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Abstract. For any n ∈ N, the n-subdivision of a graph G is a simple graph G
1
n which

is constructed by replacing each edge of G with a path of length n. The m-th power
of G is a graph, denoted by Gm, with the same vertices of G, where two vertices of Gm

are adjacent if and only if their distance in G is at most m. In [M.N. Iradmusa, On
colorings of graph fractional powers, Discrete Math. 310 (2010), no. 10–11, 1551–1556]
the m-th power of the n-subdivision of G, denoted by G

m
n is introduced as a fractional

power of G. The incidence chromatic number of G, denoted by χi(G), is the minimum
integer k such that G has an incidence k-coloring. In this paper, we investigate
the incidence chromatic number of some fractional powers of graphs and prove the
correctness of the incidence coloring conjecture for some powers of graphs.
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1. INTRODUCTION

In this paper we only consider simple, finite and nontrivial graphs. As usual, we
denote the maximum degree of a graph G by ∆(G). For each vertex v ∈ V (G), NG(v)
is the set of all neighbors of v in G and NG[v] = NG(v) ∪ {v}. From now on, we use
the notation [n] instead of {1, . . . , n}.

Let G = (V, E) be a nontrivial graph. Any pair (v, e) is called an incidence of G, if
v ∈ V , e ∈ E and v ∈ e. The set of the incidences of G is denoted by I(G). Precisely,
I(G) = {(v, e) : v ∈ V, e ∈ E, v ∈ e}. The incidence graph of G, denoted by I(G),
is a graph with vertex set V (I(G)) = I(G) and two vertices (v, e) and (w, f) are
adjacent provided one of the following holds:

(i) v = w,
(ii) e = f ,
(iii) the edge {v, w} equals e or f .
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For an edge e = {u, v} ∈ E(G), we show two incidence vertices (u, e) and (v, e) with
(u, v) and (v, u), respectively. Also, {(u, v)| v ∈ NG(u)} is the set of all first incidences
of u, denoted by I+(u) and {(v, u)| v ∈ NG(u)} is the set of all second incidences of u,
denoted by I−(u).

A proper k-coloring of G is a mapping c : V (G) → [k] such that c(u) ̸= c(v) for
any two adjacent vertices u and v of G. The minimum integer k that G has a proper
k-coloring is the chromatic number of G and denoted by χ(G).

The concept of incidence coloring is introduced by Brualdi and Massey in 1993 [4].

Definition 1.1 ([4]). Let G be a graph. A mapping c : I(G) → {1, . . . , k} is an
incidence k-coloring of G such that any two adjacent incidence vertices have different
colors. The incidence chromatic number of G, denoted by χi(G), is the minimum
integer k such that G has an incidence k-coloring. In other words, χi(G) = χ(I(G)).

Definition 1.2 ([11]). Let G be a graph and r ∈ N. An incidence k-coloring of G is
an incidence (k, r)-coloring of G if for every vertex v ∈ V (G), the number of colors
used for coloring I−(v) is at most r. We denote by χi,r(G) the smallest number of
colors required for an incidence (k, r)-coloring of G.

Observe that χi(G) ≤ χi,r(G) and χi,1(G) = χ(G2). In order to prove the
second identity, suppose that c is a (k, 1)-incidence coloring of a graph G. Then
|{c((u, v))|(u, v) ∈ I−(v)}| = 1 for every vertex v ∈ V (G). Therefore, the mapping
c′ defined by c′(v) = c((u, v)) for every vertex v is well-defined. Moreover, it is not
difficult to see that c′(u) ̸= c′(v) for every two vertices u and v whose distance in
G is 1 or 2. Therefore, c′ is a proper vertex-coloring of G2. Conversely, from every
proper k-vertex-coloring of G2, we obtain an incidence (k, 1)-coloring c of G by setting
c′((u, v)) = c(v) for every incidence (u, v) of G. Therefore, χi,1(G) = χ(G2) for every
graph G.

One can easily prove that χi(G) = maxl∈[k]{χi(Gl}, where G1, . . . , Gk are the
connected components of G. For this reason, in this paper we only consider connected
graphs. In addition, if {I1, I2, . . . , Ik} is a partition of I(G), then

χi(G) = χ(I(G)) ≤ χ(I1(G)) + · · · + χ(Ik(G)),

where Ij(G) is the subgraph of I(G) induced by the subset Ij of incidences.
In [4], the authors determined the incidence chromatic number of trees, complete

bipartite graphs and complete graphs. In addition, the bounds for incidence chromatic
number of various graph classes is found out. Also, they conjectured that the incidence
chromatic number of an arbitrary graph G is at most ∆(G) + 2 [4], which is named
the incidence coloring conjecture (ICC). Although the conjecture was disproved by
Guiduli in 1997 who showed that Paley graphs have incidence chromatic number at
least ∆ + O(log(∆)) [8], the stated upper bound is proved for some classes of graphs
such as paths, fans, cycles, wheels, complete tripartite graph and adding edge wheels,
which were determined by Chen et al. in 1998 [5]. Following this, in 2005, the incidence
coloring of graphs with maximum degree ∆ = 3 was investigated and determined by
Maydanskiy [16]. The bounds for incidence chromatic number of various graph classes
is found out. For more information see [2, 6, 8, 11, 15, 19–24,26–28]. It is worth to note
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that, despite the fact that the incidence coloring conjecture is proved for some special
graphs with maximum degree 4, it is unsolved in general for graphs with maximum
degree four, although the upper bound 7 is stated by Gregor, Lužar and Soták in [7].

In this paper, we investigate the correctness of incidence coloring conjecture for
some fractional powers of graphs. The concept of fractional power of graphs was
first introduced by Iradmusa in 2010 [12]. In the following, to deal with fractional
power of graphs we are going to take some required definition into account. Let G be
a graph and m, n ∈ N. The m-power of G, denoted by Gm, is defined on the vertex
set V (G) by adding edges joining any two distinct vertices x and y with distance at
most m. In other words, E(Gm) = {{x, y} : 1 ≤ dG(x, y) ≤ m}. Also, the m-distance
graph of G, denoted by G[m], is a graph with vertex set V (G) and two vertices v
and w are adjacent if dG(u, v) = m. Obviously, G[1] = G, Gm = Gm−1 ∪ G[m] and so
Gm =

⋃m
k=1 G[k], where the union of graphs Gi (1 ≤ i ≤ n) is the graph

⋃n
i=1 Gi with

vertex set
⋃n

i=1 V (Gi) and edge set
⋃n

i=1 E(Gi). In addition, the n-subdivision of G,
denoted by G

1
n , is constructed by replacing each edge xy of G with a path of length n

with new vertices (xy) 1
n

, . . . , (xy) n−1
n

, where the vertex (xy) l
n

has distance l from the
vertex x, where l ∈ {0, 1, . . . , n}. Also, (xy) l

n
= (yx) n−l

n
, (xy) 0

n
= x and (xy) n

n
= y.

Any vertex (xy) 0
n

of G
1
n is called a terminal vertex (or briefly t-vertex) and the other

vertices are called internal vertices. Now the fractional power of a graph G is defined
as follows.

Definition 1.3 ([12]). Let G be a graph and m, n ∈ N. The graph G
m
n is defined to

be the m-power of the n-subdivision of G. In other words, G
m
n = (G 1

n )m.

Note that G
1
1 = G and G

2
2 is isomorphic to T (G), the total graph of G, which

is defined in [1]. We denote the set of terminal vertices of G
m
n by Vt(G

m
n ) and the

set of internal vertices of G
m
n by Vi(G

m
n ). Hence, V (G m

n ) = Vt(G
m
n ) ∪ Vi(G

m
n ). We

also use the notation G
[m]

n for the graph (G 1
n )[m]. For other necessary definitions and

notations we refer the reader to the textbook [3].
In this paper, we prove that the incidence coloring conjecture is true for some

m
n -power of graphs, where m, n ∈ N and m

n ∈ Q∩ (0, 1). The main results of this paper
are as follows.

Theorem 1.4. Let G be a connected graph with ∆(G) ≥ 3, m, n ∈ N and 0 < m
n < 1

2 .
Then

χi(G
m
n ) = χi,1(G m

n ) = ∆(G m
n ) + 1 = m∆(G) + 1.

Theorem 1.5. Let n ∈ N \ {1} and G be a connected graph. Then

χi(G
1
n ) =

{
∆(G 1

n ) + 2 if G = Cl, nl ̸≡ 0 (mod 3),
∆(G 1

n ) + 1 otherwise.

Theorem 1.6. Let n ∈ N \ {1, 2} and G be a connected graph. Then

χi(G
2
n ) =

{
∆(G 2

n ) + 2 if G = Cl, nl ̸≡ 0 (mod 5),
∆(G 2

n ) + 1 otherwise.
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Theorem 1.7. Let m ∈ N and G be a connected graph with ∆(G) ≥ 3. Then

χi(G
m

2m ) ≤ ∆(G m
2m ) + 2 = m∆(G) + 2.

The paper is organized as follows. In Section 2, some preliminary definitions
and theorems are mentioned. Section 3 is devoted to the proofs of the main theorems and
the last section contains some concluding remarks and open problems.

2. PRELIMINARY DEFINITIONS AND THEOREMS

As we said before, the incidence coloring conjecture is proved for some classes of graphs.
In the following, some of such classes, which we are going to use in the proofs of the
main theorems, are mentioned. In [5], Chen et al. investigated incidence coloring of
some graphs including paths and cycles and concluded two following theorems. Let
Pn and Cn denote the path and cycle of order n, respectively.

Theorem 2.1 ([5]). Let n ∈ N \ {1}. Then χi(Pn) =
{

2 if n = 2,

3 otherwise.

Theorem 2.2 ([5]). Let n ∈ N \ {1, 2}. Then χi(Cn) =
{

3 if n ≡ 0 (mod 3),
4 otherwise.

In 2008, the incidence coloring of the square of the path was found by Li et al. [15].
Also, in 2012, Nakprasit et al. proved that, for n ≥ 5, the incidence chromatic number
of C2

n is 5, if n is divisible by 5, otherwise, it is equal to 6 [19].

Theorem 2.3 ([15]). Let n, k be positive integers and n ≥ 2. Then

χi(P k
n ) = min{n, 2k + 1} = ∆(P k

n ) + 1.

Theorem 2.4 ([19]). Let n ∈ N \ {1, 2}. Then

χi(C2
n) =





n if n ≤ 5,

5 if n > 5, n ≡ 0 (mod 5),
6 otherwise.

In [17], Montgomery defined a dynamic coloring of a graph G to be a proper
coloring in which each vertex neighborhood of size at least two receives at least two
distinct colors. The dynamic chromatic number χd(G) is the least number of colors in
such a coloring of G. Lai, Montgomery and Poon proved the following theorem, which
will be used in the proof of Theorem 1.5.

Theorem 2.5 ([14]). If G is a graph with ∆(G) ≥ 3, then χd(G) ≤ ∆(G) + 1.

What stands out from two definitions 1.1 and 1.3 is that the graph I(G) is
isomorphic to the induced subgraph of G

3
3 on Vi(G

3
3 ). Hence, we conclude that

χi(G) = χ(G 3
3 [Vi(G

3
3 )]). Although the coloring of fractional powers of graph for powers
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greater that one is not completely investigated, except coloring of some 3
3 -power of

graphs which is investigated in [13,18,25], it is highly investigated for powers lower
than one in [10, 12]. Iradmusa in [12] proved that χ(G m

n ) = ω(G m
n ), where n = m + 1

or m = 2 < n.

Theorem 2.6 ([12]). If G is a graph with ∆(G) ≥ 3 and m ∈ N, then

χ(G m
m+1 ) = ω(G m

m+1 ) =
{

m
2 ∆(G) + 1 if m ≡ 0 (mod 2),
m−1

2 ∆(G) + 2 if m ≡ 1 (mod 2).

Also, it was conjectured that χ(G m
n ) = ω(G m

n ) for any graph G with ∆(G) ≥ 3
when m

n ∈ Q ∩ (0, 1). Despite the fact that the conjecture was disproved by Hartke,
Liu and Petrickova [10], who proved that the conjecture is not true for the Cartesian
product C3□K2 (triangular prism) when m = 3 and n = 5, they claimed that it
is valid for all graphs except when G = C3□K2. In addition, they proved that the
conjecture is true when m is even.

Theorem 2.7 ([10]). If G is a graph with ∆(G) ≥ 3 and 1 < m < n with m even,
then

χ(G m
n ) = m

2 ∆(G) + 1.

3. PROOFS OF THE MAIN THEOREMS

It is well-known that any connected graph with maximum degree r is a subgraph of
a connected r-regular graph. Also, χi(H) ≤ χi(G) for any subgraph H of the graph G.
Hence, to prove a theorem about the upper bound on the incidence chromatic number,
it is sufficient to proof it for the connected r-regular graphs. We use this fact in the
proof of some upper bound results.

Proof of Theorem 1.4. We know that χi(G) ≤ χi,1(G) = χ(G2). Hence,

χi(G
m
n ) ≤ χi,1(G m

n ) = χ((G m
n )2) = χ(G 2m

n )

and by Theorem 2.7,

χ(G 2m
n ) = ω(G 2m

n ) = 2m

2 ∆(G) + 1 = m∆(G) + 1.

So
χi(G

m
n ) ≤ χi,1(G m

n ) = m∆(G) + 1.

On the other hand,

χi(G
m
n ) ≥ ∆(G m

n ) + 1 = m∆(G) + 1.

Therefore,
χi(G

m
n ) = χi,1(G m

n ) = m∆(G) + 1.
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Proof of Theorem 1.5. First suppose that ∆(G) ≤ 2. If G = Cl, then G
1
n ∼= Cnl and

if G = Pl, then G
1
n ∼= Pn(l−1)+1. Hence, by Theorems 2.1 and 2.2 we have χi(P

1
n

l ) = 3
and χi(C

1
n

l ) = 3 when |V (C
1
n

l )| = nl ≡ 0 (mod 3). Otherwise, χi(C
1
n

l ) = 4.
Now we suppose that ∆(G) ≥ 3. If n ≥ 3, then by Theorem 1.4 we conclude that

χi(G
1
n ) = ∆(G 1

n ) + 1 = ∆(G) + 1. Finally suppose that n = 2. By Theorem 2.5, there
is a dynamic coloring c : V (G) → {1, . . . , ∆(G) + 1} for G. We define an incidence
coloring c′ for G

1
2 . First, for uv ∈ E(G) color all incidences in I−(u) with color c(u).

Now we need to color the first incidences in such a way that for any edge {u, v} ∈ E(G),

{c′((u, (uv) 1
2
)), c′((v, (vu) 1

2
))} ∩ {c(u), c(v)} = ∅.

For each incidence (u, (uv) 1
2
) in I+(u), there are ∆(G) − 1 available colors. Let

L((u, (uv) 1
2
)) be the set of available colors for the incidence (u, (uv) 1

2
). Since

|c(NG(u))| ≥ 2 for any t-vertex u ∈ V (G), | ⋃
x∈I+(u) L(x)| = ∆(G), using

Hall’s Theorem (see Theorem 16.4 in [3]), we can assign different colors from
{1, . . . , ∆(G) + 1} \ {c(u)} to the incidences in I+(u), such that for any edge
{u, v} ∈ E(G) with c′(((uv) 1

2
, u)) = c(u) and c′(((uv) 1

2
, v)) = c(v), we have

{c′((u, (uv) 1
2
)), c′((v, (vu) 1

2
))} ∩ {c(u), c(v)} = ∅.

The given coloring is a (∆(G) + 1)-incidence coloring of G
1
2 .

Proof of Theorem 1.6. First suppose that ∆(G) ≤ 2. If G = Cl, then G
2
n ∼= C2

nl

and if G = Pl, then G
2
n ∼= P 2

n(l−1)+1. Hence, by Theorem 2.3 and 2.4 we have
χi(P

2
n

l ) = ∆(P
2
n

l ) + 1 and χi(C
1
n

l ) = 5 when |V (C
2
n

l )| = nl ≡ 0 (mod 5). Otherwise,
χi(C

2
n

l ) = 6.
Now suppose that ∆(G) = ∆ ≥ 3. If n ≥ 5, then Theorem 1.4 implies that

χi(G
2
n ) = ∆(G 2

n ) + 1 = 2∆(G) + 1.

Therefore, we need to prove the theorem for n = 3 and n = 4.
Case 1. n = 3.
Since ∆(G 2

3 ) = 2∆(G), it follows that χi(G
2
3 ) ≥ 2∆(G) + 1. Now, we prove that

χi(G
2
3 ) ≤ 2∆(G) + 1. As mentioned before, we only consider the connected regular

graphs.
We partition the incidences of G

2
3 into two subsets

I1 =
⋃

{u,v}∈E(G)

{(u, (vu) 1
3
), ((uv) 1

3
, (vu) 1

3
), ((vu) 1

3
, (uv) 1

3
), (v, (uv) 1

3
)}

and I2 = I(G 2
3 ) \ I1. We show that χ(I1(G 2

3 )) = ∆(G) and χ(I2(G 2
3 )) = ∆(G) + 1,

where Ij(G 2
3 ) is the subgraph of I(G 2

3 ) induced by Ij (j = 1, 2). Thus,

χi(G
2
3 ) = χ(I(G 2

3 )) ≤ χ(I1(G 2
3 )) + χ(I2(G 2

3 )) = 2∆(G) + 1.
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Since G
1
2 is a bipartite graph, χ′(G 1

2 ) = ∆(G 1
2 ) = ∆(G). Suppose that

c1 : E(G 1
2 ) → [∆] is a proper edge coloring of G

1
2 . We define the following coloring for

I1(G 2
3 ):

f((x, y)) =
{

c1({u, (uv) 1
2
}) if (x, y) = (u, (vu) 1

3
),

c1({u, (uv) 1
2
}) if (x, y) = ((uv) 1

3
, (vu) 1

3
).

Note that in G
1
2 , (uv) 1

2
= (vu) 1

2
. Let (x, y) and (r, s) be adjacent in I1(G 2

3 ). There
are three cases for these adjacent vertices:
(i) (x, y) = (u, (vu) 1

3
) and (r, s) = (u, (wu) 1

3
), where v, w ∈ NG(u). In this case

f((x, y)) = c1({u, (uv) 1
2
}) ̸= c1({u, (uw) 1

2
}) = f((r, s)).

(ii) (x, y) = ((uv) 1
3
, (vu) 1

3
) and (r, s) = ((vu) 1

3
, (uv) 1

3
), where {u, v} ∈ E(G). In this

case
f((x, y)) = c1({u, (uv) 1

2
}) ̸= c1({v, (vu) 1

2
}) = f((r, s)).

(iii) (x, y) = (u, (vu) 1
3
) and (r, s) = ((vu) 1

3
, (uv) 1

3
), where {u, v} ∈ E(G). In this case

f((x, y)) = c1({u, (uv) 1
2
}) ̸= c1({v, (vu) 1

2
}) = f((r, s)).

So f is a proper coloring of I1(G 2
3 ) and then χ(I1(G 2

3 )) = ∆.
To prove χ(I2(G 2

3 )) = ∆ + 1, we use the dynamic coloring of G. We know that
χd(G) ≤ ∆ + 1. Suppose that cd : V (G) → [∆ + 1] is a dynamic coloring of G. At first,
we assign the color cd(u) to any incidence of I−(u) in G

2
3 . Easily one can show that

I2(G 2
3 ) is the union of n disjoint copies of I(K∆+1), except of the colored vertices

{((vu) 1
3
, u), ((uv) 1

3
, v)| {u, v} ∈ E(G)}. Precisely, for any vertex u ∈ V (G), we have

a copy of K∆+1 in G
2
3 induced by the vertices of {u} ∪ {(uv) 1

3
| v ∈ NG(u)}, which

is denoted by Ku
∆+1. We know that χi(Kn) = n and any incidence coloring of Kn is

also an incidence (n, 1)-coloring. Since we used only one color cd(u) ∈ [∆ + 1] for all
incidences of I−(u) in Ku

∆+1, similar to the proof of Theorem 1.5 we can extend this
partial coloring to a proper coloring of I2(G 2

3 ) by use of Hall’s Theorem.
Case 2. n = 4.
Since ∆(G 2

4 ) = 2∆, χi(G
2
4 ) ≥ 2∆+1. It is enough to prove that χi(G

2
4 ) ≤ 2∆+1. Let

c be a dynamic coloring of G with colors {1, . . . , ∆ + 1}. At first, for each u ∈ V (G),
color all incidences in I−(u) with color c(u). We are going to have an incidence coloring
for G

2
4 , named c′, such that for any edge {u, v} ∈ E(G),

{c′((u, (uv) 1
4
)), c′((v, (vu) 1

4
))} ∩ {c(u), c(v)} = ∅.

Let L(x) be the set of available colors for the incidence x. Since |L((u, (uv) 1
4
))| =

∆ − 1 for any incidence (u, (uv) 1
4
) and |c(NG(u))| ≥ 2 for any t-vertex u,

| ⋃
v∈NG(u) L((u, (uv) 1

4
))| = ∆. Therefore, by Hall’s Theorem, we can assign different

colors from {1, . . . , ∆ + 1} \ {c(u)} to the incidences in {(u, (uv) 1
4
)| v ∈ NG(u)} such

that {c′((u, (uv) 1
4
))} ∩ {c(u), c(v)} = ∅. Hence, by repeating this coloring on each
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vertex, the desired result can be achieved. Also, for any t-vertex u ∈ V (G), color the
incidence ((uv) 1

4
, (uw) 1

4
) with color c′((u, (uw) 1

4
)), where v, w ∈ NG(u).

Now we extend this partial coloring to an incidence coloring of G
2
4 . We assign differ-

ent colors from {∆ + 2, . . . , 2∆ + 1} to the incidences of {(u, (uv) 2
4
)| v ∈ NG(u)}. Note

that color two incidences ((uv) 2
4
, u) and ((uv) 2

4
, v) with colors c(u) and c(v), respec-

tively. It is enough to color the incidences of the cycle C = ((uv) 1
4
, (uv) 3

4
, (uv) 2

4
, (uv) 1

4
)

for any edge {u, v} ∈ E(G). Color two incidences ((uv) 1
4
, (uv) 2

4
) and ((uv) 3

4
, (uv) 2

4
)

as same as (u, (uv) 2
4
) and assign color

α ∈ {∆ + 2, . . . , 2∆ + 1} \ {c′(u, (uv) 2
4
), c′(v, (uv) 2

4
)}

to the incidences ((uv) 1
4
, (uv) 3

4
) and ((uv) 2

4
, (uv) 3

4
). Also, color two incidences

((uv) 2
4
, (uv) 1

4
) and ((uv) 3

4
, (uv) 1

4
) with c′((u, (uv) 1

4
)) and

β ∈ {∆ + 2, . . . , 2∆ + 1} \ {c′((u, (uv) 2
4
)), α},

respectively. One can easily show that this coloring is an incidence (2∆ + 1)-coloring
for G

2
4 .

Remark 3.1. A stronger result can be drawn by reviewing the proof of Theorems 1.5
and 1.6. In fact we use at most two colors for the coloring of second incidences of each
vertex. Therefore, we can replace χi with χi,2.

Let G and H be two graphs. The direct product G × H of graphs G and H is
a graph such that the vertex set of G × H is the Cartesian product V (G) × V (H),
and vertices (g, h) and (g′, h′) are adjacent in G × H if and only if g is adjacent to g′,
and h is adjacent to h′ [9]. Also, the induced subgraph of G by a subset S of V (G) is
denoted by G[S] and the line graph of G is denoted by L(G) (see [3, p. 23]).

Lemma 3.2. Let m ∈ N and G be a nontrivial graph. Then

G
[m]
2m = G

1
2 ∪ m − 1

2 (L(G 1
2 ) × K2)

when m is an odd integer and

G
[m]
2m = G

1
2 ∪ L(G 1

2 ) ∪ m − 2
2 (L(G 1

2 ) × K2)

when m is an even integer.

Proof. Let Γ = G
[m]
2m . We partition the vertex set of Γ to the subsets

Vk =
⋃

uv∈E(G)

{(uv) k
2m

, (uv) m−k
2m

, (vu) k
2m

, (vu) m−k
2m

},

where 0 ≤ k ≤ ⌊ m
2 ⌋. One can easily see that E(Γ) =

⋃⌊ m
2 ⌋

k=0 E(Γ[Vk]) because two ends
of any edge belong to the same part of the partition. So Γ =

⋃⌊ m
2 ⌋

k=0 Γk, where Γk = Γ[Vk].
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Now we show that Γ0 = G
1
2 , Γ m

2
= L(G 1

2 ) when m is even and Γk = L(G 1
2 ) × K2

when 0 < k < m
2 . We have

V0 =
⋃

{u,v}∈E(G)

{(uv) 0
2m

, (uv) m
2m

, (vu) 0
2m

}

and
E(Γ0) =

⋃

{u,v}∈E(G)

{{(uv) 0
2m

, (uv) m
2m

}, {(uv) m
2m

, (vu) 0
2m

}}

which follows that Γ0 = G
1
2 . If m is an even number then

V m
2

=
⋃

{u,v}∈E(G)

{(uv) m
2

2m

, (vu) m
2

2m

}.

Suppose that E m
2 ,1 =

⋃
{u,v}∈E(G){(uv) m

2
2m

(vu) m
2

2m

} and

E m
2 ,2 =

⋃

u∈V (G)

⋃

v,w∈NG(u)

{{(uv) m
2

2m

, (uw) m
2

2m

}}.

Thus, E(Γ m
2

) = E m
2 ,1 ∪ E m

2 ,2 and easily we can show that Γ m
2

is isomorphic to L(G 1
2 ).

Now suppose that 1 < k < m
2 . In this case, Γk has four vertices on each edge of G.

Suppose that

Ek,1 =
⋃

{u,v}∈E(G)

{{(uv) k
2m

, (vu) m−k
2m

}, {(uv) m−k
2m

, (vu) k
2m

}}

and
Ek,2 =

⋃

u∈V (G)

⋃

v,w∈NG(u)

{{(uv) k
2m

, (uw) m−k
2m

}, {(uv) m−k
2m

, (uw) k
2m

}}.

So E(Γk) = Ek,1 ∪ Ek,2. Note that

V (L(G 1
2 )) =

⋃

{u,v}∈E(G)

{{u, (uv) 1
2
}, {v, (uv) 1

2
}}.

By definition of direct product, in L(G 1
2 )×K2, for each vertex {u, (uv) 1

2
} ∈ V (L(G 1

2 )),
there are two vertices in the copy of K2 related to the vertex {u, (uv) 1

2
}. We denote these

vertices by {u, (uv) 1
2
}0 and {u, (uv) 1

2
}1. Now the following function is an isomorphism

from Γk to L(G 1
2 ) × K2:

f((uv) i
2m

) =
{

{u, (uv) 1
2
}0 if i = k,

{u, (uv) 1
2
}1 if i = m − k.
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In the proof of Lemma 3.2, we decomposed E(Γk) into two subsets Ek,1 and Ek,2,
where 1 ≤ k ≤ ⌊ m

2 ⌋. Suppose that q = |E(G)|. Similar to the proof of Lemma 3.2,
one can show that the induced subgraph of Γk by Ek,1 is isomorphic to qK2 (when
k = m

2 ) or q(K2 × K2) = 2qK2 (when k ̸= m
2 ) and the induced subgraph of Γk by

Ek,2 is isomorphic to
⋃

v∈V (G) Kd(v) (when k = m
2 ) or

⋃
v∈V (G)(Kd(v) × K2) (when

k ̸= m
2 ). Therefore,

⌊ m
2 ⌋⋃

k=1
Γk[Ek,1] = (m − 1)qK2,

which is denoted by G
[m]
2m
1 and

⌊ m
2 ⌋⋃

k=1
Γk[Ek,2] =

{
m−1

2 (
⋃

v∈V (G)(Kd(v) × K2)) if m ≡ 1 (mod 2),
(
⋃

v∈V (G) Kd(v))
⋃

m−2
2 (

⋃
v∈V (G)(Kd(v) × K2)) if m ≡ 0 (mod 2),

which is denoted by G
[m]
2m
2 . So, we have the following lemma.

Lemma 3.3. Let m ∈ N and G be a nontrivial graph of size q. With assumptions of
the previous paragraph,

G
[m]
2m = G

1
2 ∪ G

[m]
2m
1 ∪ G

[m]
2m
2 .

In [29], Yang proved that

χi(G × H) ≤ min{χi(G)∆(H), ∆(G)χi(H)}

for every graphs G and H. Therefore, if n ≥ 2 then

χi(Kn × K2) = min{χi(Kn)∆(K2), ∆(Kn)χi(K2)} = n.

Lemma 3.4. Let G be a graph with ∆(G) ≥ 3 and 2 ≤ m ∈ N. Then

χi(G
[m]
2m
2 ) = ∆(G).

Proof. Suppose that m is an even number. We have

χi(G
[m]
2m
2 ) = max{χi(Kd(v) × K2), χi(Kd(v))| v ∈ V (G)}

= max{d(v)| v ∈ V (G)}
= ∆(G).

The proof is similar when m is an odd number.
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Proof of Theorem 1.7. Let ∆(G) = ∆. The assertion for m = 1 and m = 2 follows
immediately from Theorems 1.5 and 1.6. Now suppose that m ≥ 3. We have

G
m

2m = G
m−1
2m ∪ G

[m]
2m = (G

m−1
2m ∪ G

[m]
2m
1 ) ∪ G

1
2 ∪ G

[m]
2m
2 ,

where V (G 1
2 ) ∩ V (G

[m]
2m
2 ) = ∅. We define an incidence coloring for G

m
2m in four steps:

Step 1. Proper incidence coloring of G∗ = G
m−1
2m ∪ G

[m]
2m
1 with l = (m − 1)∆ + 2 colors

of A = {a1, . . . , al}: Applying Theorem 2.6, we have χ(G 2m−1
2m ) = (m − 1)∆ + 2. Let

f1 : V (G 2m−1
2m ) → A be a proper coloring. Now we show that the following incidence

coloring of G∗ is proper.

g1 : I(G∗) → A, g1((x, y)) = f1(y).

Suppose that (x1, y1) and (x2, y2) are two adjacent incidences in I(G∗). Therefore,
x1 = x2 or y1 = x2 or (x2, y2) = (y1, x1). In the first case,

d
G

1
2m

(y1, y2) ≤ d
G

1
2m

(y1, x1) + d
G

1
2m

(x1, y2).

Also, we know that at most one of the edges {x1, y1} and {x1, y2} is in G
[m]
2m
1 . So

d
G

1
2m

(y1, y2) ≤ d
G

1
2m

(y1, x1) + d
G

1
2m

(x1, y2) ≤ m + m − 1 = 2m − 1.

Therefore, y1 and y2 are adjacent in G
2m−1

2m and

g1((x1, y1)) = f1(y1) ̸= f1(y2) = g1((x2, y2)).

In the second case,

d
G

1
2m

(y1, y2) = d
G

1
2m

(x2, y2) ≤ m.

Therefore, x2 and y2 are adjacent in G
2m−1

2m and

g1((x1, y1)) = f1(y1) = f1(x2) ̸= f1(y2) = g1((x2, y2)).

In the third case,

d
G

1
2m

(y1, y2) = d
G

1
2m

(y1, x1) ≤ m.

Therefore, y1 and y2 are adjacent in G
2m−1

2m and

g1((x1, y1)) = f1(y1) ̸= f1(y2) = g1((x2, y2)).

Hence, g1 is an incidence coloring of G∗.

Step 2. Proper incidence coloring of G
[m]
2m
2 with ∆ colors of B = {b1, . . . , b∆}: This

follows from Lemma 3.4.
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Step 3. Proper incidence coloring of G
1
2 (with V (G 1

2 ) = V0 which is defined in the
proof of Lemma 3.2) with ∆ + 1 colors of B′ = {b0, b1, . . . , b∆}: This follows from
Theorem 1.5.
Step 4. Changing the color b0 in Step 3 to the available colors from the set A: Let
B0 ⊂ V0 is the set of incidences of G

1
2 with color b0. Now if (u, (uv) m

2m
) ∈ B0 we change

its color to f1((uv) m
2m

) and if ((uv) m
2m

, u) ∈ B0 we change its color to f1(u). Notice
that (uv) m

2m
= (vu) m

2m
in G

m
2m . We prove that this new coloring of I(G∗) ∪ B0 is also

proper.
(1) Consider the incidence (u, (uv) m

2m
) ∈ B0 with color f1((uv) m

2m
). Because

E(G
[m]
2m
1 ) ∩ E(G 1

2 ) = ∅,

we only consider the incidences of G
m−1
2m . The set of incidences in G

m−1
2m adjacent to

(u, (uv) m
2m

) is

{(u, (uw) i
2m

), ((uw) i
2m

, u), ((uv) m
2m

, (uv) j
2m

) |
w ∈ NG(u), 1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2m − 1, j ̸= m}

and the set of their colors is

F1 = {f1(u)} ∪ {f1((uw) i
2m

), f1((uv) j
2m

) |
w ∈ NG(u), 1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2m − 1, j ̸= m}.

Since

{u} ∪ {(uw) i
2m

, (uv) j
2m

| w ∈ NG(u), 1 ≤ i ≤ m − 1, m + 1 ≤ j ≤ 2m − 1}
⊂ N

G
2m−1

2m
((uv) m

2m
),

f1((uv) m
2m

) /∈ F1. Thus, there is no color conflict in this case.
(2) Consider the incidence ((uv) m

2m
, u) ∈ B0 with color f1(u). Because

E(G
[m]
2m
1 ) ∩ E(G 1

2 ) = ∅,

we only consider the incidences of G
m−1
2m . The set of incidences in G

m−1
2m adjacent

to ((uv) m
2m

, u) is

{(u, (uw) i
2m

), ((uv) m
2m

, (uv) j
2m

), ((uv) j
2m

, (uv) m
2m

) |
w ∈ NG(u), 1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2m − 1, j ̸= m}

and the set of their colors is

F2 = {f1((uv) m
2m

)}
∪ {f1((uw) i

2m
), f1((uv) j

2m
) | w ∈ NG(u), 1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2m − 1, j ̸= m}.



On incidence coloring of graph fractional powers 121

Since

{(uv) m
2m

} ∪ {(uw) i
2m

, (uv) j
2m

| w ∈ NG(u), 1 ≤ i ≤ m − 1, m + 1 ≤ j ≤ 2m − 1}
⊂ N

G
2m−1

2m
(u),

f1(u) /∈ F2. So the coloring of I(G∗) ∪ B0 is an incidence coloring.
Finally, since

V (G 1
2 ) ∩ V (G

[m]
2m
2 ) = ∅,

by use of the colorings defined in Steps 2, 3 and 4, we can define an incidence
(m∆ + 2)-coloring of G

m
2m . This completes the proof.

4. PROBLEMS

In this paper, we prove that χi(Gr) = ∆(Gr) + 1 for any graph with maximum degree
at least 3 and any fractional positive number r from the set

{ 1
n

∣∣ 1 < n ∈ N
}

∪
{ 2

n

∣∣ 2 < n ∈ N
}

∪
{m

n

∣∣ 0 <
m

n
<

1
2

}
.

Also we show that ∆(G m
2m ) + 2 is an upper bound for the incidence chromatic number

of G
m

2m when ∆(G) ≥ 3. Besides the presented results there are several open problems.
Below we list some of them.

Problem 4.1. Let G be a graph with maximum degree ∆ ≥ 3, 1
2 < m

n < 1 and m ≥ 3.
What is the upper bound for χi(G

m
n )? Is the incidence coloring conjecture (ICC) true

for these graphs?

Let G be a graph with maximum degree ∆ ≥ 3. By Theorem 1.4, we have
χi(G

3
n ) = 3∆(G) + 1 when n ≥ 7 and 3∆(G) + 1 ≤ χi(G

3
6 ) ≤ 3∆(G) + 2. So the

following problem arise naturally:

Problem 4.2. Let G be a graph with maximum degree ∆ ≥ 3. What are the exact
values or upper bounds for χi(G

3
4 ), χi(G

3
5 ) and χi(G

3
6 )? Is the incidence coloring

conjecture (ICC) true for these graphs?

We know that 2
2 -power of graph G is isomorphic to T (G), the total graph of G.

In addition, G is an induced subgraph of G
2
2 .

Problem 4.3. Find an upper bound for χi(G
2
2 ) in terms of ∆(G) and χi(G).

We prove that the conjecture ICC is true for m
2m -power of graphs with maximum

degree at least 3. According to the results, we conjecture the following:

Conjecture 4.4. For any graph G with ∆(G) ≥ 3, χi(G
m

2m ) = m∆(G) + 1.

Acknowledgements
We would like to thank the referee for the careful reading of the paper and for the
suggestions which helped us to improve considerably the paper.



122 Mahsa Mozafari-Nia and Moharram N. Iradmusa

REFERENCES

[1] M. Behzad, Graphs and Their Chromatic Numbers, Ph.D. Thesis, Michigan State
University, 1965.

[2] M. Bonamy, H. Hocquard, S. Kerdjoudj, A. Raspaud, Incidence coloring of graphs with
high maximum average degree, Discrete Appl. Math. 227 (2017), 29–43.

[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.

[4] R.A. Brualdi, J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math.
122 (1993), 51–58.

[5] D. Chen, X. Liu, S. Wang, The incidence coloring number of graph and the incidence
coloring conjecture, Math. Econom. (People’s Republic of China) 15 (1998), 47–51.

[6] P. Gregor, B. Lužar, R. Soták, On incidence coloring conjecture in Cartesian products
of graphs, Discrete Appl. Math. 213 (2016), 93–100.

[7] P. Gregor, B. Lužar, R. Soták, Note on incidence chromatic number of subquartic graphs,
J. Comb. Optim. 34 (2017), 174–181.

[8] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163
(1997), 275–278.

[9] R. Hammack, W. Imrich, S. Klavzar, Handbook of Product Graphs, 2nd ed., Discrete
Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011.

[10] S. Hartke, H. Liu, S. Petrickova, On coloring of fractional powers of graphs,
arxiv:1212.3898v1 (2013).

[11] M. Hosseini Dolama, E. Sopena, X. Zhu, Incidence coloring of k-degenerated graphs,
Discrete Math. 283 (2004), 121–128.

[12] M.N. Iradmusa, On colorings of graph fractional powers, Discrete Math. 310 (2010),
1551–1556.

[13] M.N. Iradmusa, A short proof of 7-colorability of 3
3 -power of sub-cubic graphs, Iranian

J. Sci. Tech., Transactions A: Sci. 44 (2020), no. 1, 225–226.

[14] H.J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars
Combin. 68 (2003), 193–201.

[15] D. Li, M. Liu, Incidence coloring of the squares of some graphs, Discrete Math. 308
(2008), 6569–6574.

[16] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3,
Discrete Math. 292 (2005), 131–141.

[17] B. Montgomery, Dynamic Coloring, Ph.D. Dissertation, West Virginia University, 2001.

[18] M. Mozafari-Nia, M.N. Iradmusa, A note on coloring of 3
3 -power of subquartic graphs,

Australas. J. Combin. 79 (2021), 454–460.

[19] K. Nakprasit, K. Nakprasit, Incidence colorings of the powers of cycles, Int. J. Pure
Appl. Math. 71 (2012), 143–148.



On incidence coloring of graph fractional powers 123

[20] K.J. Pai, J.M. Chang, J.S. Yang, R.U. Wu, Incidence coloring on hypercubes, Theor.
Comput. Sci. 557 (2014), 59–65.

[21] K.J. Pai, J.M. Chang, J.S. Yang, R.U. Wu, On the incidence coloring number of folded
hypercubes, 2014 International Computer Science and Engineering Conference (ICSEC),
7–11, 2014.

[22] W.C. Shiu, P.C.B. Lam, D.L. Chen, On incidence coloring for some cubic graphs,
Discrete Math. 252 (2002), 259–266.

[23] W.C. Shiu, P.K. Sun, Graphs which are not (∆ + 1)-incidence colorable with erratum to
the incidence chromatic number of outerplanar graphs, Technical Report of Department
of Mathematics, Hong Kong Baptist University, 419 (2006), 397–405.

[24] P.K. Sun, W.C. Shiu, Some results on incidence coloring, star arboricity and domination
number, Australas. J. Combin. 54 (2012), 107–114.

[25] F. Wang, X. Liu, Coloring 3-power of 3-subdivision of subcubic graph, Discrete Math.
Algorithms and Appl. 10 (2018), 1850041.

[26] S.D. Wang, D.L. Chen, S.C. Pang, The incidence coloring number of Halin graphs and
outerplanar graphs, Discrete Math. 256 (2002), 397–405.

[27] S. Wang, J. Xu, F. Ma, C. Xu, The (∆ + 2, 2)-incidence coloring of outerplanar graphs,
Progress in Natural Sci. 18 (2008), 575–578.

[28] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309
(2009), 3866–3870.

[29] D. Yang, Fractional incidence coloring and star arboricity of graphs, Ars Combin. 105
(2012), 213–224.

Mahsa Mozafari-Nia
mahsa.mozafari-nia@uni-konstanz.de

Shahid Beheshti University
Department of Mathematical Sciences
G.C. P.O. Box 19839-63113, Tehran, Iran

Moharram N. Iradmusa (corresponding author)
m_iradmusa@sbu.ac.ir
 https://orcid.org/0000-0003-0608-5781

Shahid Beheshti University
Department of Mathematical Sciences
G.C. P.O. Box 19839-63113, Tehran, Iran

Received: January 26, 2022.
Revised: November 16, 2022.
Accepted: November 22, 2022.


