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ON THE CROSSING NUMBERS OF JOIN PRODUCTS
OF FIVE GRAPHS OF ORDER SIX

WITH THE DISCRETE GRAPH

Michal Staš

Communicated by Ingo Schiermeyer

Abstract. The main purpose of this article is broaden known results concerning crossing
numbers for join of graphs of order six. We give the crossing number of the join product
G∗ + Dn, where the disconnected graph G∗ of order six consists of one isolated vertex and
of one edge joining two nonadjacent vertices of the 5-cycle. In our proof, the idea of cyclic
permutations and their combinatorial properties will be used. Finally, by adding new edges
to the graph G∗, the crossing numbers of Gi + Dn for four other graphs Gi of order six will
be also established.
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1. INTRODUCTION

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the
edge set E(G) is the minimum possible number of edge crossings in a drawing of G in
the plane. (For the definition of a drawing see [6].) It is easy to see that a drawing with
minimum number of crossings (an optimal drawing) is always a good drawing, meaning
that no edge crosses itself, no two edges cross more than once, and no two edges
incident with the same vertex cross. Let D (D(G)) be a good drawing of the graph G.
We denote the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint
subgraphs of G. We denote the number of crossings between edges of Gi and edges of
Gj by crD(Gi, Gj), and the number of crossings among edges of Gi in D by crD(Gi).
It is easy to see that for any three mutually edge-disjoint subgraphs Gi, Gj , and Gk

of G, the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),
crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).
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It is well known that computing the crossing number of a graph is an NP-complete
problem. The exact values of the crossing numbers are known only for some graphs or
some families of graphs. The purpose of this article is to extend the known results
concerning this topic. We also often use the Kleitman’s result [4] on crossing numbers
of the complete bipartite graphs Km,n, that is,

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n

2

⌋⌊n− 1
2

⌋
for m ≤ 6.

Using Kleitman’s result [4], the crossing numbers for join of two paths, join of two
cycles, and for join of path and cycle were studied in [7]. Moreover, the exact values
for crossing numbers of G + Dn and of G + Pn for all graphs G of order at most four
are given in [9]. It is also important to note that the crossing numbers of the graphs
G + Dn are known for few graphs G of order five and six, see e.g. [6, 8, 10–14]. In all
these cases, the graph G is usually connected and contains at least one cycle.

The methods presented in the paper are based on combinatorial properties of cyclic
permutations. Some of the ideas and methods were used for the first time in [3,11]. In
[2,12,13], the properties of cyclic permutations are verified with the help of the software
described in [1]. In our opinion, the methods used in [6,8,9] do not suffice for establishing
the crossing number of the join product G∗ + Dn. Some parts of proofs can be done
with the help of software that generates all cyclic permutations in [1]. C++ version
of the program is located also on the website http://web.tuke.sk/fei-km/coga/.
The list with the short names of 6!/6 = 120 cyclic permutations of six elements are
collected in Table 1 of [12].

2. CYCLIC PERMUTATIONS AND CONFIGURATIONS

Let G∗ be the disconnected graph of order six consisting of one isolated vertex and of one
edge joining two nonadjacent vertices of the 5-cycle and let V (G∗) = {v1, v2, . . . , v6}.
We consider the join product of the graph G∗ with the discrete graph Dn on n
vertices. The graph G∗ + Dn consists of one copy of the graph G∗ and of n vertices
t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G∗.
Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with the
vertex ti. This means that the graph T 1 ∪ . . . ∪ T n is isomorphic with the complete
bipartite graph K6,n and

G∗ + Dn = G∗ ∪K6,n = G∗ ∪
( n⋃

i=1
T i

)
. (2.1)

Let D be a good drawing of the graph G∗ +Dn. The rotation rotD(ti) of a vertex ti

in the drawing D is the cyclic permutation that records the (cyclic) counterclockwise
order in which the edges leave ti, as defined by Hernández-Vélez et al. [3]. We use
the notation (123456) if the counterclockwise order of the edges incident with the
vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. We have to emphasize that a rotation is
a cyclic permutation. In a given drawing D, we separate all subgraphs T i, i = 1, . . . , n,
of the graph G∗ + Dn into three mutually disjoint subsets depending on how many
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times the considered T i crosses the edges of G∗ in D. For i = 1, . . . , n, T i ∈ RD if
crD(G∗, T i) = 0 and T i ∈ SD if crD(G∗, T i) = 1. Every other subgraph T i crosses the
edges of G∗ at least twice in D. For T i ∈ RD, let F i denote the subgraph G∗ ∪ T i,
i ∈ {1, 2, . . . , n}, of G∗ + Dn and let D(F i) be its subdrawing induced by D.

According to the arguments in the proof of the main Theorem 3.4, if we would like
to obtain a drawing D of G∗ + Dn with the smallest number of crossings, then the set
RD must be nonempty. Thus, we will only consider drawings of the graph G∗ for which
there is a possibility of obtaining a subgraph T i ∈ RD. Let us discuss all possible
drawings of G∗. Since the graph G∗ consists of the edge disjoint subgraphs C4 and P3
(for brevity, we write C4(G∗) and P3(G∗)), we only need to consider possibilities of
crossings between subdrawings of subgraphs C4(G∗) and P3(G∗). Of course, the edges
of the cycle C4(G∗) can cross itself in the considered subdrawings. Let us first consider
a good subdrawing of G∗ in which the edges of C4(G∗) do not cross each other. In
this case, we obtain three non isomorphic drawings shown in Figure 1(a), (b), and (c).
If we consider a good subdrawing of G∗ in which the edges of C4(G∗) cross each other,
then the edges of P3(G∗) do not cross the edges of C4(G∗) only in one case that is
shown in Figure 1(d). If the edges of C4(G∗) are crossed at least once by the edges of
P3(G∗), then there are next four possibilities due to the considered good subdrawing
of G∗ and they are shown in Figure 1(e), (f), (g), and (h). The vertex notation of the
graph G∗ in Figure 1 will be justified later.
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Fig. 1. Eight possible non isomorphic drawings of the graph G∗

First, let us assume a good drawing D of the graph G∗ + Dn in which the edges
of G∗ do not cross each other. In this case, without loss of generality, we can choose
the vertex notation of the graph G∗ in such a way as shown in Figure 1(a). Our aim is to
list all possible rotations rotD(ti) which can appear in D if the edges of T i do not cross
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the edges of G∗. Since there is only one subdrawing of F i \ {v6} represented by the ro-
tation (15432), there are five possibilities to obtain the subdrawing of F i depending
on in which region the edge tiv6 is placed. We denote these five configurations by Ak,
for k = 1, . . . , 5. For our considerations over the number of crossings of G∗ + Dn,
it does not play a role in which of the regions is unbounded. So we can assume
the configurations of F i drawn as shown in Figure 2. In the rest of the paper, we
represent a cyclic permutation by the permutation with 1 in the first position. Thus
the configurations A1, A2, A3, A4, and A5 are represented by the cyclic permutations
(156432), (154362), (165432), (154632), and (154326), respectively. Of course, in a fixed
drawing of the graph G∗ + Dn, some configurations fromM = {A1,A2,A3,A4,A5}
need not appear. So we denote byMD the set of all configurations ofM that appear
in D.
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Fig. 2. Drawings of all five possible configurations of the subgraph F i

We remark that if two different subgraphs F i and F j with configurations from
MD cross in a drawing D of G∗ + Dn, then only the edges of T i cross the edges of T j .
Thus, we will deal with the minimum numbers of crossings between two different
subgraphs F i and F j depending on their configurations. Let X , Y be the configurations
fromMD. We denote by crD(X ,Y) the number of crossings in D between T i and T j for
different T i, T j ∈ RD such that F i, F j have configurations X , Y , respectively. Finally,
let cr(X ,Y) = min{crD(X ,Y)} over all good drawings of the graph G∗ + Dn with
X ,Y ∈ MD. Our aim is to establish cr(X ,Y) for all pairs X ,Y ∈ M. In particular,
the configurations A1 and A2 are represented by the cyclic permutations (156432)
and (154362), respectively. Since the minimum number of interchanges of adjacent
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elements of (156432) required to produce cyclic permutation (154362) is two, we
need at least four interchanges of adjacent elements of (156432) to produce cyclic
permutation (154362) = (126345).1) So any subgraph T j with the configuration A2 of
F j crosses the edges of T i with the configuration A1 of F i at least four times, that is,
cr(A1,A2) ≥ 4. The same reason gives

cr(A1,A3) ≥ 5, cr(A1,A4) ≥ 5, cr(A1,A5) ≥ 4, cr(A2,A3) ≥ 4,

cr(A2,A4) ≥ 5, cr(A2,A5) ≥ 5, cr(A3,A4) ≥ 4, cr(A3,A5) ≥ 5,

cr(A4,A5) ≥ 4.

Clearly, also cr(Ax,Ax) ≥ 6 for any x = 1, . . . , 5. The resulting lower bounds for
the number of crossings of configurations fromM are summarized in the symmetric
Table 1 (here, Ax and Ay are configurations of the subgraphs F i and F j , where
x, y ∈ {1, 2, 3, 4, 5}).

Table 1. The necessary number of crossings between T i and T j

for the configurations Ax, Ay

− A1 A2 A3 A4 A5
A1 6 4 5 5 4
A2 4 6 4 5 5
A3 5 4 6 4 5
A4 5 5 4 6 4
A5 4 5 5 4 6

Assume a good drawing D of the graph G∗ + Dn with at least one crossing among
edges of the graph G∗ (in which there is a subgraph T i ∈ RD). In this case, without
loss of generality, we can choose the vertex notations of the graph G∗ in such a way as
shown in Figure 1 (b)–(h). In all mentioned cases, we are able to use the same idea
as above, i.e., we obtain the same five rotations for ti with T i ∈ RD, and also the
same corresponding lower-bounds for numbers of crossings between two configurations
of F i and F j as in Table 1.

3. THE CROSSING NUMBER OF G∗ + Dn

Recall that two vertices ti and tj of G∗ + Dn are antipodal in a drawing of G∗ + Dn if
the subgraphs T i and T j do not cross. A drawing is antipodal-free if it has no antipodal
vertices. In the proof of the main theorem, the following statements related to some
restricted drawings will be helpful.

1) Let T x and T y be two different subgraphs represented by their rot(tx) and rot(ty) of length
m, m ≥ 3. If the minimum number of interchanges of adjacent elements of rot(tx) required to
produce rot(ty) is at most z, then crD(T x, T y) ≥

⌊
m
2

⌋⌊
m−1

2

⌋
− z. Details have been worked out

by Woodall [15].
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Let us first note that if D is a good and antipodal-free drawing of G∗ + Dn with
the vertex notation of the graph G∗ in such a way as shown in Figure 1(a), and
T i ∈ RD such that F i has configuration Ax ∈ MD, then crD(G∗ ∪ T i, T l) ≥ 3 for
any T l, l 6= i, see Figure 2. Therewith, there are possibilities of obtaining a subgraph
T k ∈ SD with crD(T i, T k) = 2 only for the cases of the configurations A1 and A2
of F i.
Lemma 3.1. Let D be a good and antipodal-free drawing of the graph G∗ +Dn, n > 2,
with crD(G∗) = 0 and with the vertex notation of the graph G∗ in such a way as shown
in Figure 1(a). Let T i ∈ RD be a subgraph such that F i has configuration Ax ∈MD,
x ∈ {1, 2}. If there is a subgraph T k ∈ SD with crD(T i, T k) = 2, then
a) crD(T i ∪ T k, T l) ≥ 4 for any subgraph T l, l 6= i, k;
b) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD, l 6= k.
Proof. Let us assume the configuration A1 of F i, and recall that it is represented
by the cyclic permutation (156432). The unique subdrawing D(F i) of the subgraph
F i contains five regions with the vertex ti on their boundaries, see Figure 2. If there
is a subgraph T k ∈ SD with crD(T i, T k) = 2, then the vertex tk must be placed in
the region with three vertices v4, v5, and v6 of the graph G∗ on its boundary. This
enforces that the edge v4v5 of the graph G∗ must be crossed by the edge tkv2 and
crD(T i, T k) = 2 only for T k with rotD(tk) = (152436). For more details, see the
considered subdrawing of G∗ ∪ T k in Figure 3.
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Fig. 3. The drawing of G∗ ∪ T k for T k ∈ SD with rotD(tk) = (152436)

a) Let T k ∈ SD be a subgraph with crD(T i, T k) = 2 and let T l be any subgraph
with l 6= i, k. As crD(K6,3) ≥ 6, we obtain

crD(T i ∪ T k, T l) ≥ 4.

b) Let T k ∈ SD be a subgraph with crD(T i, T k) = 2. If there is T l ∈ SD with
crD(T k, T l) = 1, then the vertex tl must be placed in the region of D(G∗ ∪ T k)
with four vertices v1, v2, v3, and v6 of G∗ on its boundary. This forces that no edge
of the graph G∗ ∪ T k is crossed by an edge tlvj , for j = 1, 2, 3, 6. As crD(T k, T l) = 1,
the subgraph T l is represented by rotD(tl) = (164325) if the edge v1v2 is crossed
by the edge tlv5, or by rotD(tl) = (156342) if the edge v2v3 is crossed by tlv4. Since
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the minimum number of interchanges of adjacent elements of (156432) required to
produce cyclic permutations (164325) and (156342) is one, the subgraph T l must cross
the edges of T i at least five times. Thus,

crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 5 + 1 = 7.

To finish the proof, let us assume that crD(T k, T l) ≥ 2 for each T l ∈ SD, l 6= k.
Clearly, the case crD(T i, T l) ≥ 4 enforces the desired result

crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 4 + 2 = 7.

Further, if crD(T i, T l) = 2, then rotD(tk) = rotD(tl) and crD(T k, T l) ≥ 6, see [15].
Similarly,

crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 3 + 3 = 7

is fulfilling if crD(T k, T l) ≥ 3 and crD(T i, T l) = 3. So, let us consider a subgraph
T l ∈ SD with respect to the restrictions crD(T k, T l) = 2 and crD(T i, T l) = 3. If
crD(T k, T l) = 2, then the vertex tl must be also placed in the region of D(G∗ ∪ T k)
with four vertices of G∗ on its boundary and no edge of the graph G∗ ∪ T k is crossed
by an edge tlvj , for j = 2, 6. It is not difficult to show that rotD(tl) is only one of
(153642), (143256), (146325), (165342), and (164352). Since the minimum number
of interchanges of adjacent elements of (156432) required to produce any of the five
cyclic permutations listed is two, this in turn implies that crD(T i, T l) ≥ 4, which
contradicts the fact that crD(T i, T l) = 3 in D(T i ∪ T k ∪ T l).

Due to the symmetry of the configurations A1 and A2, we are able to use the same
arguments for the configuration A2 of F i, and this completes the proof.

Now, let us turn to a good drawing D of the graph G∗ + Dn with at least one
crossing among edges of the graph G∗. For T i ∈ RD, we obtain the same configurations
A1, . . . ,A5 of F i together with the corresponding cyclic permutations as in the case
when crD(G∗) = 0. For T l ∈ SD, in Figure 1, it is possible to verify that crD(T i, T l) = 2
only for the configuration A1 of F i obtained from the drawings of G∗ in Figure 1(b)
and (e). The same holds for the configurations A1 and A2 of F i obtained from the
drawing of G∗ in Figure 1(d).

Lemma 3.2. Let D be a good and antipodal-free drawing of the graph G∗ +Dn, n > 2,
with crD(G∗) 6= 0 and with the vertex notation of the graph G∗ shown in Figure 1(b),
(d) or (e). Let T i ∈ RD be a subgraph such that F i has configuration Ax ∈ MD. If
there is a subgraph T k ∈ SD with crD(T i, T k) = 2, then

a) crD(T i ∪ T k, T l) ≥ 4 for any subgraph T l, l 6= i, k;
b) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD, l 6= k.

Due to the use of similar arguments as in the proof of the previous Lemma 3.1,
the proof of Lemma 3.2 can be omitted.
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Collorary 3.3. Let D be a good and antipodal-free drawing of G∗ +Dn, for n > 2, with
the corresponding vertex notations of the graph G∗ in such a way as shown in Figure 1.
If T i, T j ∈ RD are different subgraphs such that F i, F j have different configurations
from any of the sets {A1,A2}, {A2,A3}, {A3,A4}, {A4,A5}, and {A5,A1}, then

crD(T i ∪ T j , T k) ≥ 6 for any T k ∈ SD,

i.e.,

crD(G∗ ∪ T i ∪ T j , T k) ≥ 7 for any T k ∈ SD.

Proof. Let D be a good and antipodal-free drawing of G∗ +Dn with the subdrawing of
G∗ as shown in Figure 1(a) and let us assume the configurations A1 of F i, and A2 of F j .
If there is a subgraph T k ∈ SD with crD(T i, T k) = 2, then the subgraph G∗ ∪ T k can
be represented only by the cyclic permutation (152436). Note that the configuration
A2 is represented by (154362). Since the minimum number of interchanges of adjacent
elements of (154362) required to produce cyclic permutation (152436) is two, we obtain
crD(T j , T k) ≥ 4. Hence,

crD(G∗ ∪ T i ∪ T j , T k) ≥ 1 + 2 + 4 = 7.

We can apply the same idea for the case, if there is a subgraph T k ∈ SD with
crD(T j , T k) = 2. It remains to consider the case where crD(T i, T k) ≥ 3 and
crD(T j , T k) ≥ 3, which yields that

crD(G∗ ∪ T i ∪ T j , T k) ≥ 1 + 3 + 3 = 7

trivially holds for any such T k ∈ SD. The proof proceeds in the similar way also for
the remaining pairs of configurations, and also for others considered drawings of G∗ in
Figure 1 with crD(G∗) ≥ 1. This completes the proof.

Theorem 3.4. cr(G∗ + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
for n ≥ 1.

Proof. In Figure 4 there are the drawings of G∗ +Dn with 6
⌊

n
2
⌋⌊

n−1
2
⌋

+2
⌊

n
2
⌋
crossings.

Thus,
cr(G∗ + Dn) ≤ 6

⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

We prove the reverse inequality by induction on n. The graph G∗ +D1 is planar; hence,
cr(G∗ + D1) = 0. The possibility of adding of a subgraph T k 6∈ RD ∪ SD with two
crossings into the subdrawing of A1 in Figure 2 forces cr(G∗ + D2) ≤ 2. The graph
G∗ + D2 contains a subgraph that is a subdivision of the graph K6 \ e obtained by
removing one edge from the complete graph K6. It was proved in [5] that cr(K6\e) = 2.
So, the result is true for n = 1 and n = 2. Suppose now that, for some n ≥ 3, there is
a drawing D with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
(3.1)

and that

cr(G∗ + Dm) ≥ 6
⌊m

2

⌋⌊m− 1
2

⌋
+ 2
⌊m

2

⌋
for any positive integer m < n. (3.2)
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Fig. 4. Two good drawings of G∗ + Dn with 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
crossings

We claim that the considered drawing D must be antipodal-free. For a contradiction
suppose, without loss of generality, that crD(T n−1, T n) = 0. If at least one of T n−1

and T n, say T n, does not cross G∗, it is not difficult to verify in Figure 1 that T n−1

must cross G∗ ∪ T n at least twice, that is, crD(G∗, T n−1 ∪ T n) ≥ 2. By [4], we already
know that cr(K6,3) = 6, which yields that each T k, k = 1, 2, . . . , n − 2, crosses the
edges of the subgraph T n−1 ∪ T n at least six times. So, for the number of crossings
in D we have

crD(G∗ + Dn) = crD (G∗ + Dn−2) + crD(T n−1 ∪ T n) + crD(K6,n−2, T n−1 ∪ T n)
+ crD(G∗, T n−1 ∪ T n)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 2
⌊n− 2

2

⌋
+ 6(n− 2) + 2

= 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.
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This contradiction with the assumption (3.1) confirms that D is antipodal-free.
Moreover, if r = |RD| and s = |SD|, the assumption (3.2) together with the well-known
fact cr(K6,n) = 6

⌊
n
2
⌋⌊

n−1
2
⌋
imply that, in D, there is at least one subgraph T i which

does not cross the edges of G∗, that is, r ≥ 1. More precisely:

crD(G∗) + crD(G∗, K6,n) ≤ crD(G∗) + 0r + 1s + 2(n− r − s) < 2
⌊n

2

⌋
,

i.e.,
0r + s + 2(n− r − s) < 2

⌊n

2

⌋
. (3.3)

This forces that 2r + s > 2n− 2
⌊

n
2
⌋
and r > n− r − s. Moreover, if n = 3, then

r ≥ 2. For r = 3,
crD(G∗ + D3) ≥ crD(T 1 ∪ T 2 ∪ T 3) ≥ 13

holds by summing the corresponding three values of Table 1. For r = 2 and s = 1, we
can assume that G∗ + D3 = G∗ ∪ T 1 ∪ T 2 ∪ T 3, where T 1, T 2 ∈ RD and T 3 ∈ SD. It
was discussed above that, in any good drawing of G∗ + Dn, T i crosses T k at least
twice if T i ∈ RD and T k ∈ SD. Hence,

crD(G∗ + D3) ≥ crD(T 1 ∪ T 2) + crD(T 1 ∪ T 2, T 3) ≥ 4 + 2 + 2 = 8.

These contradictions with the assumption (3.1) confirms that n ≥ 4. Now, for T i ∈ RD,
we will discuss the existence of possible configurations of subgraph F i = G∗ ∪ T i in
the drawing D and we show that in all cases the contradiction with the assumption
(3.1) is obtained.
Case 1. crD(G∗) = 0. Without loss of generality, we can choose the vertex notation
of the graph G∗ in such a way as shown in Figure 1(a). Thus, we will deal with the
configurations belonging to the nonempty setMD, i.e., we will discuss over all possible
subsets of the setMD in the following subcases:
Subcase 1a. {Ax,Ay,Az} ⊆ MD with x + 2 ≡ y + 1 ≡ z (mod 5). Without lost of
generality, let us consider three different subgraphs T n−2, T n−1, T n ∈ RD such that
F n−2, F n−1 and F n have different configurations A1, A2 and A3, respectively. Then,

crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n, T i) ≥ 14

is fulfilling for any T i ∈ RD with i 6= n − 2, n − 1, n by summing the values in all
columns in the considered three rows of Table 1. Moreover,

crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n, T l) ≥ 1 + 6 + 3 = 10

holds for any subgraph T l ∈ SD by Corollary 3.3 and by the fact that the edges of T l

have to cross the edges of T n at least thrice. Further, it is not difficult to verify that

crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n, T l) ≥ 6

is also true for each T l 6∈ RD ∪ SD. If

crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n, T l) < 6,
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then
crD(T n−2, T l) = crD(T n−1, T l) = crD(T n, T l) = 1.

Hence, the cyclic permutation associated with rotD(tl) must be obtained from all
three cyclic permutations which represent the configurations A1, A2, and A3 by only
one exchange of adjacent elements. But, the only cyclic permutation obtained from
both permutations associated with A1 and A2 is (154632) and this permutation is not
possible to obtain from the permutation associated with A3. This forces that

crD(T n−2 ∪ T n−1 ∪ T n, T l) ≥ 4

and therefore,
crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n, T l) ≥ 6

for any such T l. As
crD(T n−2 ∪ T n−1 ∪ T n) ≥ 13

holds by summing of three corresponding values of Table 1 between the considered
configurations A1, A2 and A3, by fixing the subgraph G∗∪T n−2∪T n−1∪T n, we have

crD(G∗ + Dn) = crD(K6,n−3) + crD(K6,n−3, G∗ ∪ T n−2 ∪ T n−1 ∪ T n)
+ crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n)

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 14(r − 3) + 10s + 6(n− r − s) + 13

= 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6n + 4(2r + s)− 29

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6n + 4

(
2n− 2

⌊n

2

⌋
+ 1
)
− 29

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

This contradicts the assumption of D.
Subcase 1b. {Ax,Ay} ⊆ MD with x + 1 ≡ y (mod 5) and if Az ∈ MD, z 6= x, y,
then neither y + 1 ≡ z (mod 5) nor z + 1 ≡ x (mod 5). Without lost of generality,
let us consider two different subgraphs T n−1, T n ∈ RD such that F n−1 and F n have
mentioned configurations Ax and Ay, respectively. Then,

crD(G∗ ∪ T n−1 ∪ T n, T i) ≥ 10

holds for any T i ∈ RD with i 6= n− 1, n also by summing the values in Table 1, and
Corollary 3.3 forces

crD(G∗ ∪ T n−1 ∪ T n, T l) ≥ 1 + 6 = 7
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for any T l ∈ SD. Hence, by fixing the subgraph G∗ ∪ T n−1 ∪ T n, we have

crD(G∗ + Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 10(r − 2) + 7s + 4(n− r − s) + 4

= 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 3(2r + s)− 16

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 3

(
2n− 2

⌊n

2

⌋
+ 1
)
− 16

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

This also contradicts the assumption of D.
Subcase 1c. 1 ≤ |MD| ≤ 2 and ifMD = {Ax,Ay} for x, y ∈ {1, . . . , 5}, x 6= y, then nei-
ther x+1 6≡ y (mod 5) nor x−1 6≡ y (mod 5). Now, let us first suppose that Ay ∈MD

for some y ∈ {3, 4, 5}. Without lost of generality, we can assume that T n ∈ RD with
the configuration A3 of the subgraph F n. The subdrawing of F n induced by D is shown
in Figure 2. Thus, we can easy to verify that there is no T l ∈ SD with crD(T n, T l) ≤ 2.
Moreover, crD(T n, T i) ≥ 5 holds for any T i ∈ RD, i 6= n, by the remaining values in
Table 1. Thus, by fixing of the graph G∗ ∪ T n, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(r − 1) + 4s + 3(n− r − s) + 0

= 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + (2r + s)− 5

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n +

(
2n− 2

⌊n

2

⌋
+ 1
)
− 5

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

Hence, the discussed drawing contradicts the assumption of D again. Now, assume
MD = {Ay} for only one y ∈ {1, 2}. Without lost of generality, we can consider the
configuration A1 of F n. Let us denote

SD(T n) = {T l ∈ SD : crD(F n, T l) = 3},
and s1 = |SD(T n)|. Remark that SD(T n) is a subset of SD, and s1 ≤ s, that is,
s− s1 ≥ 0. Hence, we will discuss two possibilities:

1) If r > s1, that is, r − 1 ≥ s1, then by fixing of the graph G∗ ∪ T n we have
crD(G∗ + Dn)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(r − 1) + 3s1 + 4(s− s1) + 3(n− r − s) + 0

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(r − 1) + 4s + 3(n− r − s)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ (2r + s) + 3n− 5

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+
(

2n− 2
⌊n

2

⌋
+ 1
)

+ 3n− 5

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.
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This contradicts the assumption of D.
2) Let us assume that r ≤ s1, that is, 0 ≤ r − 1 ≤ s1 − 1. Let T l be a subgraph

from nonempty set SD(T n). AsMD = {A1}, we have

crD(G∗ ∪ T n ∪ T l, T i) ≥ 6 + 2 = 8

for any T i ∈ RD, i 6= n. In the proof of Lemma 3.1, it was showed that the subgraph
F l can be represented only by the cyclic permutation (152436). Thus,

crD(G∗ ∪ T n ∪ T l, T k) ≥ 1 + 2 + 6 = 9

holds for any T k ∈ SD(T n), k 6= l. Again by Lemma 3.1, we can verify that

crD(G∗ ∪ T n ∪ T l, T k) ≥ 7

is fulfilling for any T k ∈ SD. Moreover,

crD(G∗ ∪ T n ∪ T l, T k) ≥ 2 + 4 = 6

for any T k 6∈ RD ∪ SD provided by crD(K6,3) ≥ 6 and crD(T n, T l) = 2. Since
n− r − s ≤ r − 1 ≤ s1 − 1, by fixing of the graph G∗ ∪ T n ∪ T l, we have

crD(G∗ + Dn)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 8(r − 1) + 9(s1 − 1) + 7(s− s1) + 6(n− r − s) + 3

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 8(r − 1) + 7(s1 − 1) + 7(s− s1) + 7(n− r − s) + 3

= 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ r + 7n− 12

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

This also contradicts the assumption of D.

Case 2. crD(G∗) ≥ 1. In all considered cases, without loss of generality, we can
choose the corresponding vertex notation of the graph G∗ in such a way as shown in
Figure 1(b)–(h). Further, using Lemma 3.2 and Corollary 3.3, we are able to use the
same idea and the same arguments as in Case 1, i.e., we obtain the same configurations,
and also the same corresponding lower-bounds of numbers of crossings between two
configurations as in Table 1.

Thus, it was shown in all mentioned cases that there is no good drawing D of
the graph G∗ + Dn with fewer than 6

⌊
n
2
⌋⌊

n−1
2
⌋

+ 2
⌊

n
2
⌋
crossings. This completes the

proof of the main theorem.
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4. FOUR OTHER GRAPHS

Finally, at least into one subdrawing in Figure 4, we are able to add some edges to the
graph G∗ without additional crossings, and we obtain four new graphs Gi + Dn. The
graphs Gi, i = 1, 2, 3, 4, are shown in Figure 5. Therefore, the drawings of the graphs
G1 + Dn, G2 + Dn, G3 + Dn, and G4 + Dn with 6

⌊
n
2
⌋⌊

n−1
2
⌋

+ 2
⌊

n
2
⌋
crossings are

obtained. On the other hand, G∗ + Dn is a subgraph of each Gi + Dn, and therefore,
cr(Gi + Dn) ≥ cr(G∗ + Dn) for any i = 1, 2, 3, 4. Thus, the next results are obvious.

Collorary 4.1. cr(Gi + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
for n ≥ 1, where i = 1, 2, 3, 4.

Remark that the crossing numbers of the graphs G1 +Dn and G2 +Dn was already
obtained in [12] also using the vertex rotation, and the crossing number of the graph
G3 + Dn was established in [6] without using the vertex rotation.

 

G2G1 G4G3

Fig. 5. Four graphs G1, G2, G3, and G4 obtained by adding new edges to the graph G∗
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