent to 2
or (t + 1) modulo 2t (See Theorem 2.7), and we give better bounds on the metric
dimension of these circulants for some other congruence classes of n modulo 2t. We
also show that for large enough n, β(Cn(1, 2, . . . , t)) = β(Cn+2t(1, 2, . . . , t)), which
implies that the metric dimension of these circulants is completely determined by the
congruence class of n modulo 2t (See Theorem 2.23).

Cáceres et al. [4], and independently Peters-Fransen and Oellermann [11], have
studied the metric dimension of Cartesian products of graphs, and they obtained
the following result.

Proposition 1.5 ([4, 11]). Let G be a graph and let n ≥ m ≥ 3. Then

β(G) ≤ β(G�Cm) ≤
{

β(G) + 1 if m is odd,

β(G) + 2 if m is even,

and

β(Cm�Cn) =
{

3, if m or n is odd,
4, if m and n are both even.

In Section 3 we will extend their result to find analogous bounds on the metric
dimension of G�Cn(1, 2, . . . , t) for a given graph G (Theorem 3.2), and this will yield
bounds on the metric dimension of Cartesian products of circulant graphs (Corol-
lary 3.3).
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2. THE METRIC DIMENSION OF CIRCULANT GRAPHS

In this section we analyze the metric dimension of the circulant graph Cn(1, 2, . . . , t).
We use the concept of a resolving hypergraph, defined in [2], to visualize the resolving
set W of this graph.

Definition 2.1. For a graph G of diameter d and a set of vertices W ∈ G, we define
the resolving hypergraph of G with respect to W = {w1, w2, . . . , ws} as the hypergraph
with vertex set V (G), and for each i ∈ {1, 2, . . . , s} and j ∈ {0, 1, 2, . . . , d}, there is
a hyperedge which contains all vertices at distance j from wi in G. We denote this
hypergraph by RW (G).

To represent the resolving hypergraph RW (G), a vertex v ∈ W is circled to show
that it is in the resolving set W , and separating lines are used to separate the set
of vertices at distance j from v, for each v ∈ W , for j ∈ {1, 2, . . . , d}. The graph is
resolved when every two distinct vertices in G are separated by a line (Fig. 2).

Fig. 2. C19(1, 2, 3, 4) resolved by 4 vertices

Since the circulant Cn(1, 2, . . . , t) is vertex-transitive, we may assume that v0 is
one of the vertices in every resolving set, and throughout the paper we shall denote
the set of vertices at distance j from v0 by Lj , for j ∈ {1, 2, . . . , d}. Our figures are
all orientated such that v0 is the topmost circled vertex and the indices of the ver-
tices ascend clockwise. Observe that each separating line in the resolving hypergraph
RW (G) partitions the level Lj into two subsets. If two such separating lines partition
Lj into two different pairs of subsets, we say they are distinct separating lines in Lj .
We denote the set of vertices {vn−(j−1)t−1, vn−(j−1)t−2, . . . , vn−jt} on the left side of
Lj by L−

j , and set of vertices {v(j−1)t+1, v(j−1)t+2, . . . , vjt} on the right side of Lj

by L+
j . See Figure 3 for an example with n = 21 and t = 3. Given a vertex w in a

resolving set W of G, the ends of the separating lines in Lj of the resolving hypergraph
R{v0,w}(G) draw between two of the t vertices in L+

j (L−
j ) with one cut, except for the

line separating the vertices at distance d from w, which might make two cuts between
vertices in one L+

j (L−
j ) if the congruence class of n modulo 2t is at most t − 1. If two

cuts in Lj of R{v0,w}(G) draw between two different pairs of vertices in the graph, we
say they make distinct cuts.



514 Kevin Chau and Shonda Gosselin

v0

L1

L2

L3

L4

L+
1L−

1

L+
2L−

2

L+
3L−

3

Fig. 3. R{v0}(C21(1, 2, 3))

It will be shown in this section that, for large enough n, the value of
β(Cn(1, 2, . . . , n)) is completely determined by the congruence class of n modulo 2t
(see Corollary 9). It will be useful to consider n in the form n = 2tk + r for
2 ≤ r ≤ 2t + 1, since for each value of r in this range, the diameter of Cn(1, 2, . . . , t)
is equal to k + 1. For each of these values of r, we either determine the exact value of
β(Cn(1, 2, . . . , t)), or we bound this value, and our results are summarized in Section 4.

Remark 2.2. The diameter of any circulant graph G = Cn(1, 2, . . . , t) is ⌈ n−1
2t ⌉.

Observe that if n = 2tk + r for 2 ≤ r ≤ 2t + 1, then the diameter of G is equal
to k + 1.

We now prove a couple of technical lemmas which will be used throughout the pa-
per in the proofs of various bounds on β(Cn(1, 2, . . . , t)).

Lemma 2.3. Three pairs of vertices (va, va+1), (va+2+x, va+3+x), and (va+4+2x, va+5+2x)
cannot be resolved by one vertex when t 6= x + 2.

Proof. Label (va, va+1), (va+2+x, va+3+x), and (va+4+2x, va+5+2x) as P1, P2, and P3
respectively. We may assume that for some vertex v ∈ V (G), we have d(v, va) =
d(v, va+1) + 1.
Case 1. Assume n ≡ (x + 3) mod 2t. Then the vertices in P1 and P2 can only be
simultaneously resolved with a vertex antipodal to these pairs. Figure 4 shows an
example of three pairs of vertices where two of the pairs are resolved in this way.
Observe that d(v, va+4+2x) = d(v, va+5+2x).
Case 2. Assume n 6≡ (x+3) mod 2t. Observe that only vertices greater than t distance
away from va on the outer cycle will have a unique representation with respect to v.
Since P1 is resolved by v and t 6= x + 2, we have d(v, va+2+x) = d(v, va+3+x) =
d(v, va) + 1.
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Fig. 4. n ≡ 4 mod 8; the bottom pair is unresolved

Corollary 2.4. Two pairs of vertices (va, va+1) and (va+2+x, va+3+x) cannot be re-
solved by one vertex when t 6= x + 2 and n 6≡ (x + 3) mod 2t.

Lemma 2.5. Let G = Cn(1, 2, . . . , t). No x consecutive vertices sharing the same
edge neighborhood in R{v0}(G) can be resolved by x − 2 vertices if n ≡ r mod 2t where
x ≤ r ≤ 2t + 2 and 3 ≤ x ≤ t.

Proof. Consider a clique of x consecutive vertices on the outer cycle of G for t ≥ 3.
Without loss of generality, we can consider any x consecutive vertices from the clique
L+

1 = {v1, v2, . . . , vt} which all have distance 1 from v0. When 3 ≤ r ≤ x − 1, we can
make at most two distinct cuts in Q of the resolving hypergraph R{v0}(G) by taking
vertices antipodal to the clique. Taking ⌈ x

2 ⌉ vertices that each create two distinct cuts
in Q of the resolving hypergraph R{v0}(G) will resolve the clique because 2⌈ x

2 ⌉ ≥ x.
When x ≤ r ≤ 2t + 2, we can make at most one distinct cut in Q of the resolving
hypergraph R{v0}(G). By the Pigeonhole Principle, taking at most x − 2 vertices to
resolve the x vertices in Q will leave at least one pair of vertices unresolved.

Corollary 2.6. Let G = Cn(1, 2, . . . , t). No x consecutive vertices sharing the same
edge neighborhood in R{v0}(G) can be resolved by ⌈ x

2 ⌉ − 1 vertices.

In [15], Vetrík showed that β(Cn(1, 2, . . . , t)) ≥ t + 1 for n ≡ r mod t where
t + 2 ≤ r ≤ 2t + 1 (see Proposition 1.4 (2)) by showing that no t vertices of the graph
could resolve all pairs of vertices in Ld, the set of vertices at the greatest distance from
v0. We now give an alternate proof of Vetrík’s result, and show that t + 1 is a lower
bound on the metric dimension of this circulant for n ≡ 2, t + 1 mod 2t as well.

Theorem 2.7. Let G = Cn(1, 2, . . . , t) where n ≡ r mod 2t and t + 1 ≤ r ≤ 2t + 2,
then β(G) ≥ t + 1.

Proof. Let W be a resolving set for G and take v0 ∈ W . Observe that for any vertex
v ∈ W where v 6= v0, at most two distinct cuts are made in the set L1 in the resolving
hypergraph R{v,v0}(G) (Fig. 5). This is because each of the distinct cuts created by
v are at least t vertices apart from each other. Taking any t − 1 additional vertices to
be in W with v0 creates at most 2(t − 1) = 2t − 2 distinct cuts in L1. Since there are
2t vertices in L1, then by the Pigeonhole Principle, there will be at least one pair of
vertices in L1 left unresolved.
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Fig. 5. RW (C26(1, 2, 3, 4)); L1 has at least one unresolved pair

The next corollary follows from Proposition 1.2 and Theorem 2.7.

Corollary 2.8. Let G = Cn(1, 2, . . . , t) where n ≥ 2t + 2. If n ≡ r mod 2t where
r = 2, t + 1 or t + 2, then β(G) = t + 1.

Theorem 2.9. Let G = Cn(1, 2, . . . , t) where t is odd. If n ≡ (t + 3) mod 2t then
β(G) ≤ t + 1

Proof. Let n = 2tk + (t + 3). Then diam(G) = k + 1. Let W1, W2, W3, W4 ⊆ V (G)
where

W1 = {v0},

W2 = {v2, v4, . . . , vt−1},

W3 = {vn−2, vn−4, . . . , vn−(t−1)},

W4 = {vkt+1}.

Note that |W1| = |W4| = 1 and |W2| = |W3| = t−1
2 . Observe that W1 ∪ W2 ∪ W3

leaves only three pairs of unresolved vertices, listed below. (Figure 6 shows the case
for k = 3. For k ≥ 3, each of the layers L1, L2, . . . , Lk in Rv0(G) have the same cut
pattern as this example.)

{vn−1, v1},

{vn−kt−1, vn−kt−2},

{vkt+1, vkt+2}.

We have

d(vkt+1, vn−1) = d(vkt+1, v1) + 1,

d(vkt+1, vn−kt−1) = d(vkt+1, vn−kt−2) + 1.

So these pairs of vertices can all be resolved by taking vkt+1 as a resolving vertex thus
W1 ∪ W2 ∪ W3 ∪ W4 resolves G.
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Fig. 6. RW1∪W2∪W3 (C38(1, 2, . . . , 5))

The next corollary follows from Theorems 2.7 and 2.9.
Corollary 2.10. Let G = Cn(1, 2, . . . , t) where t is odd. If n ≡ (t + 3) mod 2t then
β(G) = t + 1.

From the empirical evidence in the tables in the Appendix, it appears that t + 1
is also a lower bound on β(Cn(1, 2, . . . , t)) for n ≡ r mod 2t where 3 ≤ r ≤ t − 1 when
n is large enough. We were able to prove this in the case where t = 4 and r = 3 for
n ≥ 27, and where t = 5 and r = 3 for n ≥ 23, as the next two theorems state.
Theorem 2.11. Let G = Cn(1, 2, 3, 4). If n ≡ 3 mod 8 and n ≥ 27 then β(G) ≥ 5
Proof. Let W be a resolving set for G and suppose to the contrary that |W | ≤ 4
where v0 ∈ W . We consider the vertices on the v1 − v4(d−1)+1 path of the outer
cycle to be the right side of the graph and the vertices on the vn−1 − vn−4(d−1)−1
path of the outer cycle to be the left side of the graph. In order to resolve G, some
vertex v ∈ W must create a separating line that partitions the two vertices in Ld into
separate sets. The only vertices that can do this are {vn−1, vn−5, . . . , vn−4(d−1)−1}
and {v1, v5, . . . , v4(d−1)+1} but by symmetry we can consider only the former set as
possible options for vertices in W .
Case 1. Say vn−1 ∈ W . Then

{v4(d−1)−1, v4(d−1)−2, v4(d−1)−3},

{vn−4(d−1)+2, vn−4(d−1)+1, vn−4(d−1)}
are two cliques of three unresolved vertices in Ld. We need to take vertices to be in
W such that at least one vertex in W makes three distinct cuts between the vertices
in the above cliques while the other vertex in W makes at least two distinct cuts
between the vertices in the above cliques. So, the only way for these cliques to be
resolved is if vn−3 and v2 are in W but then r(vn−2|W ) = r(v1|W ).
Case 2. Say vn−5 ∈ W . Then

{vn−4(d−1)+2, vn−4(d−1)+1, vn−4(d−1)},

{v4(d−1), v4(d−1)−1, v4(d−1)−2},

{v4(d−2)−1, v4(d−2)−2, v4(d−2)−3}
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are three cliques of three unresolved vertices. We need to take our remaining vertices
in W to be antipodal to some of the above cliques in order to obtain the required
number of distinct cuts for resolving them. Specifically, the only way for these cliques
to be resolved is if either one additional vertex from the left side of L2 and one
additional vertex from the right side of L1 are in W or two additional vertices from
the left side of L1 are in W . But there also exists the clique of unresolved vertices
{vn−1, vn−2, vn−3, vn−4} which can only be resolved if at least one vertex in W is from
the right side of Ld−1.
Case 3. Say we take any one vertex from {vn−9, vn−13, . . . , vn−4(d−1)−1} to be in W .
Then

{vn−1, vn−2, vn−3, vn−4},

{vn−5, vn−6, vn−7, vn−8}

are two consecutive cliques of four that are unresolved. We need six distinct cuts
between the vertices in these cliques in order to resolve them. The only way to make
this many distinct cuts in these cliques is by taking two vertices to be in W that each
create three distinct cuts in the cliques. Observe that since n ≡ 3 mod 8 and t = 4,
only one additional vertex can make at most three distinct cuts in the cliques and
the final vertex that we choose can only make at most two distinct cuts in the above
cliques. Figure 7 shows an example of how the final vertex we take can only make at
most two distinct cuts in the above cliques.

Fig. 7. C27(1, 2, 3, 4)

Corollary 2.12. Let G = Cn(1, 2, 3, 4) where n = 8k + 3. Then

β(G) =
{

4 if k ∈ {1, 2},

5 if k ≥ 3.

Proof. The value of β(G) when k ≥ 3 follows from Proposition 1.2 and Theorem
2.11. For k ∈ {1, 2}, observe that {v0, v2, v3, v10} resolves G when n = 11 and
{v0, v2, v7, v14} resolves G when n = 19.

Theorem 2.13. Let G = Cn(1, 2, . . . , 5). If n ≡ 3 mod 10 and n ≥ 23 then β(G) ≥ 6.
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Proof. Let W be a resolving set for G and suppose to the contrary that |W | ≤ 5
where v0 ∈ W . We consider the vertices on the v1 − v5(d−1)+1 path of the outer
cycle to be the right side of the graph and the vertices on the vn−1 − vn−5(d−1)−1
path of the outer cycle to be the left side of the graph. In order to resolve G, some
vertex v ∈ W must create a separating line that partitions the two vertices in Ld into
separate sets. The only vertices that can do this are {vn−1, vn−6, . . . , vn−5(d−1)−1}
and {v1, v6, . . . , v5(d−1)+1} but by symmetry we can consider only the former set as
possible options for vertices in W .
Case 1. Say vn−1 ∈ W . Then

{v5(d−1)−1, v5(d−1)−2, v5(d−1)−3, v5(d−1)−4},

{vn−5(d−1)+3, vn−5(d−1)+2, vn−5(d−1)+1, vn−5(d−1)}

are two cliques of four unresolved vertices in Ld. In order to achieve the required six
distinct cuts for resolving the above cliques, we need at least two vertices that are
both antipodal to one of the above cliques. Alternatively we can use one vertex that
is antipodal to one of the above cliques and use another vertex that is antipodal to
the other clique. Specifically, our options for resolving these cliques is by taking either
vn−3 and vn−4 to be in W or v3 and vn−4 to be in W . In the former case, we only
have one vertex left to take to be in W after v0, vn−1, vn−3, vn−4 which is insufficient
for simultaneously resolving the two sets of unresolved vertices {v1, vn−2, vn−5} and
{v7, v8}. In the latter case, we only have one vertex left to take to be in W after
v0, vn−1, v3, vn−4 which is insufficient for resolving the set of unresolved vertices
{v1, vn−2, vn−3} that is a clique of three.
Case 2. Say vn−6 ∈ W . Then

{vn−5(d−1)+3, vn−5(d−1)+2, vn−5(d−1)+1, vn−5(d−1)},

{v5(d−1), v5(d−1)−1, v5(d−1)−2, v5(d−1)−3},

{v5(d−1)−1, v5(d−1)−2, v5(d−1)−3, v5(d−1)−4}

are three cliques of four unresolved vertices. In order to simultaneously resolve these
cliques with our three remaining vertices, we need a vertex that makes two distinct
cuts in the clique {v5(d−1), v5(d−1)−1, v5(d−1)−2, v5(d−1)−3} which is done with a vertex
antipodal that clique. So, the only way to resolve these cliques is if vn−3 ∈ W but
then we only have two vertices left to take to be in W after v0, vn−6, vn−3 which is
insufficient for resolving the set of unresolved vertices {vn−1, vn−2, vn−4, vn−5} since
subsequent vertices in W can only make at most one distinct cut in the set yet we
need to make a total of three distinct cuts.
Case 3. Say vn−11 ∈ W . Then

{vn−1, vn−2, vn−3, vn−4, vn−5},

{vn−5, vn−6, vn−7, vn−8, vn−9}

are two consecutive cliques of five vertices that are unresolved. Since we can only use
at most three additional vertices to resolve these cliques, we need the three additional
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vertices in W to be antipodal to the cliques in a way that creates eight distinct cuts
in total. So, the only way to obtain the required number of distinct cuts for resolving
the above cliques is if v5(d−2)−2, v5(d−1)−4, v5(d−1)−1 ∈ W but then {v1, v2} remains
a pair of unresolved vertices.
Case 4. Say we take any one vertex from {vn−16, vn−21, . . . , vn−5(d−1)−1} to be in W .
Then

{vn−1, vn−2, vn−3, vn−4, vn−5},

{vn−6, vn−7, vn−8, vn−9, vn−10},

{vn−11, vn−12, vn−13, vn−14, vn−15}

are three consecutive cliques of five vertices that are unresolved. So we need twelve
distinct cuts to resolve the above cliques. Observe that since n ≡ 3 mod 10 and t = 5,
only the next two choices of vertices we take to be in W will be able to make at most
four distinct cuts in the above cliques and the final choice of vertex that we take will
then make at most three distinct cuts in the above cliques. Figure 8 shows an example
of how the final vertex we take can only make at most three distinct cuts in the above
cliques.

Fig. 8. RW1∪W2 (C53(1, 2, . . . , 5))

Corollary 2.14. Let G = Cn(1, 2, . . . , 5) where n = 10k + 3. Then

β(G) =
{

5 if k = 1,

6 if k ≥ 2.

Proof. The value of β(G) when k ≥ 2 follows from [6] and Theorem 2.13. For k = 1,
observe that {v0, v1, v2, v4, v5} resolves G when n = 13.

In [15], Vetrík showed that β(Cn(1, 2, . . . , t)) ≥ t for n ≥ t2 +1 (see Proposition 1.4
(1)). We now use an alternate proof to show that this bound holds for all n. The result
is stated in the following theorem for the congruence classes modulo 2t for which we
do not already have a better lower bound of t + 1 on the metric dimension.
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Theorem 2.15. Let G = Cn(1, 2, . . . , t) where n ≡ r mod 2t and 3 ≤ r ≤ t, then
β(G) ≥ t.

Proof. Suppose to the contrary that β(G) ≤ t − 1. Let W be a resolving set for
G with v0 ∈ W . Consider the sets of vertices L+

1 = {v1, v2, . . . , vt} and L−
1 =

{vn−1, vn−2, . . . , vn−t}. Note that all of the vertices in L+
1 (L−

1 ) have distance 1 from
each other and from v0.
Case 1. Suppose (n − 1) mod 2t > t − 2. Then each of the t − 2 vertices v ∈ W
besides v0 will make at most one distinct cut in L+

1 . By Lemma 2.5, at least one pair
of vertices in L+

1 will be unresolved.
Case 2. Suppose (n−1) mod 2t ≤ t−2. We may resolve the vertices in L+

1 by taking
the t − 2 vertices at furthest distance from t − 2 consecutive vertices in L+

1 . However,
by doing this, each of the t − 2 vertices v ∈ W besides v0 will make at most one
distinct cut in L+

1 so at least one pair of vertices in L+
1 will be left unresolved by the

argument from the first case (Fig. 9).

Fig. 9. Case 1 and Case 2 respectively

The empirical evidence in the Appendix shows that for small values of n and t, the
metric dimension of β(Cn(1, 2, . . . , t)) seems to be t for some of the smaller congruence
classes of n modulo 2t. The next theorem shows that this is always true when n = 2t+r
and 3 ≤ r ≤

⌊
t
2
⌋

+ 1.

Theorem 2.16. Let G = Cn(1, 2, . . . , t) where n = 2t + r and 3 ≤ r ≤ ⌊ t
2 ⌋ + 1, then

β(G) = t.

Proof. Let W1, W2 ⊆ V (G) where

W1 = {v0, v1, . . . , vr−2},

W2 = {vr, vr+1, . . . , vt}.

Note that |W1| = r − 1 and |W2| = t − (r − 1). We have that the only vertices at
distance d = 2 from vi ∈ W2 are vi+t+1, vi+t+2, . . . , vi+t+(r−1). Since the vertices in
W2 are consecutive, the vertices vn−1, vn−2, . . . , vn−t+1 all have unique representations
with respect to W2. Similarly, for vi ∈ W1, the only vertices at distance 2 from vi are
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vi+t+1, vi+t+2, . . . , vi+t+(r−1), and since the vertices in W1 are consecutive, the vertices
vt+1, vt+2, . . . , vt+2r−3 all have unique representations with respect to W1. Also, it is
clear that the only vertex which has distance 1 to all of the vertices in W1 ∪W2 is vr−1.
Thus all of the vertices in the resolving hypergraph RW1∪W2(G) are resolved (Fig. 10).
It follows from Theorem 2.15 that β(G) = t under these conditions.

Fig. 10. C15(1, 2, . . . , 6)

From Proposition 1.4 and Theorem 2.7, it follows that β(Cn(1, 2, . . . , t)) ≥ t + 1
for n ≡ 1 mod 2t. We improve this bound slightly in the next theorem.

Theorem 2.17. Let G = Cn(1, 2, . . . , t) where t ≥ 2 and n ≡ 1 mod 2t, then
β(G) ≥ t + 2.

Proof. Let W be a resolving set for G and suppose to the contrary that |W | ≤ t + 1,
where v0 ∈ W . We consider the vertices on the v1 − vdt path of the outer cycle as the
right side of the graph. Similarly, the vertices on the vn−1 − vn−dt path of the outer
cycle will be considered the left side of the graph. In order to resolve G, some vertex
v ∈ W ∩ Lj must create a separating line in the resolving hypergraph R{v,v0}(G)
such that vn−dt and vdt in Ld are partitioned into separate sets. The only vertices
that can do this have a nonnegative integer multiple of t distance from v0 on either
the left or right side of the outer cycle. By symmetry, we consider only the vertices
vn−t, vn−2t, . . . , vn−dt as possible choices for v. Note that taking any of these vertices
to be in W leaves 2d − j consecutive cliques of unresolved vertices, where each clique
has cardinality t. By Lemma 2.5, subsequent vertices in W beyond v0 and v must
not leave an unresolved clique of cardinality t. In addition, the subsequent vertices
beyond v0 and v must each create distinct cuts in both {vdt+1, vdt+2, . . . , vdt+t} and
{vn−dt−1, vn−dt−2, . . . , vn−dt−t}. Thus, no two vertices on the same side of the outer
cycle may share the same congruence modulo t for otherwise both vertices will cre-
ate the same cut in either {vtd+1, vtd+2, . . . , vtd+t} or {vn−dt−1, vn−dt−2, . . . , vn−dt−t}.
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Note that the order in which we choose the vertices for W does not matter. So, the
subsequent choices of vertices must belong to one of the sets

{vdt−1, vdt−2, . . . , vdt−(t−2)},

{v(d−1)t−1, v(d−1)t−2, . . . , v(d−1)t−(t−2)},

...
{vjt−1, vjt−2, . . . , vjt−(t−2)}.

Since the j sets listed above contain t − 2 vertices of unique congruence modulo t, we
only have t − 2 additional choices of vertices to be in W that do not leave a clique
of t (Fig. 11). This means that there are only t − 2 choices of vertices to be in W that
make distinct cuts in every clique of t in the resolving hypergraph R{v,v0}(G) yet we
need the t − 1 vertices to each make these distinct cuts. Seeing that we have at most
t−1 additional vertices to take in W beyond v0 and v, but we only have t−2 possible
choices of vertices to resolve the 2d − j cliques of t, by Lemma 2.5, β(G) ≥ t + 2.

Fig. 11. R{v,v0}(C41(1, 2, 3, 4)); The colored vertices are the only choices that do not leave
a clique of t

From Grigorious’ result in Proposition 1.2, we know that β(Cn(1, 2, . . . , t)) ≤ r −1
when n = 2tk + r for r ∈ {2t, 2t + 1}. In the next two results, we improve this upper
bound to 2t − 2.
Theorem 2.18. Let G = Cn(1, 2, . . . , t) where n ≡ 1 mod 2t and t ≥ 4, then
β(G) ≤ 2t − 2.
Proof. Let n = 2tk + (2t + 1). Then diam(G) = k + 1. Let W1, W2, W3 ⊆ V (G) where

W1 = {v0, vn−t+1, vtk+3, vn−t(k+1)+1},

W2 = {v3, v4, . . . , vt},

W3 = {vn−t(k+1)+3, vn−t(k+1)+4, . . . , vn−t(k+1)+(t−2)}.

Note that |W1| = 4, |W2| = t − 2, and |W3| = t − 4. For any t, the vertex vi for
i ∈ {3, 4, . . . , t} will always have distance j from only the first tj closest vertices from
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vi on the outer cycle for j ∈ {1, 2, . . . , d} (Figure 12 shows the case where t = 5 and
k = 2. For k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G) have the same cut pattern
as this example.)

When t = 4, the sets of vertices left unresolved by W1 are

{vn−2, vn−1, v1},

{vkt+2, vkt+4, vkt+5},

{vt−1, vt−2}, {v2t−1, v2t−2}, . . . , {vkt−1, vkt−2}.

We have:

d(v3, vn−2) = d(v3, vn−1) + 1,

d(v3, vkt+4) = d(v3, vkt+2) + 1,

d(v3, vxt−1) = d(v3, vxt−2) + 1 for x ∈ {1, 2, . . . , k},

d(v4, vn−1) = d(v3, v1) + 1,

d(v4, vkt+5) = d(v3, vkt+4) + 1.

So taking W1∪W2 resolves these sets. Thus β(G) ≤ t+2 when t = 4. Since t+2 = 2t−2
when t = 4, we can say β(G) ≤ 2t − 2 when t = 4. If t > 4, the set of vertices left
unresolved by W1 are resolved by W2 in a similar way as for t = 4, except for the set

R = {vn−t(k+1)+3, vn−t(k+1)+4, . . . , vn−t(k+1)+(t−1)}.

Since |R| = t − 3, taking any t − 4 vertices from R will resolve G. Specifically, taking
W1 ∪ W2 ∪ W3 resolves G, so β(G) ≤ 2t − 2.

Fig. 12. RW1∪W2 (C31(1, 2, . . . , 5))

Theorem 2.19. Let G = Cn(1, 2, . . . , t) where n ≡ 0 mod 2t and t ≥ 5, then
β(G) ≤ 2t − 2.
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Proof. Let n = 2tk + 2t. Then the diameter is d = k + 1. Let W1, W2, W3 ⊆ V (G)
where

W1 = {v0, vn−t+1, vtk+3, vn−t(k+1)+1, vn−t(k+1)+2},

W2 = {v3, v4, . . . , vt},

W3 = {vn−t(k+1)+4, vn−t(k+1)+5, . . . , vn−t(k+1)+(t−2)}.

Note that |W1| = 5, |W2| = t − 2, and |W3| = t − 5. For any t, the vertex vi for
i ∈ {3, 4, . . . , t} will always have distance j from only the first tj closest vertices from
vi on the outer cycle for j ∈ {1, 2, . . . , k + 1}. (Figure 13 shows the case for t = 7 and
k = 2. For k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G) have the same cut pattern
as this example.) When t = 5, the sets of vertices left unresolved by W1 are

{vn−2, vn−1, v1},

{vkt+2, vkt+4, vkt+5},

{vt−1, vt−2, vt−3}, {v2t−1, v2t−2, v2t−3}, . . . , {vkt−1, vkt−2, vkt−3}.

We have:
d(v3, vkt+4) = d(v3, vkt+2) + 1,

d(v3, vxt−2) = d(v3, vxt−3) + 1 for x ∈ {1, 2, . . . , d − 1},

d(v4, vn−2) = d(v4, vn−1) + 1,

d(v4, vxt−1) = d(v3, vxt−2) + 1,

d(v5, vn−1) = d(v5, v1) + 1.

So taking W1 ∪W2 resolves these sets. Thus for t = 5, β(G) ≤ t+3. But t+3 = 2t−2
in this case, so we can say β(G) ≤ 2t − 2 when t = 5. When t > 5, the set of vertices
left unresolved by W1 are resolved by W2 in a similar way as for t = 5, except for the
set

R = {vn−t(k+1)+4, vn−t(k+1)+5, . . . , vn−t(k+1)+(t−1)}
Since |R| = t − 4, taking any t − 5 vertices from R will resolve G. Specifically, taking
W1 ∪ W2 ∪ W3 resolves G so β(G) ≤ 2t − 2.

Fig. 13. RW1∪W2 (C42(1, 2, . . . , 7))
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Theorem 2.20. If G = Cn(1, 2, 3, 4) where n ≡ 0 mod 8 then β(G) ≤ 6.

Proof. Let n = 8k + 8. Then diam(G) = k + 1. Let W1, W2 ⊆ V (G) where

W1 = {v0, v2, v3, vn−3}
W2 = {vn−kt−1, vn−kt−2}

The vertices left unresolved by W1 are

{vn−1, v1},

{vn−kt−1, vn−kt−2, vn−kt−3},

{vkt+1, vkt+2}.

A vertex v will always have distance j from only the first tj closest vertices from v
on the outer cycle for j ∈ {1, 2, . . . , k + 1}. (Figure 14 shows the case where t = 4
and k = 4. For each k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G) have the same cut
pattern as this example.) We have:

d(vn−kt−1, v1) = d(vn−kt−1, vn−1) + 1,

d(vn−kt−2, vkt+1) = d(vn−kt−2, vkt+2) + 1.

So taking W1 ∪ W2 resolves these sets. Thus β(G) ≤ 2t − 2 = 6.

Fig. 14. RW1 (C40(1, 2, 3, 4))

The following corollary comes from Theorems 2.18, 2.19, and 2.20.

Corollary 2.21. If n ≡ 0 mod 2t or n ≡ 1 mod 2t where t ≥ 4 then we have
β(Cn(1, 2, . . . , t)) ≤ 2t − 2.

Note that when n ≡ 0 mod 2t and t is even, the bound β(Cn(1, 2, . . . , t)) ≤ 3t
2

presented in [15] is better (see Proposition 1.3). The next result follows from Theorems
2.17 and 2.20.

Corollary 2.22. If n ≡ 1 mod 8 then β(Cn(1, 2, 3, 4)) = 6.
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From previous results and from the empirical data in the Appendix, it seems that
β(Cn(1, 2, . . . , t)) depends on the congruence class of n modulo 2t. In the next three
theorems, we show that this is indeed true for large enough n.
Theorem 2.23. Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n = 2tk+r.
If k ≥ 3, then β(G′) ≤ β(G).
Proof. We obtain Cn+2t(1, 2, . . . , t) from Cn(1, 2, . . . , t) by adding one set of 2t vertices
in Li of Cn(1, 2, . . . , t) for some i 6∈ {0, 1, d}. We can assume that v0 is in both W and
W ′. Notice that vertices v ∈ Lj ∩ W and the distinct cuts that are made in these Lj

remain where they are in the Lj upon adding the 2t vertices to Li. Observe that for
every vertex v ∈ Lj ∩ W , the distinct cuts that are made in the resolving hypergraph
R{v,v0}(G′) are the same in Li as they are in R{v,v0}(G) for every i 6∈ Lj ∩ W . So the
vertices in Lj ∩ W will still leave the same distinct cuts in Li if they did so before
adding the 2t vertices (Fig. 15). Thus the vertices in V (G′) are resolved if they were
resolved in V (G) before adding the 2t vertices.

Fig. 15. C25(1, 2, 3, 4) and C33(1, 2, 3, 4) respectively

Theorem 2.24. Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk + r. If
a) 2 ≤ r ≤ t + 2 and k > t − 1 or
b) t + 3 ≤ r ≤ 2t − 2 and k > r − 3 or
c) 2t − 1 ≤ r ≤ 2t + 1 and k > 2t − 4
then β(G) ≤ β(G′).
Proof. Let W be a metric basis for G and W ′ be a metric basis for G′ and suppose
that v0 is in both W and W ′. We obtain Cn(1, 2, . . . , t) from Cn+2t(1, 2, . . . , t) by
removing one set of 2t vertices in Li of Cn+2t(1, 2, . . . , t) where Li does not contain
vertices in the metric basis. We can guarantee that a Li exists because the k + 1
choices of sets of 2t vertices from Lj to remove from V (G′) is greater than our best
known upper bound given a congruence class of n modulo 2t. Notice that vertices
v′ ∈ Lj ∩ W ′ and the distinct cuts that are made in these Lj remain where they are
upon removing the 2t vertices from Li. Observe that for every vertex v′ ∈ Lj ∩ W ′,
the distinct cuts that are made in the resolving hypergraph R{v′,v0}(G) are the same
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in Li as they are in R{v′,v0}(G′) for every i 6∈ Lj ∩ W ′. So the vertices in Lj ∩ W ′ will
still leave the same distinct cuts in Li if they did so before removing the 2t vertices.
Thus the vertices in V (G) are resolved if they were resolved in V (G′) before removing
the 2t vertices.

The next corollary follows from Theorems 2.23 and 2.24.

Corollary 2.25. Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk + r and t ≥ 4. If

a) 2 ≤ r ≤ t + 2 and k > t − 1 or
b) t + 3 ≤ r ≤ 2t − 2 and k > r − 3 or
c) 2t − 1 ≤ r ≤ 2t + 1 and k > 2t − 4

then β(G) = β(G′).

The following theorem shows that if the vertices in the metric basis belong only to
L0, L1, or Ld, then β(Cn(1, 2, . . . , t)) = β(Cn+2t(1, 2, . . . , t)) when k is at least three.
Although we could not prove that there always exists a metric basis where vertices
belong to just L0, L1, or Ld, it may be possible to show that such a metric basis exists
for certain t or certain congruence classes of n modulo 2t, in which case this result
could be of some use.

Theorem 2.26. Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n = 2tk+r
and k ≥ 3. If W is a metric basis for G and W ′ is a metric basis for G′ where all
vertices in W and W ′ belong to L0, L1, or Ld, then β(G) = β(G′).

Proof. We obtain Cn(1, 2, . . . , t) from Cn+2t(1, 2, . . . , t) by removing one set of 2t
vertices in Li of Cn+2t(1, 2, . . . , t) for some i 6∈ {0, 1, d}. Similarly, we obtain
Cn+2t(1, 2, . . . , t) from Cn(1, 2, . . . , t) by adding one set of 2t vertices in Li of
Cn(1, 2, . . . , t) for some i 6∈ {0, 1, d}. We can assume that v0 is in both W and W ′.
Notice that since the vertices in the metric basis for G and G′ remain where they are
in L0, L1, or Ld, the separating lines made in L0, L1, and Ld remain where they are
when we add (or remove) the 2t vertices in Li for some i 6∈ {0, 1, d}. Observe that for
every vertex v ∈ L1 ∩ W (or v′ ∈ L1 ∩ W ′), the separating lines made in the resolving
hypergraph R{v,v0}(G) or R{v′,v0}(G′) are the same within every Li for i 6∈ {0, 1, d}.
So the vertices in L1 will still leave the same separating lines in Li if they did so before
adding (or removing) the 2t vertices. Similar arguments holds for each v ∈ Ld ∩ W
(or v′ ∈ Ld ∩ W ′). Thus the vertices in V (G′) are resolved if they were resolved in
V (G) before adding the 2t vertices and the vertices in V (G) are resolved if they were
resolved in V (G′) before removing the 2t vertices.

3. THE METRIC DIMENSION OF CARTESIAN PRODUCTS
OF CIRCULANT GRAPHS

We are motivated to study the metric dimension of Cartesian products of the circulant
graphs Cn(1, 2, . . . , t) since their metric dimension is equal to the metric dimension
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of Cayley hypergraphs on finite Abelian groups. Let Γ be a group, let Ω ⊆ Γ \ {1},
and let t be an integer such that 2 ≤ t ≤ max{|ω| : ω ∈ Ω}. The t-Cayley hypergraph
of Γ over Ω, denoted H = t-Cay[Γ : Ω], is the hypergraph with vertex set Γ in
which a subset S ⊆ Γ is in E(H) if and only if there is x ∈ Γ and ω ∈ Ω such that
S = {xωi : 0 ≤ i ≤ t − 1}. Note that a 2-Cayley hypergraph is a Cayley graph.
This definition is due to Buratti [3], and is a subclass of the more general Cayley
hypergraphs, or group hypergraphs which were defined by Shee in [12]. Specifically, we
consider the t-Cayley hypergraph H = t-Cay(Γ, Ω) where Γ is a finite Abelian group,
so we may assume the Γ is a direct product of cyclic groups of prime-power order, say
Γ = Zn1

⊕
Zn2

⊕
. . .

⊕
Zns

where ni is a prime-power for 1 ≤ i ≤ s. The canonical
set of generators for this group is

Ω = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
and so we require 2 ≤ t ≤ max{ni : 1 ≤ i ≤ s}. It was shown in [2] that this Cayley
hypergraph has the same metric dimension as the Cartesian product

Cn1(1, 2, . . . , t − 1)�Cn2(1, 2, . . . , t − 1)� · · ·�Cns
(1, 2, . . . , t − 1),

and in this section we establish better bounds on their metric dimension. We start
with a technical lemma.
Lemma 3.1. Let G = Cn(1, 2, . . . , t) and let v0, vp, vq ∈ V (G). If d(vp, v0) < d(vq, v0),
then there exists a vertex vd ∈ V (G) at diameter distance from v0 such that
d(vp, vd) > d(vq, vd).
Proof. Let d(vp, v0) < d(vq, v0). Then vp and vq must be in different Lj such that
vp is in a Lj closer to v0. So take vp ∈ Lp and vq ∈ Lq for 1 ≤ p < q ≤ d. Let
VR = {v1, v2, . . . , vtd−1} be the set of vertices on the right side of the outer cycle from
v0 and VL = {vn−1, vn−2, . . . , vn−td−1} be the set of vertices on the left side of the
outer cycle from v0.
Case 1. Assume vp, vq ∈ VR or vp, vq ∈ VL. We consider only the former since the
argument for the latter is similar. Then d(vp, vt(d−1)+1) = d−p and d(vq, vt(d−1)+1) =
d − q. Thus d(vp, vt(d−1)+1) > d(vq, vt(d−1)+1) since p < q.
Case 2. Assume vp ∈ VR and vq ∈ VL. Then d(vp, vn−t(d−1)−1) = d − p and
d(vq, vn−t(d−1)−1) = d − q. Thus d(vp, vn−t(d−1)−1) > d(vq, vn−t(d−1)−1) since
p < q.

Theorem 3.2. Let H be any graph and G = Cn(1, 2, . . . , t) where n = 2tk + r for
1 ≤ r ≤ 2t, then β(H�G) ≤ β(H) + max{r, t + 1}.
Proof. Note that H�G consists of n copies of H labeled H1, H2, . . . , Hn where cor-
responding vertices in each copy form a copy of G. Let W = {w1, w2, . . . , wm}
be a resolving set for H. Now let Wi = {w1i, w2i, . . . , wmi} be the set of ver-
tices of Hi corresponding to W in H for i ∈ {1, 2, . . . , n}. We show that either
W1 ∪ {w1(tk+1), w1(tk+2), . . . , w1(tk+r)} or W1 ∪ {w1(tk+1), w1(tk+2), . . . , w1(tk+t+1)} is
a resolving set for G′ = H�G. Let u and v be any two vertices of G′. For any
l ∈ {1, 2, . . . , n}, let ul, vl ∈ G be the vertices that correspond to u and v in Hl, the
l-th copy of H.
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Case 1. Suppose u and v belong to the same Hi. Let u1 and v1 be the vertices of H1 that
correspond to u and v in H. Since u and v are in the same Hi, dG′(u, u1) = dG′(v, v1).
Since W resolves H, there is some wq ∈ W such that dH1(u1, w1q) 6= dH1(v1, w1q).
But dG′(u, w1q) = dG′(u, u1)+dG′(u1, w1q) and dG′(v, w1q) = dG′(v, u1)+dG′(v1, w1q)
so dG′(u, w1q) 6= dG′(v, w1q).
Case 2. Suppose u and v belong to different Hi. Let u ∈ V (Hi) and v ∈ V (Hj)
for 1 ≤ i < j ≤ n. Let u1, v1 ∈ H1 and uk, vk ∈ Hk be the vertices that correspond
to u and v.
Case 2.1. Assume dG′(u, u1) = dG′(v, v1) and u1 = v1. If we take a vertex from each
copy of Hx for x ∈ {tk + 1, tk + 2, . . . , max{tk + r, tk + t + 1}}, then u and v will be
resolved since there are at least t + 1 consecutive vertices in the set.
Case 2.2. Assume 1 ≤ i < j ≤ tk + r or tk + r ≤ i < j ≤ n where dG′(u, u1) 6=
dG′(v, v1). We consider only the case where 1 ≤ i < j ≤ tk + r since the argument
for tk + r ≤ i < j ≤ n is similar. Then dG′(u, u1) < dG′(v, v1) and dG′(u, ul) >
dG′(v, vl) for some l ∈ {tk + 1, tk + 2, . . . , tk + r} by Lemma 2. In the case that
dG′(u, w11) = dG′(v, w11), we have dG′(u1, w11)+dG′(u, u1) = dG′(v1, w11)+dG′(v, v1).
Hence dG′(u1, w11) > dG′(v1, w11) and dG′(ul, w1l) > dG′(vl, w1l). Thus dG′(u, w1l) =
dG′(u, ul)+dG′(ul, w1l) > dG′(v, vl)+dG′(vl, w1l) = dG′(v, w1l). So w1l resolves u and
v if w11 does not.
Case 2.3. Assume 1 ≤ i ≤ tk + r < j ≤ n where dG′(u, u1) 6= dG′(v, v1). In this case,
there exists a l ∈ {tk + 1, tk + 2, . . . , tk + r} such that there exists a shortest path
from u1 to ul ∈ Gl which passes through u and has length d − 1 and there exists
a shortest path from v1 to vl which passes through v and has length d. Then the sum
of the coordinates of u with respect to w11, w1l will always have the same parity as
d − 1 and the sum of the coordinates v with respect to w11, w1l will always have the
same parity as d. Thus the set {w11, w1l} resolves u and v.

It is not difficult to prove that max{β(H), β(G)} ≤ β(H�G), and it was shown in [4]
as part of another result. Thus the following corollary comes from repeated application
of Theorem 3.2.
Corollary 3.3. Let ri correspond to Cni

(1, 2, . . . , ti) for ni = 2tiki + ri with and
i ∈ {1, 2, . . . , m}. Let r1 ≥ r2 ≥ . . . ≥ rm and set

H = Cn1(1, 2, . . . , t1)�Cn2(1, 2, . . . , t2)� . . .�Cnm
(1, 2, . . . , tm),

then

max{β(Cni
(1, 2, . . . , ti))} ≤ β(H) ≤ β(Cn1(1, 2, . . . , t1)) +

m∑

i=2
max{ri, t + 1}.

4. SUMMARY

Here we state the bounds on the metric dimension of circulant graphs introduced
in this paper. Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.
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1. If n ≡ r mod 2t where t + 1 ≤ r ≤ 2t + 2 then β(G) ≥ t + 1 (Theorem 2.7).
2. If n ≡ r mod 2t where 3 ≤ r ≤ t then β(G) ≥ t (Theorem 2.15).
3. If n ≡ r mod 2t where r = 2, t + 1, t + 2 then β(G) = t + 1 (Theorem 2.7).
4. If n ≡ 0 mod 2t where t is odd then t + 1 ≤ β(G) ≤ 2t − 2 (Theorems 2.7, 2.19,

and 2.20).
5. If n ≡ 1 mod 2t then t + 2 ≤ β(G) ≤ 2t − 2 (Theorems 2.17 and 2.18).
6. If n ≡ 1 mod 8 where t = 4 then β(G) = 6 (Theorems 2.17 and 2.18).
7. If n ≡ (t + 3) mod 2t where t is odd then β(G) = t + 1 (Theorems 2.7 and 2.9).

Each of the tables in the Appendix of this paper list the metric dimension β of
the circulant Cn(1, 2, . . . , t) where n ≡ r mod 2t, for a given range of n. The authors
would like to thank Robert Bailey for computing these values using a program in
GAP. We make the following conjecture based on the data found in the Appendix.
Conjecture 4.1. Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.
1. If n ≡ t mod 2t where t is odd then β(G) = t + 1.
2. If n ≡ 0 mod 2t then β(G) ≥ t + 2.
3. If n ≡ (t + 3) mod 2t where t is even then β(G) = t + 2.
4. If n ≡ r mod 2t where t is even, 3 ≤ r ≤ t − 1, and k = 1 then β(G) = t.

A. APPENDIX

Table 1. The metric dimension of Cn(1, 2, 3, 4), 10 ≤ n ≤ 26

r 2 3 4 5 6 7 0 1
β 5 4 4 5 5 6 6 6

Table 2. The metric dimension of Cn(1, 2, 3, 4), 27 ≤ n ≤ 120

r 2 3 4 5 6 7 0 1
β 5 5 4 5 5 6 6 6

Table 3. The metric dimension of Cn(1, 2, . . . , 5), 12 ≤ n ≤ 21

r 2 3 4 5 6 7 8 9 0 1
β 6 5 6 6 6 6 6 7 7 8

Table 4. The metric dimension of Cn(1, 2, . . . , 5), 22 ≤ n ≤ 90

r 2 3 4 5 6 7 8 9 0 1
β 6 6 6 6 6 6 6 6 7 8
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Table 5. The metric dimension of Cn(1, 2, . . . , 6), 14 ≤ n ≤ 25

r 2 3 4 5 6 7 8 9 10 11 0 1
β 7 6 6 6 6 7 7 8 8 8 8 9

Table 6. The metric dimension of Cn(1, 2, . . . , 6), 26 ≤ n ≤ 61

r 2 3 4 5 6 7 8 9 10 11 0 1
β 7 6 6 6 6 7 7 8 7 8 8 9

Table 7. The metric dimension of Cn(1, 2, . . . , 6), 62 ≤ n ≤ 84

r 2 3 4 5 6 7 8 9 10 11 0 1
β 7 7 6 6 6 7 7 8 7 8 8 9

Table 8. The metric dimension of Cn(1, 2, . . . , 7), 16 ≤ n ≤ 29

r 2 3 4 5 6 7 8 9 10 11 12 13 0 1
β 8 7 7 7 7 8 8 8 8 9 9 10 10 10

Table 9. The metric dimension of Cn(1, 2, . . . , 7), 30 ≤ n ≤ 43

r 2 3 4 5 6 7 8 9 10 11 12 13 0 1
β 8 7 7 8 7 8 8 8 8 9 8 9 10 10

Table 10. The metric dimension of Cn(1, 2, . . . , 7), 44 ≤ n ≤ 68

r 2 3 4 5 6 7 8 9 10 11 12 13 0 1
β 8 8 8 8 8 8 8 8 8 9 8 9 10 10

Table 11. The metric dimension of Cn(1, 2, . . . , 8), 18 ≤ n ≤ 33

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
β 9 8 8 8 8 8 8 9 9 10 10 10 10 11 11 12

Table 12. The metric dimension of Cn(1, 2, . . . , 8), 34 ≤ n ≤ 48

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
β 9 8 8 8 8 9 8 9 9 10 10 10 10 10 11
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