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Abstract. We consider a control problem given by a mathematical model of the temperature
control in industrial hothouses. The model is based on one-dimensional parabolic equations
with variable coefficients. The optimal control is defined as a minimizer of a quadratic cost
functional. We describe qualitative properties of this minimizer, study the structure of the
set of accessible temperature functions, and prove the dense controllability for some set of
control functions.
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1. INTRODUCTION

Consider the mixed boundary value problem

ut = (a(x, t)ux)x, (x, t) ∈ QT = (0, 1)× (0, T ), T > 0, (1.1)
u(0, t) = ϕ(t), ux(1, t) = ψ(t), 0 < t < T, (1.2)
u(x, 0) = ξ(x), 0 < x < 1, (1.3)

with ϕ ∈ W 1
2 (0, T ), ψ ∈ W 1

2 (0, T ), ξ ∈ L2(0, 1), and a sufficiently smooth function
a such that 0 < a0 ≤ a(x, t) ≤ a1 < ∞ on QT . We treat the functions ξ and ψ
as fixed and the function ϕ as a control function to be found. The problem is to
find a control function ϕ = ϕ0 making the temperature u(x, t) at some fixed point
x = c ∈ (0, 1) maximally close to a given one, z(t), during the whole time interval (0, T ).
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The quality of the control is estimated by the quadratic cost functional

Jz[ϕ] =
T∫

0

(uϕ(c, t)− z(t))2dt, (1.4)

where the function uϕ(x, t) is a solution to problem (1.1)–(1.3). This problem arises to
the problem of the temperature control in industrial hothouses (see [3, 5]). Note that
various extremum problems for partial differential equations with integral functionals
were considered by different authors (see [7,9,10,16]). The problem of minimization of
a functional with final observation and the problem of the optimal control time were
considered in [7–10,23]. A review of early results on this problem is contained in [8],
a survey of later works is contained in [17,23], see also [3, 12].

The main difference between the problem considered in this paper and in previous
works consists in the type of observation. We consider the point-wise observation con-
trary to the previously studied control problems with final and distributed observation
(see, for example, [10, 13,16]).

This paper develops results obtained in [3–6]. We consider a more general problem
(equation with variable coefficient a = a(x, t) and a non-homogeneous initial condition)
and prove new results on qualitative properties of its minimizer. We prove these results
by methods of qualitative theory of differential equations and, in particular, by some
methods described in [1, 2].

2. NOTATION, DEFINITIONS AND PREVIOUS RESULTS

Definition 2.1. By V 1,0
2 (QT ) we denote the Banach space of all functions

u ∈W 1,0
2 (QT ) with the finite norm

‖u‖V 1,0
2 (QT ) = sup

0≤t≤T
‖u(x, t)‖L2(0,1) + ‖ux‖L2(QT ) (2.1)

such that t 7→ u(·, t) is a continuous mapping [0, T ]→ L2(0, 1).
The space V 1,0

2 (QT ) was introduced in [15, p. 26]. Its norm (2.1) naturally occurs
in the energy balance equation corresponding to a mixed problem for a parabolic
equation (see [15, Chapter 3, (2.22)]).

Definition 2.2. By W̃ 1
2 (QT ) we denote the space of all functions η ∈W 1

2 (QT ) such
that η(x, T ) = 0 for all x ∈ (0; 1) and η(0, t) = 0 for all t ∈ (0;T ).
Definition 2.3 ([15, Chapter 3, §2, p. 161]). We say that a function u ∈ V 1,0

2 (QT )
is a weak solution to problem (1.1)–(1.3) if it satisfies the boundary condition
u(0, t) = ϕ(t) and the integral identity

∫

QT

(a(x, t)uxηx − uηt) dx dt =
1∫

0

ξ(x)η(x, 0) dx+
T∫

0

a(1, t)ψ(t) η(1, t) dt (2.2)

for any function η ∈ W̃ 1
2 (QT ).
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Since ϕ,ψ ∈W 1
2 (0, T ), any weak solution from W 1,0

2 (QT ) automatically belongs
to V 1,0

2 (QT ) (see [15, Chapter 3, §3]).
By standard technique (see [14, 15]) we can obtain the following estimate for

solutions to problem (1.1)–(1.3):

Theorem 2.4 ([5]). There exists a unique weak solution u ∈ V 1,0
2 (QT ) to problem

(1.1)–(1.3) satisfying the inequality

‖u‖V 1,0
2 (QT ) ≤ C1

(
‖ξ‖L2(0,1) + ‖ϕ‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T )

)
,

where the constant C1 is independent of ϕ, ψ, and ξ.

Hereafter we denote by uϕ the unique solution to the problem (1.1)–(1.3) with
ϕ,ψ ∈W 1

2 (0, T ), ξ ∈ L2(0, 1), existing according to Theorem 2.4.
Suppose z ∈ L2(0, T ). Let Φ ⊂W 1

2 (0, T ) be a bounded closed convex set. For some
c ∈ (0, 1) consider the functional Jz[ϕ] defined by (1.4) and put

mz[Φ] = inf
ϕ∈Φ

Jz[ϕ]. (2.3)

Consider the sets Φ ⊂W 1
2 (0, T ) and Z ⊂ L2(0, T ).

Definition 2.5. We call the problem (1.1)–(1.3), (2.3) exactly controllable on Z
by Φ if for any z ∈ Z there exists ϕ0 ∈ Φ such that

Jz[ϕ0] = 0. (2.4)

Definition 2.6. A function ϕ0 ∈W 1
2 (0, T ) satisfying (2.4) is called an exact control.

Definition 2.7. We call the problem (1.1)–(1.3), (2.3) densely controllable on Z
by Φ if for any z ∈ Z we have

mz[Φ] = 0.

3. MAIN RESULTS

Theorem 3.1. There exists a unique function ϕ0 ∈ Φ such that

mz[Φ] = Jz[ϕ0]. (3.1)

Now we study properties of the minimizer ϕ0 as an element of the set Φ.

Theorem 3.2. Suppose the coefficient a in (1.1) does not depend on t and

mz[Φ] > 0.

Then
ϕ0 ∈ ∂Φ.
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Theorem 3.3. Suppose the coefficient a in (1.1) does not depend on t and Φj , j = 1, 2,
are bounded convex closed sets in W 1

2 (0, T ) such that

Φ2 ⊂ IntΦ1

and
mz[Φ1] > 0.

Then
mz[Φ1] < mz[Φ2].

Another important question concerns exact controllability of the extremal problem.
The next theorem shows that the set Z of functions z ∈ L2(0, T ) admitting exact

controllability is a sufficiently “small” subset of L2(0, T ).

Theorem 3.4. The set Z of all functions z ∈ L2(0, T ) admitting exact controllability,
i.e. such that Jz[ϕ] = 0 for some ϕ ∈ W 1

2 (0, T ), is a first Baire category subset
in L2(0, T ).

The following result proves the dense controllability for Z = L2(0, T ) and
Φ = W 1

2 (0, T ).

Theorem 3.5. Suppose the coefficient a in (1.1) does not depend on t. Then for any
z ∈ L2(0, T ) the following equality holds:

mz[W 1
2 (0, T )] = 0. (3.2)

4. PROOFS

First we prove Theorem 3.1.

Proof of Theorem 3.1. The proofs of results on the existence and uniqueness are based
on the following lemma concerning the best approximation in Hilbert spaces.

Lemma 4.1 ([3]). Let A be a convex closed set in a Hilbert space H. Then for any
x ∈ H there exists a unique element y ∈ A such that

‖x− y‖ = inf
z∈A
‖x− z‖.

Denote
B =

{
y = uϕ(c, ·) : ϕ ∈ Φ

}
⊂ L2(0, T ).

By the convexity of Φ, the set B is a convex subset in L2(0, T ). Now, by Theorem 2.4
we have the inequality

‖uϕ‖V 1,0
2 (QT ) ≤ C1

(
‖ξ‖L2(0,1) + ‖ϕ‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T )

)
, (4.1)

where the constant C1 does not depend on ξ, ϕ and ψ. The set Φ is bounded and
closed in W 1

2 (0, T ) and by estimate (4.1) we obtain that B is a bounded and closed set



On properties of minimizers of a control problem. . . 599

in L2(0, T ). Now we prove that B is a closed subset of L2(0, T ). Let {yk}∞k=1 ⊂ B be
a fundamental sequence in L2(0, T ) having the limit y ∈ L2(0, T ). The corresponding
sequence {ϕk} ⊂ Φ is a weakly precompact set in W 1

2 (0, T ), by the boundedness of Φ.
Let ϕ ∈ Φ be the weak limit of its subsequence. Hence, by the Banach-Saks theorem
([20, Chapter 1, Sec. 3], see also [19]), there exists a new subsequence {ϕkj} such that

‖ϕ̃l − ϕ‖W 1
2 (0,T ) → 0, l→∞,

ϕ̃l = 1
l

l∑

j=1
ϕkj .

(4.2)

Therefore, for the corresponding sequence of solutions

uϕ̃l = 1
l

l∑

j=1
uϕkj

we obtain

‖uϕ̃l − uϕ̃m‖V 1,0
2 (QT ) ≤ C1‖ϕ̃l − ϕ̃m‖W 1

2 (0,T ) → 0, l,m→∞. (4.3)

This means that uϕ̃l(0, t) = ϕ̃l(t) and the integral identity
∫

QT

(a(x, t)(uϕ̃l)xηx − uϕ̃lηt) dx dt (4.4)

=
1∫

0

ξ(x)η(x, 0) dx+
T∫

0

a(1, t)ψ(t) η(1, t) dt

holds for any function η ∈ W̃ 1
2 (QT ). Taking into account relations (4.2), (4.3),

and (4.4), we see that there exists the limit function u ∈ V 1,0
2 (QT ), which is a weak

solution to problem (1.1)–(1.3) with the boundary function ϕ and

‖u− uϕ̃l‖V 1,0
2 (QT ) ≤ C1‖ϕ− ϕ̃l‖W 1

2 (0,T ).

So, by the embedding estimate (see [15, Chapter 1, Sec. 6, (6.15)]), we obtain

‖u(c, ·)− uϕ̃l(c, ·)‖L2(0,T ) ≤ C2‖u− uϕ̃l‖V 1,0
2 (QT ) ≤ C1C2‖ϕ− ϕ̃l‖W 1

2 (0,T ),

whence y = u(c, ·) ∈ B and B is a closed subset in L2(0, T ).
Therefore, by Lemma 4.1, there exists a unique function y = u(c, ·), where

u ∈ V 1,0
2 (QT ) is a solution to problem (1.1)–(1.3) with some ϕ0 ∈ Φ such that

mz[Φ] = Jz[ϕ0].
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Now we prove that such ϕ0 ∈ Φ is unique. If not, consider a pair of such functions
ϕ1, ϕ2 and the corresponding pair of solutions uϕ1 , uϕ2 . The function ũ = uϕ1 − uϕ2

is a solution to the problem

ũt = (a(x, t)ũx)x, 0 < t < T, 0 < x < 1, (4.5)
ũ(0, t) = ϕ̃(t), 0 < t < T, ϕ̃(t) = ϕ1(t)− ϕ2(t), (4.6)
ũ(c, t) = 0, 0 < t < T, (4.7)
ũx(1, t) = 0, 0 < t < T, (4.8)
ũ(x, 0) = 0, 0 < x < 1. (4.9)

Taking into account integral identity (2.2) with the function η equal to 0 on
[0, c]× [0, T ], we obtain that the function ũ on the rectangle Q(c)

T = (c, 1)× (0, T ) is
equal to the solution to the problem

ût = (a(x, t)ûx)x, 0 < t < T, c < x < 1, (4.10)
û(c, t) = 0, 0 < t < T, (4.11)
ûx(1, t) = 0, 0 < t < T, (4.12)
û(x, 0) = 0, c < x < 1. (4.13)

But the solution to problem (4.10)–(4.13) vanishes on [c, 1]× [0, T ], whence we have

ũ(x, t) = 0, c < x < 1, 0 < t < T. (4.14)

Now we prove that
ũ(x, t) = 0, 0 < x < 1, 0 < t < T. (4.15)

Applying the unique continuation theorem for parabolic equations ([21, Thm. 1.1])
to the solution ũ to problem (4.5)–(4.9), we obtain that (4.15) follows from (4.14).
Therefore, ũ(x, t) = 0 for any x ∈ (0, 1) and t ∈ (0, T ). This means that ϕ̃(t) =
ũ(0, t) = 0. The proof of Theorem 3.1 is completed.

For further considerations we need the following result analogous to the classical
maximum principle.

Theorem 4.2. Let u ∈ V 1,0
2 (QT ) is a solution to the problem

ut = (a(x, t)ux)x, (x, t) ∈ QT , (4.16)
u(0, t) = ϕ(t), ux(1, t) = 0, 0 < t < T, (4.17)
u(x, 0) = ξ(x), 0 < x < 1. (4.18)

Then for almost all (x, t) ∈ QT the following inequalities hold:

min
{

0, ess inf
t∈[0,T ]

ϕ(t), ess inf
x∈[0,1]

ξ(x)
}
≤ u(x, t)

≤ max
{

0, ess sup
t∈[0,T ]

ϕ(t), ess sup
x∈[0,1]

ξ(x)
}
.

(4.19)
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Proof. Let
k = max

{
ess sup
t∈[0,T ]

ϕ(t), ess sup
t∈[0,1]

ξ(t)
}
.

We define the function u(k) = max{u − k, 0}. By the same way as in the proof of
Theorem 7.1 ([14, Chapter 3, Sec. 7]) we can obtain for 0 < t1 < T the following
equality

1∫

0

(u(k)(x, t1))2dx+ 2
t1∫

0

( 1∫

0

a(x, t)(u(k)
x )2dx

)
dt = 0.

Therefore, for almost all (x, t) ∈ Qt1 we have

u(x, t) ≤ max
{

0, ess sup
t∈[0,T ]

ϕ(t), ess sup
x∈[0,1]

ξ(x)
}

and obtain the right inequality from (4.19). Similar considerations with the function
−u proves the left inequality from (4.19).

Now we prove Theorem 3.4.

Proof of Theorem 3.4. Consider the solutions uϕj (x, t) ∈ V 1,0
2 (QT ), j = 1, 2. Denote

ũ = uϕ1−uϕ2 . The function ũ is a solution of equation (1.1) and satisfies the conditions

ũ(0, t) = ϕ̃(t) = ϕ1(t)− ϕ2(t),
ũx(1, t) = 0,
ũ(x, 0) = 0.

By Theorem 4.2, the solution ū satisfies the inequalities

min
{

0, ess inf
t∈[0,T ]

ϕ̃(t)
}
≤ ū(x, t) ≤ max

{
0, ess sup

t∈[0,T ]
ϕ̃(t)

}
. (4.20)

From (4.20) we obtain

‖ũ‖L∞(QT ) ≤ ‖ϕ1 − ϕ2‖L∞(0,T ),

and, consequently, by the continuity of solution to equation (4.16),

sup
t∈[0,T ]

|ũ(c, t)| ≤ ‖ϕ1 − ϕ2‖L∞(0,T ). (4.21)

By integrating inequality (4.21), we obtain

‖ũ(c, t)‖L2(0,T ) ≤
√
T‖ϕ1 − ϕ2‖L∞(0,T ). (4.22)

Suppose the functions ϕ1 and ϕ2 are the exact control functions for given z1 and z2.
This means that

Jzj [ϕj ] =
T∫

0

(uϕj (c, t)− zj(t))2dt = 0, j = 1, 2.
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In this situation inequality (4.22) invokes the inequality

‖z1 − z2‖L2(0,T ) ≤
√
T‖ϕ1 − ϕ2‖L∞(0,T ) (4.23)

for arbitrary functions z1 and z2 admitting exact controllability.
Let Z ⊂ L2(0, T ) be the set of exactly controllable functions. We have Z =

∪∞M=1ZM , where ZM ⊂ L2(0, T ) is the set of functions exactly controllable from

ΦM = {ϕ ∈W 1
2 (0, T ), ‖ϕ‖W 1

2 (0,T ) ≤M}.

For any M = 1, 2, . . . consider an arbitrary sequence of control functions {ϕk} ⊂ ΦM
and the corresponding sequence {zk(t)} = {uϕk(c, t)} ⊂ ZM . By the embedding
theorem for W 1

2 (0, T ), we have

‖ϕkl − ϕkj‖L∞(0,T ) → 0, l, j →∞, (4.24)

for some subsequence ϕkj . Therefore, by (4.23), (4.24), we get for the sequence
{zkj} ⊂ ZM the relation

‖zkl − zkj‖L2(0,T ) ≤
√
T‖ϕkl − ϕkj‖L∞(0,T ) → 0, j, l→∞. (4.25)

It follows from (4.25) that ZM is a pre-compact set in L2(0, T ). So, ZM is nowhere
dense in L2(0, T ). Thus, since Z = ∪∞M=1ZM , we conclude that Z is a first Baire
category set in L2(0, T ). Theorem 3.4 is proved.

Now we prove Theorem 3.5.

Proof of Theorem 3.5. Let us represent the solution to the problem

ut = (a(x)ux)x, (x, t) ∈ QT ,
u(0, t) = ϕ(t), ux(1, t) = ψ(t), t > 0,
u(x, 0) = ξ(x), 0 < x < 1,

in the form
uϕ = v + w,

where v and w are solutions of the following boundary value problems

vt − (a(x)vx)x = 0, 0 < x < 1, 0 < t < T, (4.26)
v(0, t) = ϕ(t), 0 < t < T, (4.27)
vx(1, t) = 0, 0 < t < T, (4.28)
v(x, 0) = 0, 0 < x < 1, (4.29)

and

wt − (a(x)wx)x = 0, 0 < x < 1, 0 < t < T,

w(0, t) = 0, 0 < t < T,

wx(1, t) = ψ(t), 0 < t < T,

w(x, 0) = ξ(x), 0 < x < 1.
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Therefore, denoting v = vϕ, we have

Jz[ϕ] =
T∫

0

(vϕ(c, t)− z1(t))2dt, c ∈ (0, 1],

where z1(t) = z(t)− w(c, t) ∈ L2(0, T ). It follows from the inequality

mz[W 1
2 (0, T )] ≤ mz[{ϕ ∈W 1

2 (0, T ), ϕ(0) = 0}]

= inf
ϕ ∈ W 1

2 (0, T )
ϕ(0) = 0

T∫

0

(vϕ(c, t)− z1(t))2dt

that to establish (3.2) it is sufficient to prove that

inf
ϕ ∈ W 1

2 (0, T )
ϕ(0) = 0

T∫

0

(vϕ(c, t)− z1(t))2dt = 0.

Let us construct the weak solution vϕ ∈ W 1,0
2 (QT ) to problem (4.26)–(4.29) for

ϕ ∈ W 1
2 (0, T ), ϕ(0) = 0. Consider the function y(x, t) = vϕ(x, t)− ϕ(t) which is the

solution to the following problem:

yt − (a(x)yx)x = −ϕ′(t), 0 < x < 1, 0 < t < T,

y(0, t) = 0, 0 < t < T,

yx(1, t) = 0, 0 < t < T,

y(x, 0) = 0, 0 < x < 1.

Denote by {λk}∞k=1 and {Xk(x)}∞k=1 the sequences of eigenvalues and orthogonal
normalized in L2(0, 1) eigenfunctions of the boundary value problem

(a(x)X ′)′ + λX = 0, 0 < x < 1,
X(0) = 0, X ′(1) = 0.

So,

y = −
∞∑

k=1




1∫

0

Xk(z)dzXk(x)
t∫

0

e−λk(t−τ)ϕ′(τ)dτ




= −
t∫

0

a(0)
∞∑

k=1

X ′k(0)Xk(x)e−λk(t−τ)

λk
ϕ′(τ)dτ.
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Therefore,

vϕ(x, t) = ϕ(t)−
t∫

0

a(0)
∞∑

k=1

X ′k(0)Xk(x)e−λk(t−τ)

λk
ϕ′(τ)dτ

=
t∫

0

ϕ′(τ)dτ −
t∫

0

a(0)
∞∑

k=1

X ′k(0)Xk(x)e−λk(t−τ)

λk
ϕ′(τ)dτ

=
t∫

0

ϕ′(τ)
(

1− a(0)
∞∑

k=1

X ′k(0)Xk(x)e−λk(t−τ)

λk

)
dτ

=
t∫

0

ϕ′(τ)P (x, t− τ)dτ,

where

P (x, t) = 1− a(0)
∞∑

k=1

X ′k(0)Xk(x)e−λkt
λk

. (4.30)

The function P ∈ V 1,0
2 (QT ) is a weak solution to the mixed problem

Pt − (a(x)Px)x = 0, 0 < x < 1, 0 < t < T, (4.31)
P (0, t) = 1, 0 < t < T, (4.32)
Px(1, t) = 0, 0 < t < T, (4.33)
P (x, 0) = 0, 0 < x < 1, (4.34)

and satisfies the integral identity
∫

QT

(a(x)Pxηx − Pηt) dx dt = 0 (4.35)

for any function η ∈ W̃ 1
2 (QT ). We can define the trace P (c, ·) ∈ L2(0, T ), c ∈ (0, 1).

From the structure of series (4.30) we obtain that P is the Green function for problem
(4.31)–(4.34) and satisfies the integral identity (4.35).

We use the following property of linear manifolds in the Hilbert space ([18, Chap-
ter 2, §4, Lemma 2]):

Lemma 4.3. The linear manifold G is dense in Hilbert space H if and only if there
are no non-zero element which is orthogonal to any element of G.

Now we apply these lemma to H = L2(0, T ) and the linear manifold

G = {vϕ(c, t), ϕ(t) ∈ D(0, T ) = C∞0 (0, T )}.
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To prove (3.2) it is sufficient to prove that if for any ϕ(t) ∈ D(0, T ) we have

T∫

0

z1(t)vϕ(c, t)dt =
T∫

0

z1(t)
( t∫

0

P (c, t− τ)ϕ′(τ)dτ
)
dt = 0, (4.36)

then z1(t) = 0. We can transform (4.36) as

T∫

0

z1(t)
t∫

0

P (c, t− τ)ϕ′(τ)dτdt (4.37)

=
T∫

0

ϕ′(τ)
T∫

τ

z1(t)P (c, t− τ)dtdτ = 0.

By (4.37),
T∫

τ

z1(t)P (c, t− τ)dt = const, τ ∈ [0, T ],

but
T∫

T

z1(t)P (c, t− T )dt = 0,

so
T∫

τ

z1(t)P (c, t− τ)dt = 0, τ ∈ [0, T ].

After the transformation of variables we have

{t→ τ, τ → t}
T∫

τ

z1(t)P (c, t− τ)dt =
T∫

t

z1(τ)P (c, τ − t)dτ

{s = T − τ} =
T−t∫

0

z1(T − s)P (c, T − s− t)ds

{q = T − t} =
q∫

0

z1(T − s)P (c, q − s)ds

{z2(s) = z1(T − s)} =
q∫

0

z2(s)P (c, q − s)ds = 0,

(4.38)

for almost all q ∈ (0, T ), here z2(t) = z1(T − t) ∈ L2(0, T ) ⊂ L1(0, T ).
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Now we apply the Titchmarsh convolution theorem ([22, Thm. 7]):

Theorem 4.4. Let ξ(t) ∈ L1(0, T ), ζ(t) ∈ L1(0, T ) are functions, such that

t∫

0

ξ(τ)ζ(t− τ)dτ = 0

almost everywhere in the interval 0 < t < T , then ξ(t) = 0 almost everywhere in (0, α)
and ζ(t) = 0 almost everywhere in (0, β), where α ≥ 0, β ≥ 0, α+ β ≥ T .

We use Theorem 4.4 to the functions P (c, ·) and z2(·). By equality (4.38) we obtain
that there exist α ≥ 0, β ≥ 0, α + β ≥ T such that z2(s) = 0 almost everywhere
in (0, α) and

P (c, s) = 0

almost everywhere in (0, β).
Now we prove that β = 0. In the contrary let β > 0. Applying maximum principle

(4.19) from Theorem 4.2 to problem (4.31)–(4.34) we obtain that 0 ≤ P (x, t) ≤ 1
almost everywhere in QT . It follows from equality (4.30) that P is a smooth function
in [0, 1]× [ε, T ] for any ε ∈ (0, T ) and it is a classical solution of equation (4.31) in QT .
Then

0 ≤ P (x, t) ≤ 1, 0 ≤ x ≤ 1, ε < t ≤ T. (4.39)

Let us suppose that

P (c, t) = 0, 0 < c < 1, 0 < t < β ≤ T, (4.40)

and consider the function P in the domain Qβ/2,T = (0, 1) × (β/2, T ). Note that
by (4.39), (4.40),

P (c, β) = 0 = inf
(x,t)∈Qβ/2,T

P (x, t)

and (c, β) ∈ QT . By the strong maximum principle ([11, Chapter 7, §7.1, Thm. 11])
we obtain that P = 0 in (0, 1)× (β/2, β). It is impossible due to boundary condition
(4.32). These contradiction means that β = 0. So, by the inequality α+β ≥ T we have
α ≥ T and z2(t) = 0 almost everywhere in (0, T ). Now, z1(t) = 0 almost everywhere in
(0, T ). Therefore, by Lemma 4.3, we obtain equality (3.2). Theorem 3.5 is proved.

Now we prove Theorem 3.2.

Proof of Theorem 3.2. Let us suppose that ϕ0 ∈ Φ, Jz[ϕ0] = mz[Φ] (see (2.3), (3.1)),

Jz[ϕ0] > 0, (4.41)

and the relation ϕ0 ∈ ∂Φ is not true. Then

ϕ0 ∈ IntΦ. (4.42)
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It follows from (4.41) and Theorem 3.5 that there exists a function ϕ1 ∈ W 1
2 (0, T )

such that

Jz[ϕ1] < mz[Φ]
4 .

Let ϕ2 = (1− α)ϕ0 + αϕ1, 0 ≤ α ≤ 1. By (4.42) for some α0 ∈ (0, 1) we have ϕ2 ∈ Φ.
Now, we obtain

√
Jz[ϕ2] = ‖uϕ2(c, t)− z(t)‖L2(0,T )

= ‖(1− α0)uϕ0(c, t) + α0uϕ1(c, t)− z(t)‖L2(0,T )

≤ (1− α0)‖uϕ0(c, t)− z(t)‖L2(0,T ) + α0‖uϕ1(c, t)− z(t)‖L2(0,T )

< (1− α0)
√
mz[Φ] + α0

2
√
mz[Φ] =

(
1− α0

2

)√
mz[Φ].

Thence,
Jz[ϕ2] <

(
1− α0

2

)2
mz[Φ] < mz[Φ],

and ϕ0 is not a minimizer of Jz[ϕ] on Φ. This contradiction proves Theorem 3.2.

Now we prove Theorem 3.3.

Proof of Theorem 3.3. It follows from the inclusion Φ2 ⊂ Φ1 that mz[Φ1] ≤ mz[Φ2].
Suppose

mz[Φ1] = mz[Φ2]. (4.43)
By Theorem 3.1 and (4.43), we have the unique minimizer ϕ0 ∈ Φ1 ∩ Φ2 such that
Jz[ϕ0] = mz[Φ1] = mz[Φ2]. Additionally, it follows from Theorem 3.1 that

ϕ0 ∈ ∂Φ1 ∩ ∂Φ2.

But the relation Φ2 ⊂ IntΦ1 means ∂Φ1 ∩ ∂Φ2 = ∅. This proves Theorem 3.3.

5. CONCLUSIONS

Note, that this article extends previous authors results (see [3–6]). We consider
more general mathematical model and prove new results on qualitative properties
of minimizing function for the functional (1.4) connected with this model. It would
be interesting to obtain the results of Theorems 3.2, 3.3 and 3.5 for time-dependent
coefficient a. Now it is one of open problems to this model.
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