SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS

Tomas Godoy
Communicated by Vicentiu D. Rădulescu

Abstract

Let Ω be a C^{2} bounded domain in \mathbb{R}^{n} such that $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$, where Γ_{1} and Γ_{2} are disjoint closed subsets of $\partial \Omega$, and consider the problem $-\Delta u=g(\cdot, u)$ in $\Omega, u=\tau$ on $\Gamma_{1}, \frac{\partial u}{\partial \nu}=\eta$ on Γ_{2}, where $0 \leq \tau \in W^{\frac{1}{2}, 2}\left(\Gamma_{1}\right), \eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, and $g: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is a nonnegative Carathéodory function. Under suitable assumptions on g and η we prove the existence and uniqueness of a positive weak solution of this problem. Our assumptions allow g to be singular at $s=0$ and also at $x \in S$ for some suitable subsets $S \subset \bar{\Omega}$. The Dirichlet problem $-\Delta u=g(\cdot, u)$ in $\Omega, u=\sigma$ on $\partial \Omega$ is also studied in the case when $0 \leq \sigma \in W^{\frac{1}{2}, 2}(\Omega)$.

Keywords: singular elliptic problems, mixed boundary conditions, weak solutions.
Mathematics Subject Classification: 35J75, 35M12, 35D30.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let Ω be a C^{2} and bounded domain in \mathbb{R}^{n} such that $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$, with Γ_{1} and Γ_{2} disjoint closed subsets of $\partial \Omega$. Our aim in this paper is to state existence and uniqueness results for weak solutions $u \in H^{1}(\Omega)$ of possibly singular elliptic Dirichlet problems of the form

$$
\begin{cases}-\Delta u=g(\cdot, u) & \text { in } \Omega, \tag{1.1}\\ u=\sigma & \text { on } \partial \Omega, \\ u>0 & \text { in } \Omega,\end{cases}
$$

as well as of possibly singular problems with mixed boundary conditions of the form

$$
\begin{cases}-\Delta u=g(\cdot, u) & \text { in } \Omega, \tag{1.2}\\ u=\tau & \text { on } \Gamma_{1}, \\ \frac{\partial u}{\partial \nu}=\eta & \text { on } \Gamma_{2}, \\ u>0 & \text { in } \Omega,\end{cases}
$$

where $g: \Omega \times(0, \infty) \rightarrow[0, \infty)$ is a suitable nonnegative Carathéodory function $g(x, s)$ which may be singular at $s=0$ and at $x \in S$ for some suitable subsets $S \subset \bar{\Omega}$, and, in problem (1.1), $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$, whereas in problem (1.2), $\tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and η is a suitable function defined on Γ_{2}.

Singular elliptic problems appear in the study of many nonlinear physical phenomena: thin films of viscous fluids, chemical catalysis, non-Newtonian fluids, temperature of some electrical conductors, response of a membrane cap under heavy loads, Van der Waal forces, as well as in the study of micro electro-mechanical devices (see, e.g., $[8,12,18,20,21,30,34]$ and the references therein).

In [13], problem (1.1) was studied in the case $\sigma=0$ (i.e., with homogeneous Dirichlet boundary condition) and there it was proved that if $g \in C^{1}(\bar{\Omega} \times(0, \infty))$ satisfies that $g(x, \cdot)$ is nonincreasing on $(0, \infty)$ for any $x \in \bar{\Omega}$ and $\lim _{s \rightarrow 0^{+}} g(x, s)=\infty$ uniformly on $\bar{\Omega}$, then (1.1) has a unique classical solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$.

In [21, 46], and [45], problem (1.1) was addressed when $\sigma \neq 0$ (non homogeneous Dirichlet boundary condition) obtaining, again in this case, existence and uniqueness of classical solutions when σ is regular enough.

In [11], existence and nonexistence results were obtained for classical solutions of singular bifurcation problems whose model problem is $-\Delta u=u^{-\alpha}+\lambda u^{p}$ in Ω, $u=0$ on $\partial \Omega, u>0$ in Ω, where $\alpha>0, \lambda>0$, and $p>1$, and there it was proved that there exists $\lambda^{*} \in(0, \infty)$ such that for $\lambda<\lambda^{*}$ there exists at least a solution and for $\lambda>\lambda^{*}$ no such a solution exists. In [18] it was studied the problem with a parameter $-\Delta u=\lambda f-u^{-\alpha}$ in $\Omega, u=0$ on $\partial \Omega, u>0$ in $\Omega, u^{-\alpha} \in L^{1}(\Omega)$, where $\lambda>0,0<\alpha<1$, and $0 \leq f \in L^{1}(\Omega)$. It turns out that the situation is the opposite of that in [11]: there exists $\lambda^{*} \in(0, \infty)$ such that for $\lambda>\lambda^{*}$ there exists at least a solution and for $\lambda<\lambda^{*}$ no such a solution exists.

In [31] it was studied the model problem

$$
\begin{equation*}
-\Delta u=k(x) u^{-\alpha} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad u>0 \text { in } \Omega . \tag{1.3}
\end{equation*}
$$

There it was proved that if Ω is a $C^{2+\beta}$ bounded domain for some $\beta \in(0,1)$, and $k \in C^{\beta}(\bar{\Omega})$ satisfies $\min _{\bar{\Omega}} k>0$ then, for any $\alpha>0$, problem (1.3) has a unique classical solution $u \in C^{2+\beta}(\Omega) \cap C(\bar{\Omega})$ which belongs to $C^{1}(\bar{\Omega})$ if $\alpha<1$, and belongs to $H_{0}^{1}(\Omega)$ if and only if $\alpha<3$. Moreover, if $\alpha>1$ then $\frac{1}{c} \varphi_{1}^{\frac{2}{1+\alpha}} \leq u \leq c \varphi_{1}^{\frac{2}{1+\alpha}}$ in Ω, where c is a positive constant and φ_{1} is a positive eigenfunction corresponding to the first eigenvalue for $-\Delta$ on Ω with homogeneous Dirichlet boundary condition.

After [31], several works studied problem (1.3) under weaker regularity assumptions on k and, in some of them, for more general differential operators than the Laplacian, as well as for more general nonlinearities.

In [15] it was stated the existence and uniqueness of a weak solution $u \in H_{0}^{1}(\Omega)$ of problem (1.3) in the case when k is a nonnegative and nonidentically zero function in $L^{\infty}(\Omega)$, and, for such a u, a global bound for ∇u was obtained. Let us mention some of them.

In [47] it was proved, among other results, that if $\alpha>1, k \in L^{1}(\Omega)$ and $k>0$ a.e. in Ω, then (1.3) has a weak solution $u \in H_{0}^{1}(\Omega)$ if and only if there exists $u_{0} \in H_{0}^{1}(\Omega)$
such that $\int_{\Omega} k u_{0}^{1-\alpha}<\infty$. These results were extended in [32] to the case where the Laplacian is replaced by the p-Laplacian operator.

Singular problems for differential operators (including the p-Laplacian) more general than the Laplacian and/or with more general nonlinearities were also studied in $[2,22,32,37,39,48]$ and [40].

Singular problems on punctured domains were studied in [3]. The paper [9] addressed problem (1.1) in the case where $\alpha=\alpha(x)$ (variable exponent). In [5], [28,33] and [17] it was studied the existence of solutions (either classical or weak or very weak) of (1.3) in the case where k behaves like $(\operatorname{dist}(\cdot, \partial \Omega))^{-\beta}$ for some $\beta>0$, and in [36] it was considered the case where k is either a nonnegative function in $L^{1}(\Omega)$ or a bounded Radon measure on Ω.

In [44] existence and nonexistence results were given for the problem with a parameter $-\Delta u=k(x) u^{-\alpha}+\lambda u^{p}$ in $\Omega, u=0$ on $\partial \Omega, u>0$ in Ω in the case where $\alpha, p \in(0,1)$, and k may change sign.

Existence results for classical solutions of Lane-Emden-Fowler equations with convection and singular potential were obtained in [19], and related problems were studied in $[10,25]$ and [4].

Let us mention also that in [30] it was studied the existence of positive classical solutions of the one-dimensional singular problem

$$
\begin{equation*}
-u^{\prime \prime}(t)=f(t) u^{-\beta}(t)+h(t) \quad \text { on }(0,1), \tag{1.4}
\end{equation*}
$$

where $\beta>0, f$ and h belong to $C(0,1), f>0$ in $(0,1)$, and

$$
\int_{0}^{1} t(1-t)(f(t)+|h(t)|)<\infty
$$

and with u such that one of the following boundary conditions holds:

$$
\begin{array}{ll}
u(0)=a, & u(1)=b \\
u(0)=a, & u^{\prime}(1)=c \tag{1.6}
\end{array}
$$

In [30, Theorem 1.1] it was proved that, if $a \geq 0$ and $b \geq 0$, then problem (1.4), with boundary conditions (1.5), has a unique classical solution; and in [30, Theorem 1.2] it was proved that problem (1.4), with boundary conditions (1.6), has a unique positive solution if $c>c_{0}:=\inf \left\{u_{\xi}^{\prime}(1): \xi>0\right\}$, and has no positive solution if $c<c_{0}$, where, for $\xi>0, u_{\xi}$ is the solution, provided by [30, Theorem 1.1], of problem (1.4) with boundary conditions $u(0)=a, u(1)=\xi$.

The interested reader will find an updated account, concerning the topic of singular elliptic Dirichlet problems, as well as additional references, in the research books [23, 24, 41]. See also [16].

As said before, we are interested in the existence and uniqueness of weak solutions of problems (1.1) and (1.2). More specifically, our interest is to obtain a sort of n-dimensional analogous of the above quoted (Theorems 1.1 and 1.2 of [30]).

For a function $u \in H^{1}(\Omega)$ the value of u on $\partial \Omega$ (or on Γ_{1}, or on Γ_{2}) will be always understood in the sense of the trace. Let us present the notion of weak solutions of Dirichlet problems we use.

Definition 1.1. Let $f: \Omega \rightarrow \mathbb{R}$ be such that $f \varphi \in L^{1}(\Omega)$ for any $\varphi \in H_{0}^{1}(\Omega)$, and let $\sigma: \partial \Omega \rightarrow \mathbb{R}$. We say that $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{1.7}\\ u=\sigma & \text { on } \partial \Omega\end{cases}
$$

if $u \in H^{1}(\Omega), u=\sigma$ on $\partial \Omega$, and

$$
\begin{equation*}
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} f \varphi \quad \text { for any } \varphi \in H_{0}^{1}(\Omega) \tag{1.8}
\end{equation*}
$$

For a function $f: \Omega \rightarrow \mathbb{R}$, we will write $f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}$ to mean that $f \varphi \in L^{1}(\Omega)$ for any $\varphi \in H_{0}^{1}(\Omega)$, and that there exists a positive constant c such that $\left|\int_{\Omega} f \varphi\right| \leq c\|\varphi\|_{H_{0}^{1}(\Omega)}$ for any $\varphi \in H_{0}^{1}(\Omega)$.

Remark 1.2. If $f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}$ and $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$, then problem (1.7) has a unique weak solution $u \in H^{1}(\Omega)$, and there exists a positive constant c, independent of f and σ, such that

$$
\|u\|_{H^{1}(\Omega)} \leq c\left(\|f\|_{\left(H_{0}^{1}(\Omega)\right)^{\prime}}+\|\sigma\|_{H^{\frac{1}{2}}(\partial \Omega)}\right)
$$

for a proof of this fact see, e.g., [43, Section 8.4.1] (there it is assumed that $f \in L^{2}(\Omega)$, but the arguments given there works also when $\left.f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}\right)$.

For $S \subset \bar{\Omega}$ we will denote by ρ_{S} the distance function defined by

$$
\rho_{S}(x):=\operatorname{dist}(x, S) \quad \text { for } x \in \Omega
$$

and, for a Lebesgue measurable subset E of $\Omega,|E|$ will denote the Lebesgue measure of E.

We recall that a function $g: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is called a Carathéodory function if $g(\cdot, s)$ is Lebesgue measurable for any $s \in(0, \infty)$ and $g(x, \cdot)$ is continuous on $(0, \infty)$ for a.e. $x \in \Omega$. Our first result, concerning problem (1.1), reads as follows:

Theorem 1.3. Let Ω be a C^{2} and bounded domain in \mathbb{R}^{n}. Let $g: \Omega \times(0, \infty) \rightarrow[0, \infty)$ be a function satisfy the following three conditions:
(H1) $g: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is a nonnegative Carathéodory function such that, for each $x \in \Omega, g(x, \cdot)$ is nonincreasing on $(0, \infty)$.
(H2) There exists a Lebesgue measurable subset E of Ω such that $|E|>0$ and $g(x, s)>0$ for any $s>0$ and almost all $x \in E$.
(H3) $\rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right) \in L^{2}(\Omega)$ for any $c \in(0, \infty)$.
Then for any nonnegative $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$ problem (1.1) has a unique weak solution $u \in H^{1}(\Omega)$ and there exists a positive constant c such that $u \geq c \rho_{\partial \Omega}$ a.e in Ω.

Let us introduce the space

$$
H_{0, \Gamma_{1}}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{1}\right\},
$$

which endowed with the inner product of $H^{1}(\Omega)$ is a Hilbert space. Let $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ denote its topological dual. If f is a function defined on Ω, we will write $f \in$ $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ to mean that $f \varphi \in L^{1}(\Omega)$ and $\left|\int_{\Gamma_{2}} \eta \varphi\right| \leq c\|\varphi\|_{H^{1}(\Omega)}$ for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$, with c a positive constant independent of φ. Similarly, if η is a function defined on Γ_{2} we will say that $\eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ to mean that $\eta \varphi \in L^{1}\left(\Gamma_{2}\right)$ and that $\left|\int_{\Gamma_{2}} \eta \varphi\right| \leq c\|\varphi\|_{H^{1}(\Omega)}$ for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$, with a positive constant c independent of φ. In both cases, the maps $\varphi \rightarrow \int_{\Omega} f \varphi$ and $\varphi \rightarrow \int_{\Gamma_{2}} \eta \varphi$ will still be denoted by f and η, respectively.

Weak solutions of problems with mixed nonhomogeneous Dirichlet-Neumann boundary conditions are defined as follows:
Definition 1.4. Let $f: \Omega \rightarrow \mathbb{R}$ be such that $f \varphi \in L^{1}(\Omega)$ for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$, let $\tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, and let $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ be a measurable function such that $\eta \varphi \in L^{1}\left(\Gamma_{2}\right)$ for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$. We say that $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega, \tag{1.9}\\ u=\tau & \text { on } \Gamma_{1}, \\ \frac{\partial u}{\partial \nu}=\eta & \text { on } \Gamma_{2} .\end{cases}
$$

if $u \in H^{1}(\Omega), u=\tau$ on Γ_{1}, and

$$
\begin{equation*}
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} f \varphi+\int_{\Gamma_{2}} \eta \varphi \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega) . \tag{1.10}
\end{equation*}
$$

Let $f: \Omega \rightarrow \mathbb{R}$ be such that $f \varphi \in L^{1}(\Omega)$ for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$, let $\tau: \Gamma_{1} \rightarrow \mathbb{R}$, and suppose that u is a weak solution of the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{1.11}\\ u=\tau & \text { on } \Gamma_{1}, \\ u=0 & \text { on } \Gamma_{2} .\end{cases}
$$

If $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$ and if φ and u are regular enough on $\bar{\Omega}$, we have

$$
-\operatorname{div}(\varphi \nabla u)+\langle\nabla u, \nabla \varphi\rangle=f \varphi
$$

and then, from the divergence theorem and the fact that $\varphi=0$ on Γ_{1}, we get

$$
-\int_{\Gamma_{2}} \frac{\partial u}{\partial \nu} \varphi+\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} f \varphi
$$

Therefore,

$$
\int_{\Gamma_{2}} \frac{\partial u}{\partial \nu} \varphi=\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle-\int_{\Omega} f \varphi .
$$

This suggests the following definition.

Definition 1.5. Let $f: \Omega \rightarrow \mathbb{R}$ be such that $f \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, and let $\tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$. If $u \in H^{1}(\Omega)$ is the weak solution of problem (1.11), we define the (distributional) normal derivative of u on Γ_{2}, as the linear functional $\frac{\partial u}{\partial \nu} \Gamma_{2}: H_{0, \Gamma_{1}}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}_{\Gamma_{2}}(\varphi):=\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle-\int_{\Omega} f \varphi \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega) \tag{1.12}
\end{equation*}
$$

For η and $\widetilde{\eta}$ in $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ we will write $\eta \geq \widetilde{\eta}$ (respectively $\eta \leq \widetilde{\eta}$) to mean that $\eta(\varphi) \geq \widetilde{\eta}(\varphi)$ (resp. $\eta(\varphi) \leq \widetilde{\eta}(\varphi))$ for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$. We will write also $\eta>\widetilde{\eta}$ (respectively $\eta<\widetilde{\eta}$) to mean that $\eta \neq \widetilde{\eta}$ and $\eta \geq \widetilde{\eta}$ (resp. and $\eta \leq \widetilde{\eta}$).

Concerning problem (1.2) we have the following:
Theorem 1.6. Let Ω be a C^{2} and bounded domain in \mathbb{R}^{n} such that $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$, where Γ_{1} and Γ_{2} are disjoint closed sets in $\partial \Omega$. Let $g: \Omega \times(0, \infty) \rightarrow[0, \infty)$. Assume the conditions $(\mathrm{H} 1)-(\mathrm{H} 2)$ of Theorem 1.3 and the following:
(H3') $\rho_{\Gamma_{1}} g\left(\cdot, c \rho_{\partial \Omega}\right) \in L^{2}(\Omega)$ for any $c \in(0, \infty)$.
Let τ be a nonnegative function in $H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, let u_{τ} be the weak solution of the problem

$$
\begin{cases}-\Delta u_{\tau}=g\left(\cdot, u_{\tau}\right) & \text { in } \Omega \tag{1.13}\\ u_{\tau}=\tau & \text { on } \Gamma_{1} \\ u_{\tau}=0 & \text { on } \Gamma_{2}\end{cases}
$$

given by Theorem 1.3, and let $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ be such that $\eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$. Then:
(i) if $\eta \geq \frac{\partial u_{\tau}}{\partial \nu} \Gamma_{2}$, then (1.2) has a unique weak solution $u \in H^{1}(\Omega)$, and there exists a positive constant c such that $u \geq c \rho_{\partial \Omega}$ in Ω,
(ii) if $\eta<\frac{\partial u_{\tau}}{\partial \nu} \Gamma_{2}$, then (1.2) has no weak solutions.

As a consequence of Theorem 1.6 and of a weak form of the Hopf boundary lemma given in Lemma 4.4, we will get the following:

Corollary 1.7. Let $g: \Omega \times(0, \infty) \rightarrow[0, \infty)$ satisfy the conditions (H1)-(H2) of Theorem 1.3 and the condition (H3') of Theorem 1.6, let τ be a nonnegative function in $H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and let $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ be such that $\eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$. If $\eta \geq 0$, then problem (1.2) has a unique weak solution $u \in H^{1}(\Omega)$, and there exists a positive constant c such that $u \geq c \rho_{\partial \Omega}$ in Ω.

The paper is organized as follows. In Section 2 we recall some general facts we need, and in Section 3 we study problem (1.1) via an approximation approach, which is adapted from [27], where the existence and uniqueness of strong solutions of (1.1) were investigated. We consider, for $\varepsilon \in(0,1]$ and for any nonnegative $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$, the problem of finding $v_{\varepsilon} \in H_{0}^{1}(\Omega)$ such that $-\Delta v_{\varepsilon}=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)$ in $\Omega, v_{\varepsilon}=0$ on $\partial \Omega$, where $\widetilde{\sigma}$ is the solution of the problem $-\Delta \widetilde{\sigma}=0$ in $\Omega, \widetilde{\sigma}=\sigma$ on $\partial \Omega$, and with $g_{\varepsilon}: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ defined by $g_{\varepsilon}(x, s):=\min \left\{\varepsilon^{-1}, g(x, s+\varepsilon)\right\}$. By writing the above problem for v_{ε} as a fixed point problem and using the Schauder fixed
point theorem we prove in Lemma 3.2 the existence and uniqueness of such a v_{ε}, and that, in addition, the map $\varepsilon \rightarrow v_{\varepsilon}$ is nonincreasing. Lemma 3.3 shows that if $v(x):=\lim _{\varepsilon \rightarrow 0^{+}} v_{\varepsilon}(x)$, then $v \in H_{0}^{1}(\Omega)$,

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|v_{\varepsilon}-v\right\|_{H_{0}^{1}(\Omega)}=0 \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0^{+}}\left\|g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right\|_{L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)}=0
$$

From these facts and from other additional considerations, Theorem 1.3 is proved at the end of Section 3, by showing that $u:=v+\widetilde{\sigma}$ is the unique solution of problem (1.1) and that it satisfies $u \geq c \rho_{\partial \Omega}$ for some constant $c>0$.

In Section 4 we prove Theorem 1.6. The existence assertion of 1.6 is obtained by adapting, to our setting, ideas from the proof of Theorem 1.1 in [35] (which is a sub-supersolution theorem for problems of the form $-\Delta u=f(x, u)$ in $\Omega, u=0$ on $\partial \Omega$). Lemma 4.4 gives a weak form of the Hopf boundary lemma, and Corollary 1.7 is proved as a direct consequence of Theorem 1.6 and of Lemma 4.4.

2. PRELIMINARIES

Let us recall some well known facts.

Remark 2.1.

(i) (Poincaré's inequality for functions in $H_{0}^{1}(\Omega)$, see, e.g., [38, Theorem 1.8.1]) There exists a positive constant c such that

$$
\|u\|_{2} \leq c\|\nabla u\|_{2} \text { for any } u \in H_{0}^{1}(\Omega)
$$

(ii) (Poincaré's inequality for functions in $H_{0, \Gamma_{1}}^{1}(\Omega)$, see, e.g., [43, Theorem 7.16]) There exists a positive constant c such that

$$
\|u\|_{2} \leq c\|\nabla u\|_{2} \text { for any } u \in H_{0, \Gamma_{1}}^{1}(\Omega)
$$

(iii) The inclusion $H_{0, \Gamma_{1}}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact. Indeed, the inclusion $H_{0, \Gamma_{1}}^{1}(\Omega) \hookrightarrow H^{1}(\Omega)$ is continuous and (see, e.g., [38, Theorem 1.9.15]) $H^{1}(\Omega)$ has compact inclusion into $L^{2}(\Omega)$.
(iv) (Hardy's inequality, see, e.g., [6, p. 313], see also [38, Theorem 1.10.15]) There exists a positive constant c such that $\left\|\frac{u}{\rho_{\partial \Omega}}\right\|_{2} \leq c\|\nabla u\|_{2}$ for any $u \in H_{0}^{1}(\Omega)$.
$H_{0, \Gamma_{1}}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$ and thus, provided with the norm of $H^{1}(\Omega)$, it is a Hilbert space, and the Poincaré inequality of Remark 2.1(ii) gives that $u \rightarrow\|\nabla u\|_{2}$ is a norm on $H_{0, \Gamma_{1}}^{1}(\Omega)$, equivalent to the norm $\|\cdot\|_{H^{1}(\Omega)}$. From now on, we will consider $H_{0, \Gamma_{1}}^{1}(\Omega)$ as a Hilbert space provided with the norm $\|u\|_{H_{0, \Gamma_{1}}^{1}(\Omega)}:=\|\nabla u\|_{2}$. Similarly, $H_{0}^{1}(\Omega)$ will be considered as a Hilbert space with the same norm.

For $\delta>0$, let

$$
\Omega_{\delta}:=\left\{x \in \Omega: \rho_{\partial \Omega}(x)>\delta\right\} \quad \text { and } \quad A_{\delta}:=\left\{x \in \Omega: \rho_{\partial \Omega}(x) \leq \delta\right\}
$$

Similarly, for $i=1,2$, we set

$$
\begin{equation*}
\Omega_{\Gamma_{i}, \delta}:=\left\{x \in \Omega: \rho_{\Gamma_{i}}(x)>\delta\right\} \quad \text { and } \quad A_{\Gamma_{i}, \delta}:=\left\{x \in \Omega: \rho_{\Gamma_{i}}(x) \leq \delta\right\} . \tag{2.1}
\end{equation*}
$$

The following lemma provides an analogous of the Hardy inequality for functions in $H_{0, \Gamma_{1}}^{1}(\Omega)$.
Lemma 2.2 (Hardy's inequality for functions in $H_{0, \Gamma_{1}}^{1}(\Omega)$). There exists a positive constant c such that

$$
\left\|\frac{u}{\rho_{\Gamma_{1}}}\right\|_{2} \leq c\|\nabla u\|_{2}
$$

for any $u \in H_{0, \Gamma_{1}}^{1}(\Omega)$.
Proof. Along the proof, $c, c^{\prime}, c^{\prime \prime}$ etc., will denote positive constants independent of u. Let δ_{1}, δ_{2} be such that such that $0<\delta_{1}<\delta_{2}$ and $\Omega_{\Gamma_{1}, \delta_{2}} \neq \varnothing$. Let $\psi \in C^{\infty}(\bar{\Omega})$ be such that $0 \leq \psi \leq 1$ in $\Omega, \psi=1$ in $A_{\Gamma_{1}, \delta_{1}}$ and $\psi=0$ in $\Omega_{\Gamma_{1}, \delta_{2}}$. Then, for $u \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\begin{equation*}
\left\|\frac{u}{\rho_{\Gamma_{1}}}\right\|_{2}^{2}=\iint_{\Omega} \frac{u^{2}}{\rho_{\Gamma_{1}}^{2}}=\int_{A_{\Gamma_{1}, \delta_{1}}} \frac{u^{2}}{\rho_{\Gamma_{1}}^{2}}+\int_{\Omega \backslash A_{\Gamma_{1}, \delta_{1}}} \frac{u^{2}}{\rho_{\Gamma_{1}}^{2}} . \tag{2.2}
\end{equation*}
$$

Now, $u \psi \in H_{0}^{1}(\Omega)$ and so, taking into account the Hardy inequality in $H_{0}^{1}(\Omega)$,

$$
\int_{A_{\Gamma_{1}, \delta_{1}}} \frac{u^{2}}{\rho_{\Gamma_{1}}^{2}}=\int_{A_{\Gamma_{1}, \delta_{1}}} \frac{u^{2} \psi^{2}}{\rho_{\Gamma_{1}}^{2}} \leq \int_{\Omega} \frac{u^{2} \psi^{2}}{\rho_{\partial \Omega}^{2}} \leq c \int_{\Omega}|\nabla(u \psi)|^{2}=c \int_{\Omega}|\psi \nabla u+u \nabla \psi|^{2}
$$

Thus

$$
\begin{align*}
\left\|\frac{u}{\rho_{\Gamma_{1}}}\right\|_{L^{2}\left(A_{\left.\Gamma_{1}, \delta_{1}\right)}\right.} & \leq c\|\psi \nabla u+u \nabla \psi\|_{L^{2}(\Omega)} \tag{2.3}\\
& \leq c\|\psi\|_{L^{\infty}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}+c\|\nabla \psi\|_{L^{\infty}(\Omega)}\|u\|_{L^{2}(\Omega)}
\end{align*}
$$

and, by the Poincaré inequality of Remark 2.1(ii), $\|u\|_{L^{2}(\Omega)} \leq c^{\prime}\|\nabla u\|_{L^{2}(\Omega)}$. Thus,

$$
\left\|\frac{u}{\rho_{\Gamma_{1}}}\right\|_{L^{2}\left(A_{\left.\Gamma_{1}, \delta_{1}\right)}\right.} \leq c^{\prime \prime}\left(\|\psi\|_{L^{\infty}(\Omega)}+\|\nabla \psi\|_{L^{\infty}(\Omega)}\right)\|\nabla u\|_{L^{2}(\Omega)} .
$$

On the other hand,

$$
\begin{equation*}
\int_{\Omega \backslash A_{\Gamma_{1}, \delta_{1}}} \frac{u^{2}}{\rho_{\Gamma_{1}}^{2}} \leq \frac{1}{\delta_{1}^{2}} \int_{\Omega \backslash A_{\Gamma_{1}, \delta_{1}}} u^{2} \leq \frac{1}{\delta_{1}^{2}} \int_{\Omega} u^{2} \leq c^{\prime \prime \prime}\|\nabla u\|_{L^{2}(\Omega)}^{2}, \tag{2.4}
\end{equation*}
$$

the last inequality by the Poincaré inequality of Remark 2.1(ii), and the lemma follows from (2.2), (2.3), and (2.4).

Corollary 2.3.

(i) If $f: \Omega \rightarrow \mathbb{R}$ and $f \in L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)$, then $f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}$ and

$$
\|f\|_{\left(H_{0}^{1}(\Omega)\right)^{\prime}} \leq c\|f\|_{L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)}
$$

with c a positive constant independent of f.
(ii) If $f: \Omega \rightarrow \mathbb{R}$ and $f \in L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$, then $f \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ and it holds that

$$
\|f\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}} \leq c\|f\|_{L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)}
$$

where c is a positive constant independent of f.
Proof. Suppose that $\rho_{\partial \Omega} f \in L^{2}(\Omega)$ and let $\varphi \in H_{0}^{1}(\Omega)$. Then, for some positive constant c independent of φ,

$$
\int_{\Omega}|f \varphi|=\int_{\Omega}\left|\rho_{\partial \Omega} f \frac{\varphi}{\rho_{\partial \Omega}}\right| \leq\left\|\rho_{\partial \Omega} f\right\|_{2}\left\|\frac{\varphi}{\rho_{\partial \Omega}}\right\|_{2} \leq c\left\|\rho_{\partial \Omega} f\right\|_{2}\|\varphi\|_{H_{0}^{1}(\Omega)}
$$

the last inequality by Remark 2.1(iii). Thus (i) holds. The proof of (ii) is similar, using Lemma 2.2 instead of Remark 2.1(iii).
Remark 2.4 (see, e.g., [43, Theorem 8.9]). If $0 \leq f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}, 0 \leq \sigma \in H^{\frac{1}{2}}(\partial \Omega)$, and if u is the weak solution of problem (1.7), then $u \geq 0$ in Ω.

Remark 2.5.

(i) (see [7, Lemma 3.2]) Suppose $0 \leq f \in L^{\infty}(\Omega)$, and let ζ be the solution of the problem

$$
\begin{cases}-\Delta \zeta=f & \text { in } \Omega \tag{2.5}\\ \zeta=0 & \text { on } \partial \Omega\end{cases}
$$

Then $\zeta \geq c \rho_{\partial \Omega} \int_{\Omega} f \rho_{\partial \Omega}$ in Ω, with c a positive constant independent of f.
(ii) If $0 \leq f \in L^{\infty}(\Omega), 0 \leq \sigma \in H^{\frac{1}{2}}(\partial \Omega)$ and if $u \in H^{1}(\Omega)$ is a weak solution of the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{2.6}\\ u=\sigma & \text { on } \partial \Omega\end{cases}
$$

then $u \geq c \rho_{\partial \Omega} \int_{\Omega} f \rho_{\partial \Omega}$ in Ω with c a positive constant independent of f. Indeed, let ζ be as in (i), then $u-\zeta$ satisfies, in a weak sense,

$$
\begin{cases}-\Delta(u-\zeta)=f & \text { in } \Omega \\ u-\zeta=\sigma & \text { on } \partial \Omega\end{cases}
$$

and then, by Remark 2.4, $u \geq \zeta$. Thus, by (i), $u \geq c \rho_{\partial \Omega} \int_{\Omega} f \rho_{\partial \Omega}$ in Ω, with c as in (i).
(iii) Let $f: \Omega \rightarrow \mathbb{R}$ be a nonnegative and measurable function such that $f \in\left(H_{0}^{1}(\Omega)\right)^{\prime}$ and $|\{x \in \Omega: f(x)>0\}|>0$. If $0 \leq \sigma \in H^{\frac{1}{2}}(\partial \Omega)$ and if $u \in H^{1}(\Omega)$ is a weak solution of the problem (2.6), then there exists a positive constant c such
that $u \geq c \rho_{\partial \Omega}$ in Ω. In fact, in such a case there exist a measurable subset $F \subset \Omega$ with $|F|>0$ and $\lambda \in(0, \infty)$ such that $f \geq \lambda \chi_{F}$ in Ω. Let w be the solution of $-\Delta w=\lambda \chi_{F}$ in $\Omega, w=0$ on $\partial \Omega$. Then, by (i), there exists a positive constant c such that $w \geq c \rho_{\partial \Omega}$ in Ω. Also, $-\Delta(u-w)=f-\lambda \chi_{F} \geq 0$ in Ω and $u-w=\sigma \geq 0$ on $\partial \Omega$. Thus, by Remark 2.4, $u-w \geq 0$, and then $u \geq c \rho_{\partial \Omega}$ in Ω.

Remark 2.6. Suppose $0 \leq f \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}, 0 \leq \tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and let $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ be such that $0 \leq \eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$. If u is the weak solution of problem (1.9), then $u \geq 0$ in Ω. Indeed, since $\tau \geq 0$ we have $u^{-}=0$ on Γ_{1} and thus $u^{-} \in H_{0, \Gamma_{1}}^{1}(\Omega)$. Taking $\varphi=-u^{-}$in (1.10) we get

$$
-\int_{\Omega}\left\langle\nabla u, \nabla u^{-}\right\rangle+\int_{\Omega} f u^{-}+\int_{\Gamma_{2}} \eta u^{-}=0
$$

and so

$$
\int_{\Omega}\left|\nabla u^{-}\right|^{2}=-\int_{\Omega} f u^{-}-\int_{\Gamma_{2}} \eta u^{-} \leq 0
$$

Thus $\int_{\Omega}\left|\nabla u^{-}\right|^{2}=0$. Therefore, by the Poincaré inequality of Remark 2.1(ii), $u^{-}=0$ in Ω. Then $u \geq 0$ in Ω. Moreover, from Remark 2.5 (iii) used with $\sigma:=u_{\mid \partial \Omega} \geq 0$ on $\partial \Omega$ (the restriction in the sense of the trace), it follows that, if in addition, $|\{x \in \Omega: f(x)>0\}|>0$, then there exists a positive constant c such that $u \geq c \rho_{\partial \Omega}$ in Ω.

3. THE CASE OF DIRICHLET BOUNDARY CONDITION

We assume, for the whole section, that $g: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ satisfies the conditions (H1)-(H3) of Theorem 1.3. We first study, for $\varepsilon \in(0,1]$ and for a nonnegative $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$, the approximated problem

$$
\begin{cases}-\Delta u=g_{\varepsilon}(\cdot, u) & \text { in } \Omega \tag{3.1}\\ u=\sigma & \text { on } \partial \Omega\end{cases}
$$

where $g_{\varepsilon}: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
g_{\varepsilon}(x, s):=\min \left\{\varepsilon^{-1}, g(x, s+\varepsilon)\right\} \tag{3.2}
\end{equation*}
$$

Observe that, since g satisfies (H1)-(H3), the same conditions hold for each g_{ε}. Let $\widetilde{\sigma} \in H^{1}(\Omega)$ be the weak solution of the problem

$$
\begin{cases}-\Delta \widetilde{\sigma}=0 & \text { in } \Omega \tag{3.3}\\ \widetilde{\sigma}=\sigma & \text { on } \partial \Omega\end{cases}
$$

Then, by Remark 2.4(i), $\tilde{\sigma} \geq 0$ in Ω. By writing $u=\tilde{\sigma}+v$, problem (3.1) becomes equivalent to the problem of finding a weak solution $v \in H_{0}^{1}(\Omega)$ of the problem

$$
\begin{cases}-\Delta v=g_{\varepsilon}(\cdot, v+\widetilde{\sigma}) & \text { in } \Omega \tag{3.4}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Let $(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ be the solution operator of the homogeneous Dirichlet problem defined by $(-\Delta)^{-1} h=u$, where $u \in H_{0}^{1}(\Omega)$ is the weak solution of the problem $-\Delta u=h$ in $\Omega, u=0$ on $\partial \Omega$. We recall that $(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is continuous and that, since $H_{0}^{1}(\Omega)$ has compact inclusion into $L^{2}(\Omega),(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a compact operator. Let $T_{\varepsilon}: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ be defined by

$$
T_{\varepsilon}(v):=(-\Delta)^{-1}\left(g_{\varepsilon}(\cdot, v+\widetilde{\sigma})\right)
$$

and let $C_{\varepsilon}:=\left\{v \in L^{2}(\Omega): 0 \leq v \leq \frac{1}{\varepsilon}(-\Delta)^{-1}(\mathbf{1})\right\}$. We have the following:

Lemma 3.1.

(i) C_{ε} is a bounded, closed and convex subset of $L^{2}(\Omega)$.
(ii) $T_{\varepsilon}\left(C_{\varepsilon}\right) \subset C_{\varepsilon}$.
(iii) $T_{\varepsilon}: C_{\varepsilon} \rightarrow C_{\varepsilon}$ is continuous.
(iv) $T_{\varepsilon}: C_{\varepsilon} \rightarrow C_{\varepsilon}$ is a compact operator.

Proof. (i) is obvious.
To show (ii) observe that if $v \in C_{\varepsilon}$ then $0 \leq g_{\varepsilon}(\cdot, v+\widetilde{\sigma}) \leq \frac{1}{\varepsilon}$ a.e. in Ω and so, by Remark 2.4,

$$
0 \leq(-\Delta)^{-1}\left(g_{\varepsilon}(x, v+\widetilde{\sigma})\right) \leq \frac{1}{\varepsilon}(-\Delta)^{-1}(\mathbf{1})
$$

Thus $T_{\varepsilon}(v) \in C_{\varepsilon}$.
To prove (iii) it is enough to see that if $v \in C_{\varepsilon}$, and if $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ is a sequence in C_{ε} that converges to v in $L^{2}(\Omega)$, then there exists a subsequence $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ such that $\left\{T_{\varepsilon}\left(v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $T_{\varepsilon}(v)$ in $L^{2}(\Omega)$. Let $v \in C_{\varepsilon}$, and let $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in C_{ε} which converges to v in $L^{2}(\Omega)$, then there exists a subsequence $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ such that $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ converges to v a.e. in Ω. Thus, since g_{ε} is a Carathéodory function, $\left\{g_{\varepsilon}\left(\cdot, v_{j_{k}}+\widetilde{\sigma}\right)\right\}_{k \in \mathbb{N}}$ converges to $g_{\varepsilon}(\cdot, v+\widetilde{\sigma})$ a.e. in Ω. Then

$$
\lim _{k \rightarrow \infty}\left|g_{\varepsilon}\left(\cdot, v_{j_{k}}+\widetilde{\sigma}\right)-g_{\varepsilon}(\cdot, v+\widetilde{\sigma})\right|^{2}=0
$$

a.e. in Ω. Since $\left|g_{\varepsilon}\left(\cdot, v_{j_{k}}+\widetilde{\sigma}\right)-g_{\varepsilon}(\cdot, v+\widetilde{\sigma})\right|^{2} \leq \frac{1}{\varepsilon^{2}}$, the Lebesgue dominated convergence theorem gives that $\left\{g_{\varepsilon}\left(\cdot, v_{j_{k}}+\widetilde{\sigma}\right)\right\}_{k \in \mathbb{N}}$ converges to $g_{\varepsilon}(\cdot, v+\widetilde{\sigma})$ in $L^{2}(\Omega)$. Then $\left\{(-\Delta)^{-1}\left(g_{\varepsilon}\left(\cdot, v_{j_{k}}+\widetilde{\sigma}\right)\right)\right\}_{k \in \mathbb{N}}$ converges to $(-\Delta)^{-1}\left(g_{\varepsilon}(\cdot, v+\widetilde{\sigma})\right)$ in $L^{2}(\Omega)$, i.e., $\left\{T_{\varepsilon}\left(v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $T_{\varepsilon}(v)$ in $L^{2}(\Omega)$. Thus (iii) holds.

To see (iv), note that $\left\{g_{\varepsilon}\left(\cdot, v_{j}+\widetilde{\sigma}\right)\right\}_{j \in \mathbb{N}}$ is bounded in $L^{2}(\Omega)$ for any sequence $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ in C_{ε}, and so (iv) follows immediately from the compactness of the solution operator $(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$.

Lemma 3.2.

(i) For $\varepsilon \in(0,1]$, the problem

$$
\begin{cases}-\Delta v_{\varepsilon}=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) & \text { in } \Omega \tag{3.5}\\ v_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique weak solution $v_{\varepsilon} \in H_{0}^{1}(\Omega)$.
(ii) The map $\varepsilon \rightarrow v_{\varepsilon}$ is nonincreasing.
(iii) There exists a positive constant c such that $v_{\varepsilon} \geq c \rho_{\partial \Omega}$ for any $\varepsilon \in(0,1]$.
(iv) $\left\{v_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ is bounded in $H_{0}^{1}(\Omega)$.

Proof. From Lemma 3.1 and the Schauder fixed point theorem, T_{ε} has a fixed point $v_{\varepsilon} \in C_{\varepsilon}$, and so v_{ε} is a weak solution of problem (3.4). Suppose that $w \in H^{1}(\Omega)$ is another solution of (3.4). Then $v_{\varepsilon}-w \in H_{0}^{1}(\Omega)$ and it satisfies, in weak sense

$$
\begin{cases}-\Delta\left(v_{\varepsilon}-w\right)=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g_{\varepsilon}(., w+\widetilde{\sigma}) & \text { in } \Omega \tag{3.6}\\ v_{\varepsilon}-w=0 & \text { on } \partial \Omega\end{cases}
$$

Now, $g_{\varepsilon}(x, \cdot)$ is nonincreasing on $(0, \infty)$ for a.e. $x \in \Omega$, and so

$$
g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g_{\varepsilon}(\cdot, w+\widetilde{\sigma})\left(v_{\varepsilon}-w\right) \leq 0 \quad \text { a.e in } \Omega
$$

Thus, taking $v_{\varepsilon}-w$ as a test function in (3.6), we get that $\left\|\left|\nabla\left(v_{\varepsilon}-w\right)\right|\right\|_{2}=0$, and so, by the Poincaré inequality, $v_{\varepsilon}=w$ in Ω. Thus (i) holds.

To prove (ii), suppose that $0<\varepsilon<\theta \leq 1$. Then $g_{\varepsilon} \geq g_{\theta}$ on $\Omega \times(0, \infty)$. Thus, in a weak sense,

$$
\begin{cases}-\Delta\left(v_{\varepsilon}\right)=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) \geq g_{\theta}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) & \text { in } \Omega \tag{3.7}\\ v_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

Also,

$$
\begin{cases}-\Delta\left(v_{\theta}\right)=g_{\theta}\left(\cdot, v_{\theta}+\widetilde{\sigma}\right) & \text { in } \Omega \tag{3.8}\\ v_{\theta}=0 & \text { on } \partial \Omega\end{cases}
$$

and so, again in a weak sense,

$$
\begin{cases}-\Delta\left(v_{\varepsilon}-v_{\theta}\right)=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g_{\theta}\left(\cdot, v_{\theta}+\widetilde{\sigma}\right) & \tag{3.9}\\ \geq g_{\theta}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g_{\theta}\left(\cdot, v_{\theta}+\widetilde{\sigma}\right) & \text { in } \Omega \\ v_{\varepsilon}-v_{\theta}=0 & \text { on } \partial \Omega\end{cases}
$$

and so, taking $-\left(v_{\varepsilon}-v_{\theta}\right)^{-}$as a test function in (3.9) we get

$$
\int_{\Omega}\left|\nabla\left(\left(v_{\varepsilon}-v_{\theta}\right)^{-}\right)\right|^{2} \leq-\int_{\left\{v_{\varepsilon}-v_{\theta}<0\right\}}\left(g_{\theta}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)-g_{\theta}\left(\cdot, v_{\theta}+\widetilde{\sigma}\right)\right)\left(v_{\varepsilon}-v_{\theta}\right)^{-} \leq 0
$$

The last inequality because $g_{\varepsilon}(x, \cdot)$ is nonincreasing on $(0, \infty)$ for a.e. $x \in \Omega$. Thus $\int_{\Omega}\left|\nabla\left(\left(v_{\varepsilon}-v_{\theta}\right)^{-}\right)\right|^{2}=0$, and so, by Remark 2.1(i), $\left(v_{\varepsilon}-v_{\theta}\right)^{-}=0$ in Ω, and then $v_{\varepsilon} \geq v_{\theta}$ a.e. in Ω. Thus (ii) holds.

To see (iii), observe that for $\varepsilon \in(0,1]$, by (ii), $v_{\varepsilon} \geq v_{1}$. Since $-\Delta v_{1}=g_{1}\left(\cdot, v_{1}\right)$ in Ω and $0 \leq g_{1}\left(\cdot, v_{1}\right) \in L^{\infty}(\Omega)$, and taking into account that, by (H2), $g_{1}\left(\cdot, v_{1}\right)$ is not identically zero, Remark 2.5 (i) gives that $v_{1} \geq c \rho_{\partial \Omega}$ for some positive constant c. Thus $v_{\varepsilon} \geq c \rho_{\partial \Omega}$ and (iii) holds.

It remains to show (iv). Let c be as in (iii). We take v_{ε} as a test function in (3.4) to obtain

$$
\begin{align*}
\left\|\nabla v_{\varepsilon}\right\|_{2}^{2} & =\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{2}=\int_{\Omega} v_{\varepsilon} g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) \\
& \leq \int_{\Omega} v_{\varepsilon} g\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) \leq \int_{\Omega} v_{\varepsilon} g\left(\cdot, \widetilde{\sigma}+c \rho_{\partial \Omega}\right) \tag{3.10}\\
& =\int_{\Omega} \frac{v_{\varepsilon}}{\rho_{\partial \Omega}} \rho_{\partial \Omega} g\left(\cdot, \widetilde{\sigma}+c \rho_{\partial \Omega}\right) \leq \int_{\Omega} \frac{v_{\varepsilon}}{\rho_{\partial \Omega}} \rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right)
\end{align*}
$$

where we have used (iii), (H1), and that $g_{\varepsilon} \leq g$, as well as that $g(x, s)$ is nonincreasing in s. Now, by the Hölder inequality and Remark 2.1(iv), we have, for some positive constant c^{\prime} independent of ε,

$$
\begin{equation*}
\int_{\Omega} \frac{v_{\varepsilon}}{\rho_{\partial \Omega}} \rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right) \leq\left\|\frac{v_{\varepsilon}}{\rho_{\partial \Omega}}\right\|_{2}\left\|\rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right)\right\|_{2} \leq c^{\prime}\left\|\left|\nabla v_{\varepsilon}\right|\right\|_{2}\left\|\rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right)\right\|_{2} \tag{3.11}
\end{equation*}
$$

and, by (H3), $\left\|\rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right)\right\|_{2}<\infty$. Thus, from (3.10) and (3.11), we get

$$
\left\|\left|\nabla v_{\varepsilon}\right|\right\|_{2} \leq c^{\prime}\left\|\rho_{\partial \Omega} g\left(\cdot, c \rho_{\partial \Omega}\right)\right\|_{2}
$$

which ends the proof of the lemma.
Lemma 3.3. For $\varepsilon \in(0,1]$, let $v_{\varepsilon} \in H_{0}^{1}(\Omega)$ be as given by Lemma 3.2, and let $v:=\lim _{\varepsilon \rightarrow 0^{+}} v_{\varepsilon}$. Then:
(i) $v \in H_{0}^{1}(\Omega)$ and $\lim _{\varepsilon \rightarrow 0^{+}} v_{\varepsilon}=v$ with convergence in $H_{0}^{1}(\Omega)$,
(ii) $\lim _{\varepsilon \rightarrow 0^{+}} g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right)=g(\cdot, v+\widetilde{\sigma})$ with convergence in $L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)$.

Proof. Observe that $v \in H_{0}^{1}(\Omega)$. Indeed, let $\left\{\theta_{j}\right\}_{j \in \mathbb{N}} \subset(0,1]$ be a sequence such that $\lim _{j \rightarrow \infty} \theta_{j}=0$, By Lemma 3.2, $\left\{v_{\theta_{j}}\right\}_{j \in \mathbb{N}}$ is bounded in $H_{0}^{1}(\Omega)$. Thus there exist a subsequence $\left\{v_{\theta_{j_{k}}}\right\}_{k \in \mathbb{N}}$ and a function $w \in H_{0}^{1}(\Omega)$ such that $\left\{v_{\theta_{j_{k}}}\right\}_{k \in \mathbb{N}}$ converges to w strongly in $L^{2}(\Omega)$, and $\left\{\nabla v_{\theta_{j_{k}}}\right\}_{k \in \mathbb{N}}$ converges to ∇w weakly in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$. After pass to a further subsequence if necessary, we can assume also that $\left\{v_{\theta_{j_{k}}}\right\}_{k \in \mathbb{N}}$ converges to w a.e. in Ω. Since $v:=\lim _{\varepsilon \rightarrow 0^{+}} v_{\varepsilon}$ it follows that $w=v$ and then $v \in H_{0}^{1}(\Omega)$.

To prove the lemma it is enough to see that for any sequence $\left\{\varepsilon_{j}\right\}_{j \in \mathbb{N}} \subset(0,1]$ such that $\lim _{j \rightarrow \infty} \varepsilon_{j}=0$ there exists a subsequence, which we still denoted by $\left\{\varepsilon_{j}\right\}_{j \in \mathbb{N}}$,
such that

$$
\lim _{j \rightarrow \infty}\left\|v_{\varepsilon_{j}}-v\right\|_{H_{0}^{1}(\Omega)}^{2}=0
$$

and

$$
\lim _{j \rightarrow \infty}\left\|g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right\|_{L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)}=0
$$

Now, in a weak sense,

$$
\begin{cases}-\Delta\left(v_{\varepsilon_{j}}-v\right)=g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma}) & \text { in } \Omega \tag{3.12}\\ v_{\varepsilon_{j}}-v=0 & \text { on } \partial \Omega\end{cases}
$$

We take $v_{\varepsilon_{j}}-v$ as a test function in (3.12) and we use the Hardy inequality of Remark 2.1(iv) to obtain

$$
\begin{aligned}
\left\|v_{\varepsilon_{j}}-v\right\|_{H_{0}^{1}(\Omega)}^{2} & =\int_{\Omega}\left|\nabla\left(v_{\varepsilon_{j}}-v\right)\right|^{2}=\int_{\Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)\left(v_{\varepsilon_{j}}-v\right) \\
& =\int_{\Omega} \rho_{\partial \Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right) \frac{v_{\varepsilon_{j}}-v}{\rho_{\partial \Omega}} \\
& \leq c\left\|\rho_{\partial \Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)\right\|_{2}\left\|v_{\varepsilon_{j}}-v\right\|_{H_{0}^{1}(\Omega)}
\end{aligned}
$$

where c is a positive constant independent of j. Then, in order to prove the lemma, it suffices to show that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|\rho_{\partial \Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)\right\|_{2}=0 \tag{3.13}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \left\|\rho_{\partial \Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)\right\|_{2}^{2} \\
& =\int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right) \leq \frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \quad+\int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& =\int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right) \leq \frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \quad+\int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(\frac{1}{\varepsilon}-g(\cdot, v+\widetilde{\sigma})\right)^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left\|\rho_{\partial \Omega}\left(g_{\varepsilon_{j}}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}\right)-g(\cdot, v+\widetilde{\sigma})\right)\right\|_{2}^{2} \\
& =\int_{\Omega} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \quad-\int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \quad+\int_{\substack{ }} \rho_{\partial \Omega}^{2}\left(\frac{1}{\varepsilon}-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& =I_{1, j}+I_{2, j}+I_{3, j},
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1, j}:= & \int_{\Omega} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
I_{2, j}:= & -\iint_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
I_{3, j}:= & \int_{\partial \Omega} \int_{\partial\left(\frac{1}{\varepsilon}-g(\cdot, v+\widetilde{\sigma})\right)^{2} .} \quad\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}
\end{aligned}
$$

Now, since g is Carathéodory,

$$
\lim _{j \rightarrow \infty} \rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2}=0
$$

a.e. in Ω. Also,

$$
\begin{aligned}
& \rho_{\partial \Omega}^{2}\left(g\left(., v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \leq 2 \rho_{\partial \Omega}^{2} g^{2}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)+2 \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma}) \leq 4 \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma})
\end{aligned}
$$

and since $v \geq c \rho_{\partial \Omega}$ and $\widetilde{\sigma} \geq 0$, (H3) gives $\rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma}) \in L^{1}(\Omega)$. Then, by the Lebesgue dominated convergence theorem,

$$
\lim _{j \rightarrow \infty} I_{1, j}=0
$$

Let

$$
U_{j}:=\left\{g\left(\cdot, v_{1}+\widetilde{\sigma}\right)>\frac{1}{\varepsilon_{j}}\right\} .
$$

Then $U_{j+1} \subset U_{j}$ for any $j, U_{1} \subset \Omega$, and $\bigcap_{j=1}^{\infty} U_{j}=\left\{g\left(\cdot, v_{1}+\widetilde{\sigma}\right)=\infty\right\}$. Since $\rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma}) \in L^{1}(\Omega)$ it follows that $\left|\bigcap_{j=1}^{\infty} U_{j}\right|=0$. Then $\lim _{j \rightarrow \infty}\left|U_{j}\right|=0$, and thus

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{U_{j}} \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma})=0 \tag{3.14}
\end{equation*}
$$

Now,

$$
\rho_{\partial \Omega}^{2}\left(g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \leq 2 \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma},)
$$

and so

$$
\begin{aligned}
\left|I_{2, j}\right| & \left.\left.\leq \int_{\partial \Omega} \rho_{\partial\left(\cdot, v_{\varepsilon_{j}}\right.}^{2}+\widetilde{\sigma}+\varepsilon_{j}\right)-g(\cdot, v+\widetilde{\sigma})\right)^{2} \\
& \leq \int_{U_{j}} 2 \rho_{\left.\left.\partial \Omega, \cdot v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}}^{2} g^{2}(\cdot, v+\widetilde{\sigma}) .
\end{aligned}
$$

Then, by (3.14),

$$
\lim _{j \rightarrow \infty} I_{2, j}=0
$$

Finally,

$$
\rho_{\partial \Omega}^{2}\left(\frac{1}{\varepsilon}-g(\cdot, v+\widetilde{\sigma})\right)^{2} \leq 2 \rho_{\partial \Omega}^{2} \frac{1}{\varepsilon^{2}}+2 \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma})
$$

and then

$$
\begin{aligned}
\left|I_{3, j}\right| \leq & \int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}}\left(2 \rho_{\partial \Omega}^{2} \frac{1}{\varepsilon^{2}}+2 \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma})\right) \\
\leq & 2 \int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2} g^{2}\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right) \\
& +2 \int_{\left\{g\left(\cdot, v_{\varepsilon_{j}}+\widetilde{\sigma}+\varepsilon_{j}\right)>\frac{1}{\varepsilon_{j}}\right\}} \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma}) \\
& \leq 4 \int_{U_{j}} \rho_{\partial \Omega}^{2} g^{2}(\cdot, v+\widetilde{\sigma}),
\end{aligned}
$$

and thus, by (3.14),

$$
\lim _{j \rightarrow \infty} I_{3, j}=0
$$

which concludes the proof of the lemma.

Proof of Theorem 1.3. For $\varepsilon \in(0,1]$, let $v_{\varepsilon} \in H_{0}^{1}(\Omega)$ be as given by Lemma 3.2 and let $v=\lim _{\varepsilon \rightarrow 0^{+}} v_{\varepsilon}$. Let $u_{\varepsilon}:=\widetilde{\sigma}+v_{\varepsilon}$ and let $u:=\lim _{\varepsilon \rightarrow 0^{+}} u_{\varepsilon}=\widetilde{\sigma}+v$. By Lemma 3.2, v_{ε} is a weak solution of the problem

$$
\begin{cases}-\Delta v_{\varepsilon}=g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) & \text { in } \Omega \\ v_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

and thus $\int_{\Omega}\left\langle\nabla v_{\varepsilon}, \nabla \varphi\right\rangle=\int_{\Omega} g_{\varepsilon}\left(\cdot, v_{\varepsilon}+\widetilde{\sigma}\right) \varphi$ for any $\varphi \in H_{0}^{1}(\Omega)$, and so (since $\int_{\Omega}\langle\nabla \widetilde{\sigma}, \nabla \varphi\rangle=0$ for any $\varepsilon \in(0,1]$ and $\left.\varphi \in H_{0}^{1}(\Omega)\right)$

$$
\begin{equation*}
\int_{\Omega}\left\langle\nabla u_{\varepsilon}, \nabla \varphi\right\rangle=\int_{\Omega} g_{\varepsilon}\left(\cdot, u_{\varepsilon}\right) \varphi \quad \text { for any } \varphi \in H_{0}^{1}(\Omega) \tag{3.15}
\end{equation*}
$$

Let $\varphi \in H_{0}^{1}(\Omega)$. From Lemma 3.3 it follows that $\left.u \in H^{1}(\Omega)\right)$ and that $\lim _{\varepsilon \rightarrow 0^{+}} u_{\varepsilon}=u$ with convergence in $H_{0}^{1}(\Omega)$. Then $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega}\left\langle\nabla u_{\varepsilon}, \nabla \varphi\right\rangle=\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle$. Again by Lemma 3.3, $\lim _{\varepsilon \rightarrow 0^{+}} g_{\varepsilon}\left(\cdot, u_{\varepsilon}\right)=g(\cdot, u)$ with convergence in $L^{2}\left(\Omega, \rho_{\partial \Omega}^{2}(x) d x\right)$ and thus $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} g_{\varepsilon}\left(\cdot, u_{\varepsilon}\right) \varphi=\int_{\Omega} g(\cdot, u) \varphi$. Then, from (3.15),

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} g(\cdot, u) \varphi .
$$

Thus u is a weak solution of problem (1.1). Also, Lemma 3.2 gives that $v_{\varepsilon} \geq c \rho_{\partial \Omega}$ for some positive constant c independent of ε, and then $u \geq c \rho_{\partial \Omega}$ in Ω.

If w is another weak solution of (1.1), then $u-w \in H_{0}^{1}(\Omega)$ and

$$
\int_{\Omega}\langle\nabla(u-w), \nabla \varphi\rangle=\int_{\Omega}(g(\cdot, u)-g(\cdot, w)) \varphi
$$

for any $\varphi \in H_{0}^{1}(\Omega)$. We take $\varphi=u-w$ and, since $g(x, s)$ is nonincreasing in s, we get

$$
\int_{N \Omega}|\nabla(u-w)|^{2}=\int_{\Omega}(g(\cdot, u)-g(\cdot, w))(u-w) \leq 0
$$

Thus $\int_{\Omega}|\nabla(u-w)|^{2}=0$ which, by the Poincaré inequality, gives $u=w$.

4. THE CASE OF MIXED DIRICHLET-NEUMAN BOUNDARY CONDITIONS

Our aim in this section is to prove Theorems 1.6 and 1.7. We assume, from now on, that $g: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ satisfies the conditions (H1) and (H2) of Theorem 1.3 as well as the condition (H3') of Theorem 1.6. Since the condition (H3') implies the condition (H3) of Theorem 1.3 (because $\rho_{\partial \Omega} \leq \rho_{\Gamma_{1}}$), all the results of the previous section for the Dirichlet problems still hold under our new assumptions.

Remark 4.1.

(i) If $f \in L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right), \tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and $\eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ (notice that we are not assuming that η is a function defined in Γ_{2}), then the problem of finding $u \in H^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} f \varphi+\eta(\varphi) \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega) \tag{4.1}\\
u=\tau \text { on } \Gamma_{1}
\end{array}\right.
$$

has a unique solution, and it satisfies

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)} \leq c\left(\|f\|_{\left(H_{0}^{1}(\Omega)\right)^{\prime}}+\|\tau\|_{H^{\frac{1}{2}}\left(\Gamma_{1}\right)}+\|\eta\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}}\right) \tag{4.2}
\end{equation*}
$$

for some positive constant c independent of f, τ and η. Indeed, let $\sigma \in H^{\frac{1}{2}}(\partial \Omega)$ be defined by $\sigma=\tau$ on Γ_{1} and $\sigma=0$ on Γ_{2}, and let $\xi \in H^{1}(\Omega)$ be such that $\xi=\sigma$ on $\partial \Omega$. By writing $u=z+\xi$, the problem of finding u becomes equivalent to the problem of finding $z \in H_{0, \Gamma_{1}}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}\langle\nabla z, \nabla \varphi\rangle=\int_{\Omega} f \varphi-\int_{\Omega}\langle\nabla \xi, \nabla \varphi\rangle+\eta(\varphi) \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega), \tag{4.3}
\end{equation*}
$$

i.e., such that

$$
B(z, \varphi)=L(\varphi) \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)
$$

where, for $w \in H_{0, \Gamma_{1}}^{1}(\Omega)$ and $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
B(w, \varphi):=\int_{\Omega}\langle\nabla w, \nabla \varphi\rangle \quad \text { and } \quad L(\varphi):=\int_{\Omega} f \varphi-\int_{\Omega}\langle\nabla \xi, \nabla \varphi\rangle+\eta(\varphi) \text {. }
$$

Since B is a continuous and coercive bilinear form on $H_{0, \Gamma_{1}}^{1}(\Omega) \times H_{0, \Gamma_{1}}^{1}(\Omega)$ and $L \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, the Lax Milgram theorem gives the existence and uniqueness of the solution $z \in H_{0, \Gamma_{1}}^{1}(\Omega)$ of (4.3), and that it satisfies $\|z\|_{H_{0, \Gamma_{1}}^{1}(\Omega)} \leq c^{\prime}\|L\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}}$ for some positive constant c^{\prime} independent of f, τ, and η. Then problem (4.1) has a unique solution $u \in H^{1}(\Omega)$ given by $u:=z+\xi$. And, since

$$
\|L\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}} \leq\|f\|_{\left(H_{0}^{1}(\Omega)\right)^{\prime}}+\|\xi\|_{H^{1}(\Omega)}+\|\eta\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}}
$$

and (see [43, Section 7.9.3, formula (7.48)])

$$
\|\tau\|_{H^{\frac{1}{2}}\left(\Gamma_{1}\right)}=\|\sigma\|_{H^{\frac{1}{2}}\left(\Gamma_{1}\right)}=\inf \left\{\|w\|_{H^{1}(\Omega)}: w \in H^{1}(\Omega) \text { and } w=\sigma \text { on } \partial \Omega\right\}
$$

we get (4.2).
(ii) From (i) it follows that if $f \in L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right), \tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and if $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ belongs to $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, then the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{4.4}\\ u=\tau & \text { on } \Gamma_{1} \\ \frac{\partial u}{\partial \nu}=\eta & \end{cases}
$$

has a unique weak solution $u \in H^{1}(\Omega)$.

Definition 4.2. For $\tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right), \eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, let

$$
S_{\tau, \eta}: L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right) \rightarrow H^{1}(\Omega)
$$

be the solution operator of the problem

$$
\left\{\begin{array}{l}
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} h \varphi+\eta(\varphi) \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega), \tag{4.5}\\
u=\tau \text { on } \Gamma_{1},
\end{array}\right.
$$

defined by $S_{\tau, \eta}(h)=u$, where u is the weak solution of (4.5). If no confusion arises, we will write S instead of $S_{\tau, \eta}$.
Lemma 4.3. Let $\tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right), \eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$. Then:
(i) $S: L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right) \rightarrow H^{1}(\Omega)$ is continuous,
(ii) $S: L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right) \rightarrow L^{2}(\Omega)$ is a continuous and compact operator,
(iii) if h_{1} and h_{2} belong to $L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$ and $h_{1} \leq h_{2}$ then $S\left(h_{1}\right) \leq S\left(h_{2}\right)$,
(iv) if, in addition, $\tau \geq 0$ and $\eta \geq 0$ then $S(h) \geq 0$ for any nonnegative $h \in L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$.
Proof. If h_{1} and h_{2} belong to $L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$ and if $u_{1}=S\left(h_{1}\right)$ and $u_{2}=S\left(h_{2}\right)$ then $u_{1}-u_{2}$ satisfies

$$
\left\{\begin{array}{l}
\int_{\Omega}\left\langle\nabla\left(u_{1}-u_{2}\right), \nabla \varphi\right\rangle=\int_{\Omega}\left(h_{1}-h_{2}\right) \varphi \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega), \tag{4.6}\\
u_{1}-u_{2}=0 \text { on } \Gamma_{1},
\end{array}\right.
$$

and so, by (4.2),

$$
\left\|u_{1}-u_{2}\right\|_{H^{1}(\Omega)} \leq c\left\|h_{1}-h_{2}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} \leq c^{\prime}\left\|h_{1}-h_{2}\right\|_{L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)}
$$

with c and c^{\prime} positive constants independent of h_{1} and h_{2}. Then (i) holds, and (ii) follows from (i) and from the fact that the inclusion $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is continuous and compact.

To prove (iii) observe that if $u_{1}=S\left(h_{1}\right)$ and $u_{2}=S\left(h_{2}\right)$, then, from (4.6) used with $\varphi=\left(u_{1}-u_{2}\right)^{+}$, we get $\int_{\Omega}\left|\nabla\left(\left(u_{1}-u_{2}\right)^{+}\right)\right|^{2} \leq 0$ and so

$$
\int_{\Omega}\left|\nabla\left(\left(u_{1}-u_{2}\right)^{+}\right)\right|^{2}=0 .
$$

Then, by the Poincaré inequality of Remark 2.1(ii), $\left(u_{1}-u_{2}\right)^{+}=0$ and thus $u_{1} \leq u_{2}$. To see (iv) suppose $\eta \geq 0$ and $0 \leq h \in L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$. Let $u=S(h)$. Then

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} h \varphi+\eta(\varphi) \quad \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega) .
$$

We take $\varphi=-u^{-}$to obtain

$$
\int_{\Omega}\left|\nabla u^{-}\right|^{2}=-\int_{\Omega}\left\langle\nabla u, \nabla u^{-}\right\rangle=-\int_{\Omega} h u^{-}-\int_{\Gamma_{2}} \eta u^{-} \leq 0
$$

Then $\int_{\Omega}\left|\nabla u^{-}\right|^{2}=0$ and so, by Remark 2.1(ii), $u^{-}=0$.
Proof of Theorem 1.6. Let $u_{\tau} \in H^{1}(\Omega)$ be the solution of the problem

$$
\begin{cases}-\Delta u_{\tau}=g\left(\cdot, u_{\tau}\right) & \text { in } \Omega \tag{4.7}\\ u_{\tau}=\tau & \text { on } \Gamma_{1} \\ u_{\tau}=0 & \text { on } \Gamma_{2}\end{cases}
$$

given by Theorem 1.3. Let $\eta: \Gamma_{2} \rightarrow \mathbb{R}$ be such that $\eta \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ and $\eta \geq \frac{\partial u_{\tau}}{\partial \nu} \Gamma_{2}$ in $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, let $\Phi \in H^{1}(\Omega)$ be the solution of the problem

$$
\left\{\begin{array}{l}
\int_{\Omega}\langle\nabla \Phi, \nabla \varphi\rangle=\left(\eta-\frac{\partial u_{\tau}}{\partial \nu}{ }_{\Gamma_{2}}\right. \tag{4.8}\\
\Omega=0 \text { on } \Gamma_{1}
\end{array}\right.
$$

(by Remark 4.1(i), there exists such a unique Φ), and let $z=\Phi+u_{\tau}$. Since $\eta-\frac{\partial u_{\tau}}{\partial \nu} \Gamma_{\Gamma_{2}} \geq 0$, Lemma 4.3(iv) gives that $\Phi \geq 0$, thus $u_{\tau} \leq z$. Note that for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\int_{\Omega}\left\langle\nabla u_{\tau}, \nabla \varphi\right\rangle=\int_{\Omega} g\left(\cdot, u_{\tau}\right) \varphi+{\frac{\partial u_{\tau}}{\partial \nu_{\Gamma_{2}}}}(\varphi) \leq \int_{\Omega} g\left(\cdot, u_{\tau}\right) \varphi+\eta(\varphi),
$$

and so, for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega}\langle\nabla z, \nabla \varphi\rangle & =\int_{\Omega}\left\langle\nabla u_{\tau}, \nabla \varphi\right\rangle+\int_{\Omega}\langle\nabla \Phi, \nabla \varphi\rangle \\
& =\int_{\Omega} g\left(\cdot, u_{\tau}\right) \varphi+{\frac{\partial u_{\tau}}{\partial \nu_{\Gamma_{2}}}}(\varphi)+\left(\eta-{\frac{\partial u_{\tau}}{\partial \nu}}_{\Gamma_{2}}\right)(\varphi) \\
& \geq \int_{\Omega} g\left(\cdot, \Phi+u_{\tau}\right) \varphi+\eta(\varphi)=\int_{\Omega} g(\cdot, z) \varphi+\eta(\varphi),
\end{aligned}
$$

where we have used that $\frac{\partial \Phi}{\partial \nu}{ }_{\Gamma_{2}}(\varphi)=\int_{\Omega}\langle\nabla \Phi, \nabla \varphi\rangle$ and that $g=g(x, s)$ is nonincreasing in s.

Then for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left\langle\nabla u_{\tau}, \nabla \varphi\right\rangle \leq \int_{\Omega} g\left(\cdot, u_{\tau}\right) \varphi+\eta(\varphi) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\langle\nabla z, \nabla \varphi\rangle \geq \int_{\Omega} g(\cdot, z) \varphi+\eta(\varphi) . \tag{4.10}
\end{equation*}
$$

To prove the existence assertion of the theorem we will show that problem (1.2) has a solution u^{*} such that $u_{\tau} \leq u^{*} \leq z$.

As in the proof of [35, Theorem 1.1] we define $\bar{g}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\bar{g}(x, s):= \begin{cases}g\left(x, u_{\tau}(x)\right) & \text { if } s \leq u_{\tau}(x) \\ g(x, s) & \text { if } u_{\tau}(x)<s<z(x) \\ g(x, z(x)) & \text { if } s \geq z(x)\end{cases}
$$

It is easy to check that \bar{g} is a nonnegative Carathéodory function on $\Omega \times \mathbb{R}$ (because g is a Carathéodory function on $\Omega \times(0, \infty)$ and u_{τ}, z are measurable functions) and that $\bar{g}(x, s)$ is nonincreasing in s. Moreover, if $E \subset \Omega$ is the set given by the condition (H2) then $\bar{g}(x, s)>0$ for any $x \in E$ and $s>0$. Also, since $u_{\tau} \leq z$ and, taking into account that, by Theorem 1.3, $u_{\tau} \geq c \rho_{\partial \Omega}$ for some $c \in(0, \infty)$ and that $\bar{g}(x, s)$ is nonnegative and nonincreasing in s, we obtain that

$$
\begin{equation*}
0 \leq \bar{g}(\cdot, s) \leq \bar{g}\left(\cdot, u_{\tau}\right)=g\left(\cdot, u_{\tau}\right) \leq g\left(\cdot, c \rho_{\partial \Omega}\right) \tag{4.11}
\end{equation*}
$$

for any $s \in \mathbb{R}$, and so, for any $v \in L^{2}(\Omega), 0 \leq \rho_{\Gamma_{1}} \bar{g}(\cdot, v) \leq \rho_{\Gamma_{1}} g\left(\cdot, c \rho_{\partial \Omega}\right)$, and, by (H3'), $\rho_{\Gamma_{1}} g\left(\cdot, c \rho_{\partial \Omega}\right) \in L^{2}(\Omega)$. Therefore, taking into account the Hardy inequality of Lemma 2.2 we have, for any $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\int_{\Omega}|\bar{g}(\cdot, v) \varphi|=\int_{\Omega} \rho_{\Gamma_{1}} \bar{g}(\cdot, v)\left|\frac{\varphi}{\rho_{\Gamma_{1}}}\right| \leq\left\|\rho_{\Gamma_{1}} \bar{g}(\cdot, v)\right\|_{2}\left\|\frac{\varphi}{\rho_{\Gamma_{1}}}\right\|_{2} \leq c^{\prime}\|\varphi\|_{H^{1}(\Omega)}
$$

with c^{\prime} a positive constant independent of v and φ. Thus $\bar{g}(\cdot, v) \in\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ and

$$
\begin{equation*}
\|\bar{g}(\cdot, v)\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}} \leq c^{\prime} \tag{4.12}
\end{equation*}
$$

with c^{\prime} independent of v. Following the lines of the proof of [35, Theorem 1.1] we consider the operator $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ defined by

$$
T(v):=S(\bar{g}(\cdot, v))
$$

with S given by Definition 4.2.

We prove that:
(1) T is continuous,
(2) T is a compact operator,
(3) there exists $R>0$ such that $T\left(L^{2}(\Omega)\right) \subset \bar{B}$, where \bar{B} is the closed ball in $L^{2}(\Omega)$ centered at 0 and with radius R.

To prove (1) we proceed similarly to the proof of Lemma 3.1(iii). It is enough to see that if $v \in L^{2}(\Omega)$, and if $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ is a sequence in $L^{2}(\Omega)$ that converges to v in $L^{2}(\Omega)$, then there exists a subsequence $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ such that $\left\{T\left(v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $T(v)$ in $L^{2}(\Omega)$. Let $v \in L^{2}(\Omega)$, and let $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega)$ which converges to v in $L^{2}(\Omega)$, then there exists a subsequence $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ such that $\left\{v_{j_{k}}\right\}_{k \in \mathbb{N}}$ converges to v a.e. in Ω. Thus, since \bar{g} is a Carathéodory function, $\left\{\bar{g}\left(\cdot, v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $\bar{g}(\cdot, v)$ a.e. in Ω. Then $\lim _{k \rightarrow \infty}\left|\bar{g}\left(\cdot, v_{j_{k}}\right)-\bar{g}(\cdot, v)\right|^{2}=0$ a.e. in Ω. By (4.11), $\left|\bar{g}\left(\cdot, v_{j_{k}}\right)-\bar{g}(\cdot, v)\right|^{2} \leq 4 g^{2}\left(., c \rho_{\partial \Omega}\right)$, and, by (H3') we have $\int_{\Omega} \rho_{\Gamma_{1}}^{2} g^{2}\left(\cdot, c \rho_{\partial \Omega}\right)<\infty$. Then, by the Lebesgue dominated convergence theorem, $\left\{\bar{g}\left(\cdot, v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $\bar{g}(\cdot, v)$ in $L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$. Then, by Lemma 4.3(ii), $\left\{S\left(\bar{g}\left(\cdot, v_{j_{k}}\right)\right)\right\}_{k \in \mathbb{N}}$ converges to $S(\bar{g}(\cdot, v))$ in $L^{2}(\Omega)$, i.e., $\left\{T\left(v_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ converges to $T(v)$ in $L^{2}(\Omega)$. Thus (1) holds.

To see (2) note that, by (4.11), $\left\{\bar{g}\left(\cdot, v_{j}\right)\right\}_{j \in \mathbb{N}}$ is bounded in $L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right)$ for any sequence $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ in $L^{2}(\Omega)$, and that $S: L^{2}\left(\Omega, \rho_{\Gamma_{1}}^{2}(x) d x\right) \rightarrow L^{2}(\Omega)$ is compact.

To see (3) observe that, by (4.2) and (4.12), we have, for any $v \in L^{2}(\Omega)$,

$$
\begin{aligned}
\|T(v)\|_{2} & =\|S(\bar{g}(\cdot, v))\|_{2} \\
& \leq c\left(\|\bar{g}(\cdot, v)\|_{\left(H_{0}^{1}(\Omega)\right)^{\prime}}+\|\tau\|_{H^{\frac{1}{2}}\left(\Gamma_{1}\right)}+\|\eta\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}}\right) \\
& \leq c\left(c^{\prime}+\|\tau\|_{H^{\frac{1}{2}}\left(\Gamma_{1}\right)}+\|\eta\|_{\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}}\right)
\end{aligned}
$$

with c and c^{\prime} positive constants independent of v.
Now, as in [35, Theorem 1.1], from (1), (2), (3) and the Schauder fixed point theorem, there exists $u^{*} \in L^{2}(\Omega)$ such that $T\left(u^{*}\right)=u^{*}$, i.e., such that

$$
\begin{cases}-\Delta u^{*}=\bar{g}\left(\cdot, u^{*}\right) & \text { in } \Omega, \tag{4.13}\\ u^{*}=\tau & \text { on } \Gamma_{1}, \\ \frac{\partial u^{*}}{\partial \nu}=\eta & \text { on } \Gamma_{2} .\end{cases}
$$

To complete the proof of the existence assertion of the theorem it suffices to see that $u_{\tau} \leq u^{*} \leq z$ (because in such a case $\bar{g}\left(\cdot, u^{*}\right)=g\left(\cdot, u^{*}\right)$ and, by Theorem 1.3, $u_{\tau} \geq c \rho_{\partial \Omega}$ for some positive constant c). From (4.10), (4.13), and since $\bar{g}(\cdot, z)=g(\cdot, z)$ we have,
for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega}\left\langle\nabla\left(z-u^{*}\right), \nabla \varphi\right\rangle & =\int_{\Omega}\langle\nabla z, \nabla \varphi\rangle-\int_{\Omega}\left\langle\nabla u^{*}, \nabla \varphi\right\rangle \\
& \geq \int_{\Omega} g(\cdot, z) \varphi+\eta(\varphi)-\int_{\Omega} \bar{g}\left(\cdot, u^{*}\right)-\eta(\varphi) \\
& =\int_{\Omega}\left(\bar{g}(\cdot, z)-\bar{g}\left(\cdot, u^{*}\right)\right) \varphi
\end{aligned}
$$

which, by taking $\varphi=\left(z-u^{*}\right)^{-}$gives

$$
\int_{\Omega}\left|\nabla\left(\left(z-u^{*}\right)^{-}\right)\right|^{2} \leq-\int_{\Omega}\left(\bar{g}(\cdot, z)-\bar{g}\left(\cdot, u^{*}\right)\right)\left(z-u^{*}\right)^{-} \leq 0,
$$

the last inequality because $\bar{g}(x, s)$ is nonincreasing in s. Then, by Remark 2.1(ii), $\left(z-u^{*}\right)^{-}=0$ and so $u^{*} \leq z$.

Similarly, from (4.7), (4.13) and since $\bar{g}\left(\cdot, u_{\tau}\right)=g\left(\cdot, u_{\tau}\right)$, we have, for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\begin{align*}
\int_{\Omega}\left\langle\nabla\left(u^{*}-u_{\tau}\right), \nabla \varphi\right\rangle & =\int_{\Omega}\left(\bar{g}\left(\cdot, u^{*}\right)-\bar{g}\left(\cdot, u_{\tau}\right)\right) \varphi+\eta(\varphi)-{\frac{\partial u_{\tau}}{\partial \nu}}_{\Gamma_{2}}(\varphi) \\
& \leq \int_{\Omega}\left(\bar{g}\left(\cdot, u^{*}\right)-\bar{g}\left(\cdot, u_{\tau}\right)\right) \varphi \tag{4.14}
\end{align*}
$$

the last inequality by our assumption that $\eta \geq \frac{\partial u_{\tau}}{\partial \nu}{ }_{\Gamma_{2}}$. Observe that $u^{*}-u_{\tau} \in H_{0, \Gamma_{1}}^{1}(\Omega)$ and that, since $\bar{g}(\cdot, s)$ is nonincreasing in s,

$$
\left(\bar{g}\left(\cdot, u^{*}\right)-\bar{g}\left(\cdot, u_{\tau}\right)\right)\left(u^{*}-u_{\tau}\right)^{-} \geq 0 .
$$

Thus, taking $\varphi=-\left(u^{*}-u_{\tau}\right)^{-}$in (4.14) we obtain $\int_{\Omega}\left|\nabla\left(\left(u^{*}-u_{\tau}\right)^{-}\right)\right|^{2}=0$, which implies $\left(u^{*}-u_{\tau}\right)^{-}=0$ and so $u_{\tau} \leq u^{*}$.

Suppose that $w \in H^{1}(\Omega)$ is another solution of (1.2). Then $u^{*}-w \in H_{0, \Gamma_{1}}^{1}(\Omega)$ and, in a weak sense,

$$
\begin{cases}-\Delta\left(u^{*}-w\right)=g\left(\cdot, u^{*}\right)-g(., w) & \text { in } \Omega \tag{4.15}\\ u^{*}-w=0 & \text { on } \Gamma_{1} \\ \frac{\partial\left(u^{*}-w\right)}{\partial \nu}=0 & \text { on } \Gamma_{2}\end{cases}
$$

that is,

$$
\begin{equation*}
\int_{\Omega}\left\langle\nabla\left(u^{*}-w\right), \nabla \varphi\right\rangle=\int_{\Omega}\left(g\left(\cdot, u^{*}\right)-g(\cdot, w)\right) \varphi \text { for any } \varphi \in H_{0, \Gamma_{1}}^{1}(\Omega), \tag{4.16}
\end{equation*}
$$

Now, $g(x, \cdot)$ is nonincreasing on $(0, \infty)$ for a.e. $x \in \Omega$, and so

$$
g\left(\cdot, u^{*}\right)-g(\cdot, w)\left(u^{*}-w\right) \leq 0 \text { a.e. in } \Omega .
$$

Thus, taking $\varphi=u^{*}-w$ in (4.16), we get

$$
\int_{\Omega}\left|\nabla\left(u^{*}-w\right)\right|^{2}=\int_{\Omega}\left(g\left(\cdot, u^{*}\right)-g(\cdot, w)\right)\left(u^{*}-w\right) \leq 0
$$

and so $\left\|\nabla\left(u^{*}-w\right)\right\|_{2}=0$, Then, by Remark 2.1(ii), $u^{*}=w$ in Ω. This concludes the proof of the part (i) of the theorem.

To see (ii), suppose that $\eta<\frac{\partial u_{\tau}}{\partial \nu} \Gamma_{2}$ and that u is a weak solution of problem (1.2). Then, for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle=\int_{\Omega} g(\cdot, u) \varphi+\eta(\varphi) \leq \int_{\Omega} g(\cdot, u) \varphi+{\frac{\partial u_{\tau}}{\partial \nu_{\Gamma_{2}}}}(\varphi),
$$

and

$$
\int_{\Omega}\left\langle\nabla u_{\tau}, \nabla \varphi\right\rangle=\int_{\Omega} g\left(\cdot, u_{\tau}\right) \varphi+{\frac{\partial u_{\tau}}{\partial \nu}{ }_{\Gamma_{2}}}(\varphi) .
$$

Thus, for any nonnegative $\varphi \in H_{0, \Gamma_{1}}^{1}(\Omega)$,

$$
\int_{\Omega}\left\langle\nabla\left(u-u_{\tau}\right), \nabla \varphi\right\rangle \leq \int_{\Omega}\left(g(\cdot, u)-g\left(\cdot, u_{\tau}\right)\right) \varphi .
$$

Now we take $\varphi=\left(u-u_{\tau}\right)^{+}$to obtain that

$$
\int_{\Omega}\left|\nabla\left(\left(u-u_{\tau}\right)^{+}\right)\right|^{2} \leq \int_{\Omega}\left(g(\cdot, u)-g\left(\cdot, u_{\tau}\right)\right)\left(u-u_{\tau}\right)^{+} \leq 0,
$$

the last inequality because $g(x, s)$ is nonincreasing in s. Thus $\left(u-u_{\tau}\right)^{+}=0$ and so $u \leq u_{\tau}$. Since u is nonnegative and $u_{\tau}=0$ on Γ_{2} we conclude that $u=0$ on Γ_{2}. Then u is a solution of problem (1.13) and, by Theorem 1.3, this problem has a unique solution. Then $u=u_{\tau}$, and so $\eta=\frac{\partial u_{\tau}}{\partial \nu} \Gamma_{2}$, which is a contradiction. Therefore no such a solution u exists.
Lemma 4.4. If $0 \leq f \in L^{2}\left(\Omega, d_{\Gamma_{1}}^{2}(x) d x\right), 0 \leq \tau \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, and if $u \in H^{1}(\Omega)$ is the weak solution of the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ u=\tau & \text { on } \Gamma_{1}, \\ u=0 & \text { on } \Gamma_{2},\end{cases}
$$

then $\frac{\partial u}{\partial \nu} \Gamma_{\Gamma_{2}} \leq 0$.

Proof. Let $\Psi: \partial \Omega \rightarrow \mathbb{R}$ be defined by $\Psi=\tau$ on Γ_{1} and $\Psi=0$ on Γ_{2}. Then $0 \leq \Psi \in H^{\frac{1}{2}}(\partial \Omega)$ and thus there exists $\widetilde{\Psi} \in H^{1}(\Omega)$ such that $\widetilde{\Psi}=\Psi$ on $\partial \Omega$. By replacing $\widetilde{\Psi}$ by $\widetilde{\Psi}^{+}$if necessary, we can assume that $\widetilde{\Psi} \geq 0$ in Ω. Now, Ω is a bounded domain with C^{2} boundary, and then $C^{\infty}(\bar{\Omega})$ is dense in $W^{1,2}(\Omega)$ (see [1, Theorem 3.18]). Then there exists a sequence $\left\{\widetilde{\Psi}_{j}\right\}_{j \in \mathbb{N}} \subset C^{\infty}(\bar{\Omega})$ such that $\left\{\widetilde{\Psi}_{j}\right\}_{j \in \mathbb{N}}$ converges to $\widetilde{\Psi}$ in $H^{1}(\Omega)$. An inspection of the proof of [1, Theorem 3.18] shows that, since $\widetilde{\Psi}$ is nonnegative, the functions $\widetilde{\Psi}_{j}$ can be chosen nonnegative. For $\gamma>0$, let $\Omega_{\Gamma_{2}, \gamma}$ and $A_{\Gamma_{2}, \gamma}$ be defined as in (2.1). Let δ be a positive number such that $\Gamma_{1} \cap A_{\Gamma_{2}, 4 \delta}=\varnothing$, and let $\phi \in C^{\infty}(\bar{\Omega})$ be such that $0 \leq \phi \leq 1, \phi=0$ in $A_{\Gamma_{2}, \delta}$ and $\phi=1$ in $\Omega_{\Gamma_{2}, 2 \delta}$. Then $0 \leq \phi \widetilde{\Psi}_{j} \in C^{\infty}(\bar{\Omega}), \phi \widetilde{\Psi}_{j}=0$ on Γ_{2}, and $\left\{\phi \widetilde{\Psi}_{j}\right\}_{j \in \mathbb{N}}$ converges to $\phi \widetilde{\Psi}$ in $H^{1}(\Omega)$. For $j \in \mathbb{N}$, let $\Psi_{j}:=\phi \widetilde{\Psi}_{j \mid \partial \Omega}$ and let $f_{j}: \Omega \rightarrow \mathbb{R}$ be defined by $f_{j}(x):=\min \{j, f(x)\}$. Then $\Psi_{j}=0$ on $\Gamma_{2},\left\{\Psi_{j \mid \Gamma_{1}}\right\}_{j \in \mathbb{N}}$ converges to τ in $H^{\frac{1}{2}}\left(\Gamma_{1}\right)$ and $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ converges to f in $L^{2}\left(\Omega, d_{\Gamma_{1}}^{2}(x) d x\right)$. In particular, $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ converges to f in $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$. Now, $f_{j} \in L^{\infty}(\Omega)$ and Ψ_{j} is the restriction to $\partial \Omega$ of a function in $C^{\infty}(\bar{\Omega})$. Then (see, e.g., [29, Theorem 2.4.2.5], see also [26, Theorem 9.15]), the problem

$$
\begin{cases}-\Delta u_{j}=f_{j} & \text { in } \Omega \tag{4.17}\\ u_{j}=\Psi_{j} & \text { on } \partial \Omega\end{cases}
$$

has a unique strong solution $u_{j} \in \bigcap_{1<p<\infty} W^{2, p}(\Omega) \subset C^{1}(\bar{\Omega})$. Since $f_{j} \geq 0$ and $\Psi_{j} \geq 0$ we have $u_{j} \geq 0$. Also, $u_{j}=0$ on Γ_{2}, and then the Hopf boundary lemma, as stated in [42, Theorem 1.1], gives that $\frac{\partial u_{j}}{\partial \nu}(x)<0$ for any $x \in \Gamma_{2}$. On the other hand, $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ converges to f in $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$ and $\left\{\Psi_{j}\right\}_{j \in \mathbb{N}}$ converges to Ψ in $H^{\frac{1}{2}}(\partial \Omega)$, then $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ converges to u in $H^{1}(\Omega)$. Let φ be an arbitrary nonnegative function in $H_{0, \Gamma_{1}}^{1}(\Omega)$. From (4.17), we have $-\operatorname{div}\left(\varphi \nabla u_{j}\right)+\left\langle\nabla u_{j}, \nabla \varphi\right\rangle=f_{j} \varphi$ in Ω, and so, by the divergence theorem (as stated, for example, in [14, Lemma A.1]),

$$
-\int_{\Gamma_{2}} \varphi \frac{\partial u_{j}}{\partial \nu}+\int_{\Omega}\left\langle\nabla u_{j}, \nabla \varphi\right\rangle=\int_{\Omega} f_{j} \varphi
$$

Then $\int_{\Omega}\left\langle\nabla u_{j}, \nabla \varphi\right\rangle-\int_{\Omega} f_{j} \varphi \geq 0$ and thus, taking into account that $\left\{\nabla u_{j}\right\}_{j \in \mathbb{N}}$ converges to ∇u in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ and that $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ converges to f in $\left(H_{0, \Gamma_{1}}^{1}(\Omega)\right)^{\prime}$, we get that $\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle-\int_{\Omega} f \varphi \geq 0$. Then $\frac{\partial u}{\partial \nu} \Gamma_{2} \leq 0$.

Proof of Corollary 1.7. Let u_{τ} be the solution (given by Theorem 1.3) of problem (4.7). By Lemma 4.4, we have $\frac{\partial u}{\partial \nu} \Gamma_{2} \leq 0$. Then the corollary follows immediately from Theorem 1.6.

REFERENCES

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
[2] R.P. Agarwal, K. Perera, D. O'Regan, A variational approach to singular quasilinear problems with sign changing nonlinearities, Appl. Anal. 85 (2006), no. 10, 1201-1206.
[3] I. Bachar, H. Mâagli, V. Rădulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theory Differ. Equ. 2017, Paper no. 94.
[4] B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), no. 2, 123-134.
[5] B. Bougherara, J. Giacomoni, J. Hernández, Existence and regularity of weak solutions for singular elliptic problems, Proceedings of the 2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, 19-30, Electron. J. Differ. Equ. Conf. 22, Texas State Univ., San Marcos, TX, 2015.
[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
[7] H. Brezis, X. Cabre, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998), no. 2, 223-262.
[8] A. Callegari, A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), no. 2, 275-281.
[9] Y. Chu, Y. Gao, W. Gao, Existence of solutions to a class of semilinear elliptic problem with nonlinear singular terms and variable exponent, J. Funct. Spaces (2016), Art. ID 9794739.
[10] F. Cîrstea, M. Ghergu, V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl. 84 (2005), no. 4, 493-508.
[11] M.M. Coclite, G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), no. 10, 1315-1327.
[12] D.S. Cohen, H.B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech. 16 (1967), 1361-1376.
[13] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222.
[14] M. Cuesta, P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), no. 4-6, 721-746.
[15] M.A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 341-352.
[16] J.I. Diaz, J. Hernández, Positive and free boundary solutions to singular nonlinear elliptic problems with absorption: an overview and open problems, Electron. J. Differ. Equ. Conf. 21 (2014), 31-44.
[17] J.I. Diaz, J. Hernandez, J.M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), Article no. 233.
[18] J.I. Diaz, J.M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), no. 12, 1333-1344.
[19] L. Dupaigne, M. Ghergu, V. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), no. 6, 563-581.
[20] P. Feng, On the structure of positive solutions to an elliptic problem arising in thin film equations, J. Math. Anal. Appl. 370 (2010), no. 2, 573-583.
[21] W. Fulks, J.S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1-19.
[22] L. Gasiński, N.S. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Ann. Henri Poincaré 13 (2012), no. 3, 481-512.
[23] M. Ghergu, V.D. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37, The Clarendon Press, Oxford University Press, Oxford, 2008.
[24] M. Ghergu, V.D. Rădulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer-Verlag, Berlin, Heidelberg, New York, 2012.
[25] M. Ghergu, V.D. Rădulescu, Bifurcation and asymptotics for the Lane-Emden-Fowler equation, C. R. Math. Acad. Sci. Paris 337 (2003), no. 4, 259-264.
[26] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 2001.
[27] T. Godoy, Strong solutions for singular Dirichlet elliptic problems, Electron. J. Qual. Theory Differ. Equ. 2022, Paper no. 40, 1-20.
[28] T. Godoy, A. Guerin, Positive weak solutions of elliptic Dirichlet problems with singularities in both the dependent and the independent variables, Electron. J. Qual. Theory Differ. Equ. 2019, Paper no. 54, 1-17.
[29] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Marshfield, Massachusetts, 1985.
[30] J. Janus, J. Myjak, A generalizad Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), no. 8, 953-970.
[31] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730.
[32] Q. Li, W. Gao, Existence of weak solutions to a class of singular elliptic equations, Mediterr. J. Math. 13 (2016), no. 6, 4917-4927.
[33] H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941-2947.
[34] L. Ma, J.C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal. 254 (2008), no. 4, 1058-1087.
[35] M. Montenegro, A.C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2429-2438.
[36] F. Oliva, F. Petitta, Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness, J. Differential Equations 264 (2018), no. 1, 311-340.
[37] N.S. Papageorgiou, G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math. 53 (2016), no. 2, 489-514.
[38] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis, Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
[39] K. Perera, E.A. Silva, Multiple positive solutions of singular p-Laplacian problems via variational methods, [in:] Differential \& Difference Equations and Applications, Hindawi Publ. Corp., New York, 2006, pp. 915-924.
[40] K. Perera, E.A. Silva, On singular p-Laplacian problems, Differential Integral Equations 20 (2007), no. 1, 105-120.
[41] V.D. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, [in:] Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, Elsevier/North-Holland, Amsterdam, 2007, pp. 483-591.
[42] J. Sabina de Lis, Hopf maximum principle revisited, Electron. J. Differential Equations 2015, no. 115, 9 pp.
[43] S. Salsa, Partial Differential Equations in Action - From Modelling to Theory, Springer, Milan, Berlin, Heidelberg, New York, 2008.
[44] J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1389-1401.
[45] J. Shi, M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Qual. Theory Differ. Equ. 2005, no. 04, 11 pp.
[46] C.A. Stuart, Existence and approximation of solutions of nonlinear elliptic problems, Mathematics Report, Battelle Advanced Studies Center, Geneva, Switzerland, vol. 86, 1976.
[47] S. Yijing, Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 909-922.
[48] Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl. 312 (2005), no. 1, 33-43.

Tomas Godoy
godoy@famaf.unc.edu.ar
© https://orcid.org/0000-0002-8804-9137
Universidad Nacional de Córdoba
Facultad de Matemática, Astronomía, Física y Computación
Av. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
Received: August 7, 2022.
Revised: November 21, 2022.
Accepted: November 25, 2022.

