Opuscula Math. 41, no. 2 (2021), 163-185
https: //doi.org/10.7494/OpMath.2021.41.2.163 OPUSCULA MATHEMATICA

THE ACHROMATIC NUMBER OF Kz K; IS 18
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Abstract. A vertex colouring f : V(G) — C of a graph G is complete if for any two distinct
colours c1,c2 € C there is an edge {vi,v2} € E(G) such that f(vi) = ¢;, ¢ = 1,2. The
achromatic number of G is the maximum number achr(G) of colours in a proper complete
vertex colouring of G. In the paper it is proved that achr(Ke O K7) = 18. This result finalises
the determination of achr(Ke O Ky).
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1. INTRODUCTION

Consider a finite simple graph G and a finite colour set C. A vertex colouring
f: V(G) = C is complete if for any two distinct colours ¢;,co € C one can find
an edge {vy,v2} € E(G) ({v1,v2} is usually shortened to v1v2) such that f(v;) = ¢;,
i = 1,2. The achromatic number of G, in symbols achr(G), is the maximum cardinality
of C' admitting a proper complete vertex colouring of G. The invariant was introduced
by Harary, Hedetniemi, and Prins in [4], where the following interpolation theorem
was proved.

Theorem 1.1. If G is a graph, and x(G) < k < achr(G) for an integer k, then there
exists a k-element colour set C' and a proper complete vertex colouring f : V(G) — C.

Let GOH denote the Cartesian product of graphs G and H (the nota-
tion follows the monograph [10] by Imrich and Klavzar). So, V(K,OK,;) =
V(K,) x V(K,), and E(K,0K,) consists of all edges (z,y1)(z,y2) with
y1 # y2 and all edges (z1,y)(2z2,y) with #; # 2. The problem of determining
achr(K, 0 K,) is motivated by the fact that, according to Chiang and Fu [2],

achr(GOH) > achr(K, OK,)
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for arbitrary graphs G, H with achr(G) = p and achr(H) = ¢. The graph K, 0K, is
isomorphic to the graph K, K, hence

achr(K,0K,) = achr(K, O K,),
and so it is natural to suppose p < ¢. The case p € {2, 3,4} was solved by Horndk and
Puntigén in [9], and that of p = 5 by Hortidk and Pcola in [7,8].
Proposition 1.2 ([1]). achr(Ks O Kg) = 18.

More generally, in [3] Chiang and Fu proved that if r is an odd projective plane
order, then
aChI‘(K(T2+r)/2 O K(r2+r)/2) = (T3 + 7"2)/2.

The aim of the present paper is to finalise the determination of achr(Kg O K,) (for
q > 8 see Horndk [5,6]) by proving

Theorem 1.3. achr(K¢OK7) = 18.

To formulate the complete result describing the achromatic number of K¢ [ K,
we use the sets J,, a € [3, 6], where

J3 =12,3]U{q € [41,0) : ¢ = 1(mod 2)},
Jy={1,4,7} U[16,40] U {q € [42,0) : ¢ = O(mod 2)},
Js = {5,8},
Js = {6} U[9,15].

Note that J3 U Jy U Js U Jg = [1,00).

Theorem 1.4. Ifa € [3,6] and q € J,, then achr(KgOK,) = 2¢+ a.

2. NOTATION AND BASIC FACTS

For k,l € 7Z we denote integer intervals by
k,]={2€Z:k<z<l}, [koo)={2€Z :k<z}.

Further, for a set A and m € [0, 00) let (;141) be the set of m-element subsets of A.

Under the assumption that V(K,) = [1,r] for r € [1,00), a vertex colour-
ing f: V(K,O0K,) — C can be conveniently described using the p x ¢ matrix
M = M(f), in which the entry in the ith row and the jth column is

(M)i; = f(i.])-

If f is proper, then each line (row or column) of M consists of pairwise distinct
entries.

If f is complete, then each pair {v1,v2} € (g) (of colours in C) is good in M,
which means that at least one of the next two conditions is fulfilled:

(i) the pair {y1,72} is row-based (in M), i.e., there are i € [1,p] and j1,j2 € [1,4]

such that {717 72} = {(M)i,jp (M)i7j2}a
(ii) the pair {v1,72} is column-based (in M), i.e., there are i1,i5 € [1,p] and j € [1,¢]

such that {7y1,72} = {(M)iy j, (M)i, 5 }-
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The following is a natural necessary condition for the completeness of f: Given
v € C and C'" C C\ {7}, the number g(v,C") of pairs {7,7'} with 4" € C’"\ {v} that
are good in M, is at least |C’| — 1. Note that

g, < > g(ig.CY),

(4,5):(M)s, ="

where ¢(i, j, C') is the number of those pairs {v,v'}, v/ € C’\ {7}, that are good in
M due to the copy (M); ; of the colour ~.

Let M(p, q,C) be the set of p x ¢ matrices M with entries from C such that
entries of any line of M are pairwise distinct, and all pairs in (g) are good in M.
Thus if f:[1,p] x [1,¢] — C is a proper complete vertex colouring of K, 0 K, then
M(f) € M(p,q,C).

Conversely, if M € M(p,q,C), it is immediate to see that the mapping
far i [1,p] % [1,q] = C determined by far(i,5) = (M); ; is a proper complete vertex
colouring of K, K.

So, we have just proved

Proposition 2.1. If p,q € [1,00) and C is a finite set, then the following statements
are equivalent:

(1) there is a proper complete vertex colouring of K, K, using as colours elements
of C,
(2) M(p.q,C) # 0.

The following straightforward proposition comes from [5].

Proposition 2.2. Ifp,q € [1,00), C, D are finite sets, M € M(p, q,C), mappings

p:L,pl = [1,p], 0:[1,q] = [1,¢], 7 : C = D are bijections, and M, ,, M, are

p % q matrices defined by (M,5)i; = (M)p@),00) and (Mz)i; = 7((M);;), then
O

M, , € M(p,q,C) and M, € M(p,q, D).

Let M € M(p,q,C) and let v € C. For a colour vy € C and the colouring fys from
the proof of Proposition 2.1 denote V., = f3,(7) C [1,p] x [1,¢], and let N (V) be the
neighbourhood of V,, (the union of neighbourhoods of vertices in V). The ezcess of
7 is defined to be the maximum number exc(y) of vertices in a set S C N(V;) such
that the partial vertex colouring of K¢ K7, obtained by removing colours of S, is
still complete concerning the colour class ~.

The frequency of the colour 7 is the number of entries of M equal to 7.
An I-colour (I+colour) is a colour of frequency [ (at least ), and C; (Cj4) is the
set of I-colours (I+colours). Further, for k € {l,1+} let ¢, = |Cy],

R(i) = {(M)i; :j € [1,q]}, Re(i) = Cx NR(i), 7x(i) = [Re(d)], i € [1,p],
C@) ={(M)i; i€ [L,pl}, Ce(j) =CrNC(), ck(d) = ICk(3), j € [L,4]-
Finally, denote
Rg(il,ig) = (Y ﬂR(il) mR(iz), Tg(il,ig) = |R2(i1,i2)|, 11,12 € [17p},i1 7é 19,
Cz(j1,72) = C2NC(j1) NC(j2), c2(j1,J2) = |Cald1, J2)|, Jr.j2 € [1,4],51 # Jo-
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Considering a nonempty set S C [1,p] x [1,¢] we say that a colour v € C' occupies
a position in S (appears in S, has a copy in S or simply is in S) if there is (i,7) € S
such that (M); ; = .

3. PROPERTIES OF A COUNTEREXAMPLE TO THEOREM 1.3

We prove Theorem 1.3 by the way of contradiction. It is well known that
achr(G) > achr(H)
if H is an induced subgraph of a graph G. So, by Proposition 1.2,
achr(Ke O K7) > achr(K¢ O Kg) = 18.

Provided that Theorem 1.3 is false, by Theorem 1.1 and Proposition 2.1 there is
a set C with |C| =19 and a matrix M € M(6,7,C); henceforth the whole notation
corresponds to this (hypothetical) matrix M.

Claim 3.1. If v € C), then exc(y) = —I? + 121 — 18.

Proof. The vertex colouring fj; of Kg[ K7 is proper, hence
INV)|I=Tl+16—-1)—-1=1(12-1).

Further, fas is complete, and so each colour of C'\ {7} appears on a vertex belonging
to N (V). Therefore,

exc(y) =112 —=1)— (19— 1) = 1> + 121 — 18. O

Claim 3.2. The following statements are true:
1. Cc1 = 0,
2. ifl € [7,00), then ¢; =0,
3. co €[15,18],
4. c34 € [1,4],
5.8 =30 ic €1[6,12],
6. Cq+ S Co — ].5,
7. if c4r =0, then cs4 = c3 =4,
8. if cay > 1, then cz4 < 3,
9. c34 +cy4 <4,
10. if cs4 > 1, then cs4 + caq < 3.

Proof. 1. If v € C, then, by Claim 3.1, exc(vy) = =7 < 0, a contradiction.

2. If v € C) for some [ € [7,00), then by the pigeonhole principle the colouring fj,
is not proper, a contradiction.

3. By Claims 3.2.1, 3.2.2 we have

6
C2 +Cg+ = Zci = |C‘ =19
=2
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and
6

> iei = V(KO Ky)| = 42,

=2
hence

6
2y + 6(19 — c2) = 23 + 6cay > Y ic; > 20y + Begy = 205 + 3(19 — ca),
=2

which yields
114 —4¢ep > 42 > 57— ¢ and 15 < ¢p < 18.

4. A consequence of Claim 3.2.3.
5. The assertion of Claim 3.2.3 leads to

6

6
D iei =) ic; — 20y =42 — 2¢5 € [6,12].
=3 =2

6. We have

6

3-19—cotcar =3(co+c3+cay) —ca+cay §Zici:42
i=2

and
cqy < cog —15.

7. If c44 = 0, then
cat+c3=19, 2c2+3c3=42 and c3y =c3=42-2-19=4.
8. The assumption ¢4 > 1 and c34 = 4 would mean
¥>3-3+4=13> 12,

which contradicts Claim 3.2.5.
9. If ¢4y = 0, then c34 + c44 = c34 < 4. With ¢4y = 1 we have, by Claim 3.2.6,

1:C4+SCQ—15, 62216, 03219—CQ—C4+§2,
c3+ <3 and c34 +cygq < A4

Finally, from c44 > 2 it follows that

2§C4+§02—15, 02217,
19=co+cs+cgy >217T+c3+2=19+4c3 > 19,
co=17, ¢¢3=0, cay =2=c34+ and c3;+cyp =4
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10. We have

6
2(19 — C5+) + dc54 = 2(62 +c3 + 64) + 5(05 + CG) < Z?:Ci =42,
i=2
3cs+ <4 and c3+2c4 =42 —2(19 — 5 — ) — Hes — 6¢cg < 4 — 3es4,

hence c54 > 1 yields

05_._:].7 Cg+204§17 C4+:C5+:1,
34+ =c3+c4r =c3+1 and c3p+cgp=c3+14+1<3. O

A set D C Cy is of the type (mi'. ..mzk,nlil. ..n?l) if both (mq,...,myg),
(n1,...,n;) are decreasing sequences of integers from the interval [1,|D|], the number
of rows of M containing m; colours from D is a; > 1 for each 7 € [1, k], the number of
columns of M containing n; colours from D is b; > 1 for each i € [1,1], and

k !
Zmiai =2|D| = Znibi.
i=1 i=1

Forthcoming Claims 3.3, 3.4, 3.6, 3.7, and 3.9 state that certain types of 2- and
3-element subsets of Cy are impossible in a matrix M contradicting Theorem 1.3. The
mentioned claims are proved by contradiction. When proving that M avoids a type T,
we suppose that there is D C Cy, which is of the type T' (without explicitly mentioning
it), and we reach a contradiction with some of the properties following from the fact
that M € M(6,7,C).

Claim 3.3. No set {a, 3} C Cy is of the type (1%,22).

Proof. Since we have at our disposal Proposition 2.2, we may suppose without loss
of generality that (M)11 = o = (M)32 and (M)21 = 8 = (M)4,2. We use (w) to
express briefly that it is Proposition 2.2, which enables us to simplify our reasoning by
restricting our attention to matrices with a special structure. With A = C(1) U C(2)
we have |A| < 10. If v € C'\ A, then the fact that both pairs {v,a} and {v, 8} are
good forces v to occupy a position in S, = {1,3} x [3,7] and in Sz = {2,4} x [3,7] as
well. So,

|C\ Al <10 and |C\ A|=|C|—]A4]>09.
By Claim 3.2.4,
[(C\NA)NCo| = [C\NA[ = [(C\A)NC3y| > 9 —cgy 25,
hence there is 6 € (C \ A) N Cy. Now, as § is in both S, and Sg, there

is (i,k) € {1,3} x {2,4} such that § € Ra(i,k). If (i,k) = (1,2), then
(W) (M)1,3=10=(M)24 (see Figure 1).
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Fig. 1.

If |C\ A| = 10, then all ten positions in both S,, Sz are occupied by colours of
C'\ 4, and all twelve bullet positions in Figure 1 are occupied by colours of (C'\ A)\{d},
which means that

exc(8) > 12— |(C\ A)\ {0} =12— (10— 1) = 3

in contradiction to Claim 3.1.

If |C\ A] =9, then C(1)NC(2) = {a, B}. Let B be the set of four colours occupying
a position in [5, 6] x [1, 2]. Using exc(a) = exc(f) = 2 we see that at most two positions
in [1,4] x [3,7] are occupied by a colour of B. Thus, if ¢ € B is not in [1,4] X [3,7]
(and there are at least two possibilities for such ¢), then it must be in [5, 6] x [3, 7],
and so € € Cy (the colouring fis is proper). Then, however, the number of pairs {¢, e}
with ¢ € (C'\ A) N Cy that are good is at most four (¢ must share the column with
the copy of € appearing in [5, 6] x [3,7]), while

(C\A)NCy| > |C\ Al — |Cs4| >9—4 =5,

a contradiction.

Provided that (i, k) # (1, 2), a contradiction can be reached in a similar manner. [J
Claim 3.4. No set {a, 3} C Cy is of the type (2112,22).
PTOOf. Now (W) (M)1’1 == (M)Q’Q and (M)Q,l = ﬂ = (M)g,g. With A = (C(l) U
C(2) UR(2) each colour v € C'\ A has a copy in {i} x [3,7],7=1,3 ({v,a} and {v, 5}
are good). From |A| < 15 it follows that

IO\ A >19— 15 =4,
and then C'\ A C C5;: indeed, if § € (C'\ A) N Cy, then
exc(0) = [(C'\ A)\{d}] = 3,

a contradiction. Thus Cy C A, ¢o < 15, hence, by Claims 3.2.3, 3.2.4, ¢; = 15,
c3 =czy =4, C\ A= C3. = (s, each colour of Cs \ {«, 8} has exactly one copy in
([1,6] x [1,2]) U ({2} x [3,7]), and (w) € = (M)1,2, ¢ = (M)3,1 are (distinct) 2-colours.

First note that €, ¢ ¢ Ra(1, 3), for otherwise

max(exc(e),exc(()) > ¢z = 4.
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So, the second copies of ¢,( are in [4,6] x [3,7], and the pair {e,(} is good in the
corresponding 3 x 5 submatrix of M.

If the pair {e,(} is column-based, (w) € = (M)4,3 and ( = (M)s 3, then, with
a (2-) colour n appearing in {2} x [4, 7], both pairs {n,e} and {n,(} are good only if
71 occupies a position in {1,3,6} x {3}, a contradiction.

If the pair {e,(} is row-based, then (w) e = (M)43 and ( = (M)4,4; consider
six positions in [5,6] x [5,7]. Since r3(1) = r3(3) = 4 = c3, at most four of those
positions are occupied by 3-colours and at least two of them by 2-colours. Let B be
the set of 2-colours having a copy in ([5,6] x [5,7]) U ({2} x [5,7]). If ¥ € B, then,
having in mind that both pairs {d,e} and {9, (} are good, ¥ must have a copy in
{(1,4),(3,3),(4,1), (4,2)}; this contradicts the inequality |B| > 5. O

Claim 3.5. If j,l € [1,7], j £, then c2(j,1) < 2.

Proof. The assumption cz2(j,1) > 3 would contradict Claim 3.3 or Claim 3.4. O

Claim 3.6. No set {«, 3} C Cy is of the type (22,1%).

Proof. Here (w) (M)1n = a = (M) and (M)12 = B = (M)z4. With
A = R(1) UR(2) we have |A4] < 12, each colour of C'\ A is in both sets
Se = [3,6] x {1,3}, Sg = [3,6] x {2,4}, and 7 < |C \ 4] < 8. As
[(C\ A) N Cs| > 3, there is (j,1) € {1,3} x {2,4} such that v € (C'\ A) N Ca(4,1).

If (4,1) = (1,2), then (w) (M)31 =+ = (M)a,2 (see Figure 2).

a B . .
. a f
"}/ [ ] [ ] [ ]
[ ] ’Y [ ] [ ]
L] [ ]
L] [ ]
Fig. 2.

If |C'\ A| = 8, then all eight positions in both sets S, Ss are occupied by colours
of C'\ A. Further, all ten bullet positions in Figure 2, which are positions of vertices
in (N(Vu) UN(Vg)) N N(V,), are occupied by colours of (C'\ A) \ {7}), and so
exc(y) > 10 — (8 — 1) = 3, a contradiction.

Suppose that |C'\ A| =7 (and A| = 12). For m € {2,3+,44} and n € [0,2] let
C? be the set of colours in C), having n copies in [5,6] x [5,7], and let ¢!, = |C"|.
If § € C3 U C3%, then, since the pairs {4, a}, {d, 8} and {§,~} are good, § must appear
in {2} x [1,2], and so ¢} + % < 2; further, ¢3 = 0. Using Claim 3.2.9 we obtain

2
6=cy+ch+ch, +23+2¢, <ch+cG+ > (ch+chy)+chy (3.1)
n=0 ’

<cy+citesytesy <24+4=06,
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which implies

0_ 0 _ 1 _

3 =cyy = ¢y =0, (3:2)
2

C4+:C4+7

cy+ca=2,

€3+ + ¢4 = 4, and so, by Claim 3.2.10, ¢s4+ = 0.
For § € {a, 8} choose a set S5 C Ss with |Ss/| = 7 occupied by seven distinct
colours of C'\ A, and let

P =([3,6] x [1,4]) \ (S U Sﬂ’);

then |P| = 2. Since
[N (V5) N ([3,6] x [1,4])] = 10,

we have
2=-exc(y) 210 — (|P|+ [(C\ A\ {1} =4—-[P[=2,

hence both positions in P are necessarily occupied by a colour of A, and all sets
Sar, Sgr, P are unique. We express this property of v by saying that v is A-ezact.
Besides that, the two positions in P are occupied by two distinct colours of A, say A
and p; indeed, otherwise the colour of A, which occupies both positions in P, by (3.3),
would be a 5+colour, a contradiction. Let P = {(ix, jx), (¢4,7,)}, where A = (M);, j,
and p = (M);, j,- The excess of both a, 3 is 2, therefore (jx,j.) € {1,3} x {2,4}
(a colour occupying a position in P contributes to the excess of either « or 8, and «, 8
are contributing to the excess of each other).

The above reasoning concerning v can be repeated to prove that any colour
in (C'\ A)NCy is A-exact.

Suppose that ¢ € (C'\ A) N Cy; then ¢ is A-exact and ¢ € Co(j’,1’), where
(7.0) € {1,3} x {2,4}. Let {lx, L} = [1.4]\ {jr. s -

Assume first that iy = i,. By Claim 3.4,

[(C\A) N Ca(jin, )l < 2.

If (',1") # (jx, Ju), then either € = (M);, 1, or € = (M), 4,
The second possibility is iy # i,. By Claim 3.4,

[(C\A) NCa(ln,1)] < 2.

On the other hand, if (j',1') # (Ix,1,), then either € = (M);, j, or € = (M);,, jy -
In both cases
(C\NA)NCsy[ <2+2=4
and
[(C\NA)NCs4| >7—4=3. (3.5)

From (3.1) and (3.3) we obtain

(C\A)NCsp CC3UCT,
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hence ¢} + ¢3, > 3. Let us show the following:
No 3+colour occupies a position in [3,4] x [5,7], and ¢y > 1. (3.6)

Because of (3.2) and (3.3) we know that colours of (C'\ A) N Cs4 appear only
in ([3,6] x [1,4]) U ([5,6] x [5,7]). If 44 > 1, then, by Claim 3.2.8,

3203+Zc§+ci+23, 03+:c§+ci+:3,
C3+ = C3UCE, = (C\ A)NCsy,

2 =0, ch =2 (see (3.4)), and so (3.6) is true.
If ¢4+ = 0, then from (3.1), (3.4) and Claim 3.2.4 it follows that

aatc=4=c3y, C3, =CrUC2=((C\A)NC3,)UC?

and, by (3.5), ¢} > 3; since a colour of C% is only in ({2} x [1,2]) U ([5,6] x [5,7]),
c2 <1land c} > 1, (3.6) is true again.

Now, by (3.6), six positions in [3,4] x [5,7] are occupied by six distinct 2-colours
belonging to A \ {)\, u}, and there is a colour ¢ € C3, (w) ¢ = (M)s 5, see Figure 3.

a B . . o
¢/. J¢C a B o
¥ . .. . e e
Yy . . . e e
Fig. 3.

If a 2-colour 7 appears in a bullet position, then, since the pair {n,(} is good, the
second copy of 7 must occupy a circle position. In such a case, however, it is easy to
check that there is a set {0,:} € AN Cy of 2-colours occupying two bullet positions
and two circle positions, which contradicts either Claim 3.3 or Claim 3.4.

The case (j,1) # (1,2) can be treated similarly. O

Claim 3.7. No set {«, 8} C Cy is of the type (22,2112).

Proof. Let (w) (M)11 =a = (M)zz and (M)1,2 = = (M)23. First of all, we have
R5(1,2) = {a, 8}. Indeed, if (w) v € R(1,2) \ {a, 5}, then, by Claim 3.6, necessarily
(M)1,3 == (M)a,1. Each colour ¢ € C'\ Ry(1,2) occupies at least two positions in
[3,6] x [1, 3] (all pairs {4, a}, {8, 8}, {6, 7} are good), hence |C| < 11+ | %3] =17 < 19,
a contradiction.

With A = R(1) UR(2) U C(2) any colour v € C \ A occupies a position
in [3,6] x {1} as well as in [3,6] x {3}, hence |C' \ A < 4, |[A] < 16,
|C\ Al =19 —|A| >3 and |A| > 15.

Assume first that |A] = 15 and |C' \ A] = 4, which yields C \ A C Cs¢
(a 2-colour v € C \ A would satisfy exc(y) > 3), 3+ = ¢3 = 4 and
A = (5. For colours v = (M) 3 and 0 = (M)z,; their second copies appear in



The achromatic number of K¢ K7 is 18 173

[3,6] x ({2}U[4,7]), and the pair {v,d} is good in the corresponding 4 x 5 submatrix of
M. However, at most one of v, d is in [3, 6] x {2}, hence {~, §} is good in the submatrix
of M corresponding to [3,6] x [4,7].
If the pair {7, d} is column-based, then (w) v = (M)3 4 and 6 = (M )4 4, at most
one of colours in [5,6] x {2} belongs to R(1) UR(2), hence there is a 2-colour € and
€ [5,6] such that e = (M);2 = (M)11-;4 (so that both pairs {e,~}, {¢,0} are
good). For every colour ¢ ¢ C(2) U {(M);4} occupying a position in [1,2] x [5,7] (the
number of such colours is at least 4) there is n € {7, d, e} such that the pair {n,(}
is not good, a contradiction.

If the pair {v,d} is row-based, (w) v = (M)34 and § = (M)s5. If a colour
€ occupies a position in [4,6] x {2} and does not belong to R(1) UR(2) (there
are at least two such colours), then it must appear in {3} x [6,7] (pairs {e,~}
and {e,0} are good), (W) (M)s2 = ¢ = (M) and (M)s> = ¢ = (M)s7. If

a 2-colour 7 is in {6} x [4,7], then n = (M)32 (all pairs {77,19} with 9 € {v,9d,¢,(}
are good), r3(6) > 24+ 3 = 5 > c3, and so the colouring fj; is not proper,
a contradiction.

From now on |A| = 16 and |C'\ A| = 3. Suppose first that C \ A C C5;. From
¢34+ < 4 we obtain [ANCsy| < 1.

If (R(l) @] ]R(Q)) N 03+ = @, then (W) Y= (M)372, 0 = (M)472, g = (M)572 are
2-colours, and their second copies appear in [3,6] x [4,7]. Let

J={7ed7:CH)N{r,6e} #0}
by Claim 3.5 we know that 2 < |J| < 3. If

(1,5) € § = {(1,3), (2, )} U ([1, 2] x ([4, 7]\ J)),

then ¢(7, 7, {,9,e}) = 0; note that |S| = 10 — 2|.J|. On the other hand, the number of
pairs (4,7) € [3,6] x [4, 7], satistying g(4, j, {7, d,e}) = 3, is less than |S| (at most 3 if
|J| = 3 and at most 4 if |J| = 2). Thus, there is a 2-colour ¢ in S and n € {v, 4, ¢}
such that the pair {¢,n} is not good.

If |(R(1) UR(2)) N C34| =1, then c¢g = ¢34 = 4 and ¢2(2) = 6.

Suppose first that both v = (M)q3 and 6 = (M)s,1 are 2-colours. The second
copies of 7,0 are then in [3, 6] x [4, 7], for if not,

max(exc(y),exc(d)) > 1+ |C\ Al =4

If the pair {v,d} is column-based, then (w) v = (M)s4 and 6§ = (M)s4 so
that (M)s2 = ¢ = (M)ga and (M)g2 = ¢ = (M)s5,4 (all pairs {e,7},{g,6},{¢,7},
{¢, 6} are good). For (i,7) € [1,2] x [5,7] then ¢(i,7,{7,0,¢,(}) = 1, and at least
three positions in [1,2] x [5,7] are occupied by a 2-colour that is in [3,6] x [5,7];
on the other hand, for (i,5) € [3,6] x [5,7] we have g¢(i,7,{v,d,&,(}) < 2,
a contradiction.

If the pair {v,0} is row-based, then (w) v = (M)s4 and § = (M)ss.
Then g(i,7,{7,6}) = 0 for (i,j) € [4,6] x {2} and g(i,5,{7,0}) < 1 for
(i,7) € [4,6] x [4,7]; this leads to a contradiction, since at least one of colours in
[4,6] x {2} has its second copy in [4, 6] x [4,7].
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So, one of 7,0 is a 2-colour and the other a 3-colour, (w) v € C3 and § € C3. As
above, the second copy of v appears in [3,6] x [4,7], (w) v = (M)s,4. All colours of
the set B = {¢,(,n, ¥}, where e = (M)32, ( = (M)a2, n = (M)52 and ¥ = (M)g.2,
are 2-colours. By Claim 3.3, the second copy of a colour ¢ € B does not appear in
C(1) UC(3), hence is in [3,6] x [4,7] and, additionally, in R(3) U C(4), provided that
¢ # ¢ (the pair {¢,v} is good). Then |[BNR(3)| < 3, since otherwise exc(e) > 3. So, by
Claim 3.5, with B’ = {¢, 1,9} we have 1 < |B' N C(4)| < 2.

If IB'NC(4)| =2, then (w) n = (M)4,4, ¢ = (M)45 (here we use Claim 3.4) and
¥ = (M)s,5. For both [ € [6, 7] then g(2,1, B’U{v}) = 0. This leads to a contradiction,
since (M)a6, (M)a,7 are 2-colours, and ¢(i,7, B’ U {y}) =4 only if (3, 5) = (6,4).

If |B/ N C(4)| = 1, then (W) C = (M)574,7’] = (M)375 and 9 = (M)376
so that ¢(2,7,B’ U {y}) = 0. A contradiction follows from the fact that
9(i, 3, B"U{v}) < 3 for each (4, 7).

Now suppose that (C\ A)NCy # 0, (w) v = (M)s1 = M)z € (C\A)NCs.
For m € {2,3,34}, n € [1,2] let C7, be the set of colours in C,, having n copies in
[5,6] x [4,7] and ¢, = |C|; then

¢y +ch, + 25, =8. (3.7)

Since ¢(4, j, {a, B,7}) = 0 for (i,5) € [5,6] x [4,7] and g(i, j,{c, B,7}) = 3 if and only
if (i,7) € S ={(1,3),(2,1),(3,2),(4,2)}, we have

cy+c2 <4 (3.8)

Let us first show that ¢3 < 3. Indeed, if ¢ = 4, then all pairs {d,e} € (6;21)
are good only if there is i € [5,6] such that C3 C R(i). This immediately im-
plies ¢3, = 0 and, by Claim 3.2.4 and (3.7), 4 cap > iy = 4, 3 = 4
and Csy C R(11 — ¢). Then § = (M)11—i2 € Ca, the second copy of ¢ is
in [3,4] x [4,7] (by Claim 3.3), hence at least one of pairs {6,e} with ¢ € C3
is not good, a contradiction.

Further, we prove that

Y

Cé-s- + C§+ = C3+, (3.9)
which is equivalent to
Ci, UC;, = Csy. (3.10)
If ¢4y > 1, then Claim 3.2.8 yields ¢34 < 3. Because of (3.7) we obtain
Q(Czl’)+ + C§+> =8+ cé+ -3,
5

1 1
c§++c§+=§(8+cé+—cé) 2 5(8_3): 2

3263+Zc§++c§+23,

and so (3.9) is true under the assumption ¢4y > 1 (implying ¢34 = 3).
On the other hand, ¢4+ = 0 implies cs4 = ¢3 = 4 (Claim 3.2.7). In this case, using
(3.7) and (3.8), we see that

8=(cy+ )+ (34 +31) <d+egy =8,
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hence
1 2 1 2
Cap =4 =cyt ey =3y gy,

and (3.9) holds again.
Note that now necessarily

(C\A)NCol = 1.
Indeed, |(C'\ A) N Cs| = 3 is impossible by Claim 3.5, since in such a case
c2(1,3) > [(C\ A)NCy| =3.

Moreover, by Claims 3.3 and 3.4, the assumption |(C'\ A)NC5| = 2 would mean that for
the unique colour § € (C'\ A)NCsy there is ¢ € [5, 6] such that (M);1 =6 = (M)11-4,3;
however, according to (3.10), ¢ has an exemplar in [5, 6] x [4, 7], and so the colouring
far is not proper, a contradiction.

Thus

(C\ A) N Cay| = 2. (3.11)

Because of a reasoning analogous to that above we see that each colour of (C'\ A)NC3
occupies exactly one position in [5,6] x {1, 3},

(C\A)NCsy =0y, (3.12)

and then, using (3.10),
Cs4 C R(5) NR(6). (3.13)
Now if ¢44 > 1 (and, consequently, csy = 3, which we have seen already),

then, by (3.9), (3.11) and (3.12), c§, = 2 and ¢, = 1; since ¢ < 3, in such
a case ¢ + 3, + 23, < 7 in contradiction with (3.7).

Therefore, in the rest of the proof of Claim 3.7 we work with c44 = 0, c34 = 4,
ch, =2,ck=c3, =2and c} =2, see (3.7), (3.9), (3.11), (3.12). Moreover, all positions
in S are occupied by colours of C3UC3. If § = (M), ; € C3 with (i, j) € {(1,3),(2,1)},
then, because of (3.11), (3.12) and (3.13),

exc(6) > 1+ [(C\ A)NCap| =1+ch, =3,

a contradiction.

Thus {(M)1,3,(M)21} C C3,, and for a 2-colour & occupying a position in
[5,6] x {1,3} (there are two such colours), by (3.13) we have exc(e) > ¢34 — 1 = 3,
a contradiction again. O

Claim 3.8. Ifi k€ [1,6], i # k, then ra(i, k) < 2.

Proof. The assumption r5(i,k) > 3 would be in contradiction with Claim 3.6
or Claim 3.7. O
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Claim 3.9. No set {«a, 3,7} C Cy is of the type (312111 312111,

Proof. Having in mind Claim 3.4 (or else Claim 3.7), assume (w) (M)11 = o = (M)z2,
(M)12=8= (M) and (M); 3= = (M)s,1. Let A' be the set of colours occupying
a position in

({1} x [4,7) U ([4,6] x {1}) U{(2,3),(3,2)},

A™ the set of colours in
({n} x [4,7]) U ([4,6] x {n}) for n=2,3,
A =Cp N A" and al), = |A7| for m € {2,3+}, n € [1,3]. Then

|AY| = a3 + a3y =9, (3.14)
|A%| = a5 + a3, =7, (3.15)
Al n A2 = (Z), (316)

since otherwise exc(a) > 3. Moreover, |A%| < 7 and A? C A3 (each pair {v,7n} with
1 € Ay is good), hence, by (3.15),

Ay = As. (3.17)

Let us show that distinct colours § = (M)q 3, € = (M)3.2 (a consequence of (3.14))

satisfy
{6,e} C Cs4. (3.18)

Indeed, if n = (M); 5—; € {0,e} N Cs for some i € [2,3] and (w) n = (M)4,4, then all
colours appearing in

(e} x [4,7]) U ([4,6] x {6 —i}) U{(5 —i,4),(4,4)}
belong to A%\ {n}, hence, by (3.15) and (3.17),
exc(n) >9—(7—1)=3,

a contradiction.
Further, with ¢ = (M)3 3 we have

(e Csp N Al (319)

To see it realise first that, since the pair {(,a} is good and fjs is proper, we get
¢ ¢ A2U{d,e} and ¢ € Al. Moreover, ¢ € Cs,, because the assumption ¢ € Ry(1)
(¢ € C4(1)) contradicts Claim 3.7 (Claim 3.4, respectively).

By (3.14), (3.15) and Claim 3.2.4, we have

ay4+a2>(9+7) —czq > 12 (3.20)
Further, by (3.14), (3.15) and (3.18)—(3.20),

5< a3 <6, (3.21)
6<ai<T. (3.22)
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Consider a colour n € A} NR(1) (from(3.21) we see that there are at least two
such colours), (w) 7= (M)1,; = (M)4,. Then from

9(1,5,A3) < g(1,5,A*) =2 and g(4,1,A3) < g(4,1,A%) <4

it follows that a3 < 2+ 4 = 6, hence, by (3.15), (3.21), (3.22), a} = a3 = 6
and a}, = 1.

Suppose first ¢ € C(1) so that all positions in {1} x [4, 7] are occupied by colours
of AY. If n = (M)1,5, j € [4,7)], then proceeding similarly as above we find that both
positions in [2,3] x {j} are occupied by colours of A3. Thus Ry(2,3) consists of at
least two colours of A3. By Claim 3.8 we obtain 72(2,3) = 2, (w) (M)24 =9 = (M)35
and (M)z5 =1 = (M)s,4. Now k = (M), ¢ satisfies k € C(4) UC(5) (the pair {x,V} is
good) and, analogously, A = (M) 7 € C(4)UC(5). By Claim 3.6, the copies of , A that
are in [4, 6] x [4, 5] do not share a row, (w) one of them is in R(4) and the other in R(5).
Then, however, reasoning similarly as above again, all positions in [4,5] x [2, 3] are
occupied by colours of A3. Consequently, the unique colour of A%, is (M)g2 = (M)g 3,
and fj is not proper.

If ¢ e R(1), (w) ¢ = (M)1,7, then all positions in

({1} x [4,6]) U ([4,6] x {1})
are occupied by colours of A}, which implies that all positions in
([2,3] x [4,6]) U ([4,6] x [2,3])

are occupied by colours of A3. So, the unique colour of A3, is (M)s7 = (M)s7,
a contradiction. O

4. FINAL ANALYSIS

We are now ready to do the final analysis for proving Theorem 1.3. Suppose (w) that
ro(1) > ro(i) for i € [2,6], which, by Claim 3.2.3, implies

7> (1) > P‘ﬂ > F’ﬂ — 5. (4.1)

i)

)_, is nonincreasing. Since
|2 51)J =1, and Claim 3.8

Given rz(1) we assume (w) that the sequence S = (ra(1,
ro(1) € [5,7], we have ro(1,2) > [TZT(I)1 > 1, r(1,6) <
yields r9(1,2) < 2. We suppose (w) that

€ [Lira(1)] = (M), € Ca,
and, more precisely,

1=a, (M)i12=8, M)iz=7, (M)hi1a=46, (M)15=¢,
7‘2(1)26:>(M)176:<7 7’2(1):7:>(M)1,7:77.
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Let p be the smallest integer in [2,6] such that ro(1,i) < 1 for every i € [p,6];
p is correctly defined since r5(1,6) < 1. Then

ro(l,i) =1 < i€ [p,ra(l) +3 —pl,

and, counting the number of positions in [2,6] x [1,7] occupied by colours of Ry(1),
we obtain

2(p—2) <r2(1) <2(p—2)+ (7T —p),
which yields

<5. (4.2)
Moreover, because of Claims 3.6 and 3.7 we have

p>3= (M1 =8N (M) =a),
p>4d=((M)zz=0N(M)34="),
p=5=((M)s=CAN(M)se=c¢).

Let ¢; = |R2(1)NC(y)| for j € [1,7]. By Claim 3.9 we know that a 2-colour p, which
occupies a position in {1} X [2p — 3,72(1)], satisfies u ¢ C(j) for every j € [1,2p — 4],
hence ¢; = 2 for any j € [1,2p — 4], and

7

> g =2[ra(1) = (2p— 4)] = 2r5(1) + 8 — 4p; (4.3)
j=2p—3

further,
JE2p—3,7=¢q; <3, (4.4)

since with ¢; > 4 and p € Ry(1) N C(j) for some j € [2p — 3,7] we have exc(u) >
g; — 1 > 3. Notice also that

Jj€2p—3,7m2(1)] =1 < g; <min(3,72(1) +4 — 2p), (4.5)

because 2-colours occupying a position in [1,6] x {j} are distinct from
2p — 4 (2-)colours appearing in {1} x [1,2p — 4]. Moreover, we assume
(w) that the sequence (qj);i(;;_?) is nonincreasing, and that, if (r2(1),p) = (5,2),
the sequence (g1, g2, 43, ¢4, ¢5) is nonincreasing.

For every pair (r2(1),p) obeying (4.1) and (4.2), we analyse the set Q(r3(1),p) of
sequences (¢;)7_o, 5 satisfying all restrictions (4.3)—(4.5). More precisely, we show
that the assumption that M is characterised by an arbitrary sequence @ € Q(r2(1),p)
leads to a contradiction, mostly because of ¥ > 13 (a contradiction to Claim 3.2.10) or
the existence of a line of M containing at least five copies of 34-colours (by Claim 3.2.4
then the colouring fjs is not proper).
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The structure of the sets Q(ra(1), p) with (r2(1),p) # (5,2) follows:

Q(7,5) = 0,

Q(7,4) = {(3,2,1),(2,2,2)}

9(6,5) = {(0)},

Q(6,4) = {(2,2 O) (2 1 1),(1,1,2)}7

Q(6,3) = {(3,3,1,1,0),(3,2,2,1,0),(3,2,1,1,1),(3,1,1,1,2),(2,2,2,2,0),
(2,2,2,1,1),(2,2,1,1,2),(2,1,1,1,3)},

Q(5,4) = {(1,1,0)},

Q(5,3) = {(3,2,1,0,0),(3,1,1,1,0), (2,2,2,0,0), (2,2,1,1,0), (2,1,1,2,0),

(2,1,1,1,1),(1,1,1,3,0),(1,1,1,2, 1) }.

As we shall see later, it is not necessary to know the structure of Q(5,2)
explicitly.

Our analysis is organised according to the following rules: All wisible colours
in M (those represented by Greek alphabet letters) are 2-colours, and both copies of
a visible colour are present in M. Asterisk entries in M represent 3+colours. Some
asterisk entries appear in M by definition, e.g., each asterisk entry in the first row of
M occupies a position in {1} x [ra(1) + 1, 7]. Another reason why an asterisk entry
appears in M is that, if the corresponding position is occupied by a 2-colour A, then
putting another copy of A to a free position (i.e., one that is not occupied by a visible
colour) in any proper way (so that the resulting partial vertex colouring f” of K¢ K7
is proper) leads to a situation, in which no continuation of f’ to a proper complete
vertex colouring of K¢ K7 is possible, because at least one pair {\, u}, where p is a
visible colour, is not good.

To snnphfy the description of matrices appearing in our analy51s we frequently use
the notation “Q = Q, Figure zy:” or “Q = Q, (w) Figure zy:”, where Q € Q((r2(1),p)).
It means that the situation, in which M is characterised by the sequence Q, is analysed
in Figure zy (and possibly Proposition 2.2 is involved).

If Q = (3,2,1)7 then (W) (M)4,5 = C, (M)575 =n and (M)G,G = &, hence
the set {e,(} is of the type (2'12,22), which contradicts Claim 3.4.

In the case @ = (2,2,2) we are (w) in the situation of Figure 4. If
a 2-colour p occupies a position in {k} x [2] — 1,2]] for some k € [4,6] and
l € [1,2], then = (M)4_yp(), where h(k) = 3(3k* — 31k + 90), and v € Cs,
for each colour v occupying a position in ([4,6] \ {k}) x [6 — 21,6 — 2] (with
v € Cy the pair {u,v} is not good). As a consequence, at least nine positions in
[4,6] x [1,4] are occupied by 34-colours. Besides that, if ¢ = (M);; € Cy with
(1,7) € {(2,3),(2,4),(3,1),(3,2)}, the second copy of u must occupy one of the
positions (4, 7),(5,5),(6,6). Altogether we have

Y >349+1=13.
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Q = (0), Figure 5: Because of
co(7) > 6 —c34 >2

we suppose (w) n = (M)q,7 € Cy so that 7 is in {(3,5), (3,6), (4,3), (4,4)}.

Under the assumption 7 € R(3) we have (w) n = (3,5). Let C} be the set of
2-colours occupying a position in [5,6] x [1,6]; the inequality ¢, < 4 implies |C4] > 6.
If 4 € CY, then from the fact that each pair {u,v} with v € CY = {«, 8,7, 8,1} is
good one easily gets that the second copy of p occupies a position in [2,3] x [1, 6].
As ¢g(4,7,CY) = 0 and g(i,j,CY) < 5 provided that (i,7) € [2,3] x [1,6] is a dot
position, we obtain w = (M),,7 € Cs4 (notice that w ¢ C%), hence (M)3 7 € Co. Then
exc(n) > 4, since we can uncolour vertices (¢,7) with ¢ € [2,3] and (M); ; € Cs4+ (here
we use r34 (i) > 1 and C3y C C(7)), as well as the vertices (5,5), (6,5) (independently
from the frequencies of (M)s 5 and (Mg 5) without affecting the completeness of the
colour class 7 in the resulting partial colouring.

In the case n € R(4) we obtain a contradiction similarly as above.

The assumption @ = (2,2,0) means that (w) (M)s5 = ¢ and (M)s56 = ¢, hence
the type of the set {e,(} is (2112,22) in contradiction to Claim 3.4.

For @ = (2,1,1) the situation is (w) depicted on Figure 6. If A\ = (M)s ; € Co,
where j € [2k—1,2k] with k € [1,2], then A = (M)4_ 5. As a consequence, 734+ (6) = 4,
n = (M)ss € Cs, and with p = (M)z5, v = (M)35 we have {p, v} C R(6). Then,
however, exc(n) > 3 (u, v and at least one 34colour contribute to the excess of 7).

o« By b e Ca\fa By d e FfaB b oe (¥
g o . . . .. 8 o« . . . .. g o . . . . .
. 6 v ... B e 2 B N A
¢ *x . N - O
*
Fig. 4. Fig. 5. Fig. 6.
Q = (1,1,2), Figure 7: Similarly as above we see that r3,(6) = 4,

n=(M)sz7 € Co {(M)a,7,(M)s7} CRy(6), and so exc(n) > 4.

If Q@ =(3,3,1,1,0), then (w) (M)33 =0,(M)s3=¢cand v € {(M)s5.4,(M)s 4} so
that the type of the set {v,d} contradicts Claim 3.4.

If Q= (3,2,2,1,0), then, having in mind Claim 3.4, we are (w) in the situation of
Figure 8. Further, n = (M)27 € Cy and ¥ = (M)s,7 € C2, which implies n = (M )5 3
and ¥ = (M)a3. Consequently, both positions in {(3,4),(4,6)} are occupied by
3+-colours, and, provided that p = (M); ; € Cy for some (4,7) € [3,6] x [1,2], then
(1,7) € {(5,1),(5,2)} and p = (M)g,3. Therefore,

Y > 442474134 (2) > 14.

Q= (3,2,1,1,1), (w) Figure 9 (using Claim 3.4 again): If a bullet position is
occupied by a 2-colour p, then the second copy of p occupies a dot position. Therefore,

$>4+(19-6)=17.
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a B v 6 e ¢ * a B v & e ( = a B v § e (¢ =
5 a . . 8 a . b « o o o
o é e o * @ %
.ox € ¢ e o £ . X e @
. ¢ ... e . . e o ( o o o
x % ..y * ° o e o v

Fig. 7. Fig. 8. Fig. 9.

Q= (3,1,1,1,2), (w) Figure 10: Analogously as in the case of Figure 9 we obtain
¥>54+(19-6)=18.

Under the assumption Q = (2,2,2,2,0) we have g(i,7,{c, 8,7,d,6,(}) =1
for any i € [3,6] and g(k,l,{a,f,7,d,6,(}) < 4 for any position (k,l) €
[2,6] x [1,6] occupied by a colour of C \ {«a,f,7,0,&,(}, hence ¢3.(7) > 5
a contradiction.

IfQ=1(2,2,2,1,1), then because of Claim 3.4 (w) there are two possibilities for
the structure of M, see Figures 11 and 12.

)

a B v 0 e ( =* a pf v 6 e ( = a B v 0 € (C

B a . e e e 8 o . . . 6 «

e o ( x o o .. 0 e o o . 6 x . ok .

e o £ o % o . £ e e o *

o o x ke e . v e o ¢ * .

o o e o o ( * 5y
Fig. 10. Fig. 11. Fig. 12.

In the case of Figure 11 a bullet position can be occupied by a 2-colour only if the sec-
ond copy of that colour appears in {2} X [3,5]. A position in {(2,6), (2,7), (6,1), (6,2)}
is occupied by a 2-colour only if the second copy of that colour is in {(3,5), (4, 3), (5,4)}.
Further, at most one of the two colours in {i} x [1, 2] with ¢ € [3, 5] is a 2-colour (which
is in {6} x [3,5]). Therefore

X>24(9-3)+(4—-3)+3-1+4+r3.(2) >13.
In the situation of Figure 12 let
k=max(i € {2,3,5}: (M);7 € C2) and n=(M)r.

The assumption k = 2 implies n € {(M)s3 5, (M)5.4}.
If n = (M)s,5, see Figure 13, then
S > 13+ 150 (2) > 14.

In the case n = (M)s5,4 depicted in Figure 14 we have r34(3) > 5.
If £ = 3 (Figure 15), then n = (M)a5, and from r3;(2) > 1 it follows that
exc(a) > 3, a contradiction.
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a B v § e (¢ * a B v § e ¢ a B v § e (¢ *

8 o . . . .7y g a . . N 8 a . . 7 .
0 % m * * x % 0 % x  * 0 * . *x 7

* € . . % e . * € *

* v kK . y * y
Fig. 13. Fig. 14. Fig. 15.

Figure 16 corresponds to k = 5, requiring n = (M )2 4. If ¥ € Cyisin {4} x[1, 2], then
Y= (M)s3, and, if ¢t € Cy is in {6} x [1,2], then ¢ = (M)5.4. So, c34+(1) + c34(2) > 4,
which implies exc(a) > 3.

In the case @ = (2,2,1,1,2), using Claim 3.4, (w) the description by Figure 17
applies. Claim 3.9 implies that a 2-colour occupying a position in [3,6] x [1, 2] does
not appear in {2} x [3,7]. Therefore, for any i € [3, 6] at most one of the positions in
{i} x [1,2] is occupied by a 2-colour; as a consequence of ¢34 < 4 and r34(2) > 1 then
exc(a) > 3.

If Q@ =1(2,1,1,1,3), then (w) we have the situation of Figure 18 with

Y¥>5+4+(19-6) =18

(reasoning as in Figure 9).

a B v 6 e (¢ * a B v § g (¢ x a B v & g (¢ x
B a . 7 6 a . b « o o o
x x 0 % * . o . * o e ) o o o .
€ .ox € . ° o o x x 7
¢ * 7 * 07 o o e x o ¢
* Y * ( e o e o x (
Fig. 16. Fig. 17. Fig. 18.

The assumption r9(1) = 5 implies ro(i) = 5 and 734 (i) = 2 for each ¢ € [1, 6], hence

6
1 )
2= ;:1 ro(i) = 15,

and, by Claims 3.2.6, 3.2.7, c34 = c3 = 4.
If @ =(1,1,0), then we are (w) in the situation of Figure 19. Each colour of Cy(7)
has its second copy in [2,4] x [1,6], hence at least

4
54262(7) + Y 73 (i) = 11+ 2¢5(7) > 15
=2

positions in [2,4] x [1, 7] are occupied by colours of {a, 8,7, d,e} UCy(7) U Cs4. Since
a colour in Ry(5) UR2(6) has its second copy in [2,4] x [1, 6], we have

r2(5) +72(6) < 18 — (15— 3) = 6
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and
4 =r3,(5) +734(6) = 14 — [r2(5) +72(6)] > 8,

a contradiction.

If Q = (3,2,1,0,0), then the set {y,6} C Cy is of the type (2'12,22), which
contradicts Claim 3.4.

Q = (3,1,1,1,0), (w) Figure 20: A bullet position can be occupied by
a colour p € Cy only if = (M)2,3. That is why r34 (6) > 3, a contradiction.

Q =1(2,2,2,0,0), (w) Figure 21: If a bullet position is occupied by a colour y € Cs,
then p € {(M)s5, (M)a3, (M)s,4}. One can easily see that if ¢ € [3,5], then at most
one of colours in {i} x [6, 7] is a 2-colour. Therefore, if (M), ; € Csy for both j = 6,7,
then

63+(6)+C3+(7) >3-243-1=9,
and there is j € [6,7] with ¢54(j) > 5, a contradiction. Thus, there is j € [6, 7] with
(M)2,; € Cy. Then, however, since (M)g,1,(M)s,2 € C2 (a consequence of r3, (6) = 2),
the pair {(M)s;,(M)e,} is not good for [ = 1,2.

a B v 6 € x x a B v d e x % a B v d e x %
8 o . . . . 8 a . . . g a . ° o
o v ... .. 0 e . o .
€ € ° . €
.oy e . ¥
[ ] L] [ ] [ ] L] [ ] * *
Fig. 19. Fig. 20. Fig. 21.

If @ =(2,2,1,1,0), then (w), by Claim 3.4, the situation is depicted in Figure 22.
If a 2-colour w is in {(2,7),(6,1),(6,2)}, then p € {(M)a,3,(M)s.4}, and if a 2-colour
v is in {(5,7),(6,6)}, then v = (M)z 4. From r3;(6) = 2 it follows that there is a
2-colour ¢ in {6} x [1,2]; as a consequence then w = (M)s7 € Cs; (with w € C
the pair {w,(} is not good), n = (M)s7 = (M)24 € Ca, (M)ss € Cs4, and each
colour, occupying a position in {6} x [1,2], is a 2-colour. In such a case, however, with
V= (M)as € {(M)s,1,(M)g2} the pair {9, n} is not good.

Q = (2,1,1,2,0), (w) Figure 23: If ¢ € {(M)s7,(M)sa} N Cz, then
(= (M)s2p,and if n € {(M)s,7,(M)g,5} NCq, then n = (M)2 3. Therefore, at least two
positions in {(3,7), (5,7), (6,4), (6,5)} are occupied by 3+colours. Since c3(7) < 4,
at most one position in {(3,7),(5,7)} and at least one position in {(6,4),(6,5)} is
occupied by a 34colour. Further, from r3, (6) = 2 it follows that exactly one position
in {(6,4), (6,5)} and in {(3,7),(5,7)} as well is occupied by a 3+colour. Consequently,
by Claim 3.6, (M)a7, (M)s1 and (M)g 2 are three distinct 2-colours; this, however,
leads to a contradiction, because if ¥ € {(M)a2,7,(M)s,1, (M)g,2} N Ca, then necessarily
e {(M)s6,(M)s53}

If Q@ = (1,1,1,3,0), then we have (w) {v,d,e} N R(6)
{6} x ([1,5) U {7}) is occupied by a 2-colour ¢, then ¢ =
r34+(6) > 5, a contradiction.

= (). If a position in
( )2 65 which ylelds
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If @ =(1,1,1,2,1), then the situation is (w) described by Figure 24. If a 2-colour
Cisin {6} x [1,2], then ¢ = (M)5¢, hence r3,(6) > 3.

a B v d € * x a B v d e *x x a B v 0 € *x %
8 o« . . . . . g o . . . . . g o . . . .
. o . . . % . 6 ... A T
e . . . .y N Y R
y e . €
* * x %
Fig. 22. Fig. 23. Fig. 24.

It @ € 9(5,2), then we have 237':1 q¢; =10. Let J = {j € [1,7] : ¢; > 2}. In
the case |J| < 3 realise that any colour ¢ € Cs \ {a, 8,7, d,£} requires existence of
a sufficient pair (i,7) € [2,6] x [1,7], i.e., one satisfying g(i, 4, {c, 8,7,0,e}) > 3. If
(4,7) is a sufficient pair, then necessarily j € J. Moreover, given j € J, the number of
sufficient pairs (4, j) is at most three. This is certainly true if ¢; = 3. On the other
hand, if ¢; = 2 and (M)g,; = (M)1; with k£ # 1, then, by Claim 3.7 and the fact that
p=2, (M)i; ¢ {a,5,7,9,¢}, which means that g(k, j, {e, 8,7,6,¢}) = 2, and there
are at most three 7’s such that the pair (4, ) is sufficient. Therefore, co <5+4+3-3 = 14,
which contradicts Claim 3.2.3.

So, we have |J| > 4. If ¢; = 3, then

7
10=) ¢ >3+3-2+1-1=10,

j=1

hence ¢ = ¢3 = qu = 2, ¢ = 1 and ¢¢ = ¢ = 0. If C:(M)i,jec2
with (4,j) € [2,6] x [6,7], then, since g(i,j,{a,8,7,d,e}) = 1, we have
¢ € Co(1)\ {e, B,7,0,e}. Thus

Cg+(6) + Cg+(7) 2 2+ (10 - 3) = 9,

and there is j € [6,7] with ¢34 (j) > 5, a contradiction.
If g1 <2, then

g(i,5,{a, 8,7,0,e}) < g +1<q1 +1<3

for every (i,j) € [2,6] x [1,5], hence g¢g(k,I,{a,,7,d,}) > 2 whenever
(k,1) € [2,6] x [6,7] and (M)x; € C9, which implies ¢ > 1, I = 6,7.
As a consequence, then

7
10=> g >2[J|+(7T—|J))=|J]|+7>11,
j=1

a final contradiction proving Theorem 1.3.
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